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Abstract: This paper presents an advanced method that combines coupling-of-modes (COM) theory
and the finite element method (FEM), which enables the quick extraction of COM parameters
and the accurate prediction of the electroacoustic and temperature behavior of surface acoustic
wave (SAW) devices. For validation, firstly, the proposed method is performed for a normal SAW
resonator. Then, the validated method is applied to analysis of an I.H.P. SAW resonator based
on a 29◦YX−LT/SiO2/SiC structure. Via optimization, the electromechanical coupling coefficient
(K2) is increased up to 13.92% and a high quality (Q) value of 1265 is obtained; meanwhile, the
corresponding temperature coefficient of frequency (TCF) is −10.67 ppm/◦C. Furthermore, a double-
mode SAW (DMS) filter with low insertion loss and excellent temperature stability is also produced. It
is demonstrated that the proposed method is effective even for SAW devices with complex structures,
providing a useful tool for the design of SAW devices with improved performance.

Keywords: surface acoustic wave; coupling of modes; layered structure; finite element method

1. Introduction

Surface acoustic wave (SAW) devices have been widely used in wireless commu-
nication systems; particularly, filters and duplexers based on SAW resonators are mass-
produced and applied in the radio frequency (RF) front-end due to their advantages of
high isolation, low insertion loss, etc. With the advent of the 5G era, there is a growing
demand for SAW devices in terms of their high frequency, large electromechanical coupling
coefficient (K2), high quality (Q), good temperature coefficient of frequency (TCF) etc.

The performance of SAW devices mainly depends on their piezoelectric substrates. A
normal SAW devices on bulk piezoelectric single-crystal materials such as lithium tantalate
(LiTaO3, LT) and lithium niobate (LiNbO3, LN) have a limitation to their high frequency and
Q factor [1–9]. To solve these challenges, T. Takai et al. proposed the I.H.P. SAW device based
on a LiTaO3/SiO2/AlN/Si multi-layered structure and demonstrated that the resonators
employing I.H.P. SAW device offers higher Bode-Q values of over 6000 at 0.9 GHz to1900
at 3.5 GHz and a very small TCF of −8 ppm/◦C [4]. Because of increasingly stringent
requirements for performance enhancement, techniques for the analysis and design of SAW
devices on such layered piezoelectric substrates with more complex structures are called
for [10,11].

In the available numerical simulation techniques, the coupling-of-modes (COM) model
is commonly used and proven to be an efficient modeling approach to design SAW de-
vices [10,12–15]. However, the COM model is a phenomenological model, and its COM
parameters have to be first determined either via measurements or precise theoretical
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numerical methods, for example the finite element method (FEM), or the boundary ele-
ment method combined with a finite element method (FEM/BEM) [16–21]. Many SAW
researchers have made efforts to precisely extract COM parameters. V. Plessky et al.
proposed a two-parameter model that approximates the dispersion of leaky waves by char-
acterizing the dispersion relationship of pure surface shear waves propagating in a Bragg
grating within the forbidden band [22]. B. P. Abbott and K. Hashimoto et al. further com-
bined the V. Plessky dispersion relation with the COM theory, establishing the STW-COM
model and providing a method for extracting STW-COM parameters [23]. The current
COM models take into account phenomena including the excitation, propagation, and
scattering of surface acoustic waves, and simulate normal SAW devices well. Nevertheless,
temperature-dependent COM parameter extraction is still absent.

Therefore, this work proposes a new method combining the COM model with multi-
physics quasi-3D periodic FEM model considering the temperature field, which enables the
quick and accurate prediction of electroacoustic properties and temperature behavior for
both normal and layered SAW devices. For validation, the admittances of two resonators
based on 36◦YX−LT and 36◦YX−LT/SiO2/SiC are calculated by using the P-matrix with
the extracted COM parameters. Then, the proposed method is employed in the simulation
of a full-sized double-mode SAW (DMS) filter, and its temperature behavior is studied and
discussed. Furthermore, a design of a high-performance DMS filter with low insertion loss
and improved temperature stability is achieved.

2. Experimental Methods
2.1. COM Theory and P-Matrix Model

The materials in Figure 1 depict a basic SAW transducer structure. The COM model is
widely employed to investigate the coupling behavior of two counter-propagating acoustic
waves in a periodic grating structure.
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Figure 1. Propagation of SAW in periodic structure.

It is assumed that there exist two counter-propagating acoustic wave modes R(x)
and S(x) in an infinitely long periodic grating array. These modes couple to each other
through the interdigital reflection effect of the metal grating. Additionally, an external
excitation source alternating the voltage, V, on the transducer stimulates acoustic waves,
which perturbs the forementioned wave modes. The existence of electrodes on the surface
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affects the SAW velocity of the free surface and introduces mode coupling. Assuming linear
coupling between amplitude, voltage, and current, the COM equations can be written as
follow [10]: 

dR(x)
dx = −i∆R(x) + iκS(x) + iαV,

dS(x)
dx = −iκ∗R(x) + i∆S(x)− iα∗V,

dI(x)
dx = −2iα∗R(x)− 2iαS(x) + iωCV,

(1)

where κ represents the coupling coefficient, α signifies the excitation coefficient, C indi-
cates the static capacitance, and ∆ denotes the detuning parameter, which is defined by
the following:

∆ =
ω

v
− k0 − jγ, (2)

where ω is given by ω = 2πf, in which f is the frequency of the two waves. v denotes the
effective SAW velocity, k0 indicates propagation wave number, and γ represents attenuation.
In Equation (1), the five independent variables including v, κ, α, γ, and C are COM
parameters that need to be determined.

Under the linear assumption, the transducer can be equivalently represented by a
three-port matrix, which consists of two acoustic ports and one electrical port. Therefore,
the solutions to the equations of COM can be obtained using the P-matrix [10]:b1

b2
I

 =

P11 P12 P13
P21 P22 P23
P31 P32 P33

a1
a2
V

. (3)

The matrix only considers the physical quantities at its boundaries, including the
incident acoustic waves (a1 and a2), the outgoing acoustic waves (b1 and b2), the input
voltage V, and the current I flowing into it. Assuming the COM parameters are known, the
P-matrix unit can be calculated using the following equation [10]:

P11 = jκ*sin(LD)
Dcos(LD) + j∆sin(LD)

P12 = P21 = (−1)2N D
Dcos(LD) + j∆sin(LD)

P22 = jκsin(LD)
Dcos(LD) + j∆sin(LD)

P13 = −Np sin(LD/2)
LD/2

(∆α* + κ*α)sin(LD/2) − jα*Dcos(LD/2)
Dcos(LD) + j∆sin(LD)

P23 = −(−1)2N Np sin(LD/2)
LD/2

(∆α + κα*)sin(LD/2) − jαDcos(LD/2)
Dcos(LD) + j∆sin(LD)

P31 = −2P13

P32 = −2P23

P33 = − 4
D3

[(∆2 + |κ|2)|α|2 + 2∆Re(κ*α2)][1 − cos(LD)]

Dcos(LD) + j∆sin(LD)
+

j 4
∆2 − |κ|2

[∆|α|2 + Re(κ*α2)]sin(LD)

Dcos(LD) + j∆sin(LD)
− j4L

∆|α|2 + Re(κ*α2)
∆2−|κ|2

+ jLωC,

(4)

where D =
√

∆2 − |κ|2, and L denotes the length of the device.
Furthermore, since practical SAW devices are typically composed of multiple trans-

ducers and reflection gratings, it is necessary to sequentially cascade each P-matrix unit to
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calculate device response. Therefore, let PA and PB be the neighboring P-matrices cascaded
from left to right; the cascading formula for the P-matrix is expressed as follows [10]:

P11 = PA
11 + PB

11
PA

21PA
12

1 − PB
11PA

22

P12 = P21 =
PA

12PB
12

1 − PB
11PA

22

P22 = PB
22 + PA

22
PB

12PB
21

1 − PB
11PA

22

P13 = PA
13 + PA

12
PB

13 + PB
11PA

23
1 − PB

11PA
22

P23 = PB
23 + PB

21
PA

23 + PA
22PB

13
1 − PB

11PA
22

P33 = PA
33 + PB

33 + PA
32

PB
13 + PB

11PA
23

1 − PB
11PA

22
+ PB

31
PA

23 + PA
22PB

13
1 − PB

11PA
22

(5)

As for a single-port resonator without reflectors, P33 represents the admittance of
the interdigital transducers (IDT). For this case, the boundary conditions are given by
a1 = a2 = 0, and P33 represents the input admittance of the SAW resonator.

2.2. COM Parameter Extraction

A theoretical method to extract precise COM parameters based on FEM software
COMSOL Multiphysics 5.5 is presented. Figure 2 shows the schematic of a quasi-three-
dimensional periodic FEM model and a structure used for simulation. As shown, one
period with periodic metal electrodes alternately applying a positive or negative voltage
is considered, and a perfectly matched layer (PML) is applied to the bottom to reduce
the model’s size and suppress the unwanted boundary reflection. Periodic boundary
conditions were defined on the left (ΓL) and right (ΓR) of the model. In addition, the
meshing grid elements in each domain of the model are applied, and the maximum size of
the grid cells in each material is specified as one-sixteenth of the wavelength to accurately
resolve the stress waves in the solid domain. Furthermore, each IDT requires at least three
solid cells in the thickness direction to ensure the accuracy of the calculation. The details of
the quasi-3D periodic FEM model are reported in our previous work [24]. The piezoelectric
module involving the physical field of solid mechanic and electrostatic coupling with the
temperature field is performed so that the temperature-dependent COM parameters can be
obtained. For a given temperature (T), the thermal effect can be computed by incorporating
the linear thermal expansion coefficients and temperature coefficients of elasticity into
the model.
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Figure 3 shows the procedure for the extraction of COM parameters. As is shown, an
eigen frequency and frequency domain analysis of the multiphysics quasi-3D periodic FEM
model for the SAW resonator is performed. As shown, the symmetric frequency (fsc−) and
anti-symmetric frequency (fsc+) can be obtained by performing eigen frequency analysis
at short-circuited grating, and then the center frequency ( f0), v, and κp can be calculated
using the following:

f0 =
fsc+ + fsc−

2
, (6)

v = λ f 0, (7)

κp = 2π

(
fsc−
f0
− 1
)

. (8)
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Frequency domain analysis of the proposed model allows for the determination of the
admittance, Y, and Q factor of the SAW resonator, which can be calculated via harmonic
analysis under the condition where a sinusoidal signal with voltage, V/2, is applied
to the electrode. Then, the harmonic admittance, Y, per IDT period is estimated using
Y = 2π f jQc/V, where f is the driving frequency and Qc is the total charge induced on the
electrode [24]. Therefore, the remaining COM parameters, αp, γp, and Cp, can be obtained
using the following formulas:

αp =

√
Yrγp

4
, (9)

γp = π
∆ f
f0

, (10)

Cp =
2YrQ

(
far

fsc−
− 1
)

2π far

[
4Q2

(
far

fsc−
− 1
)2

+ 1
] , (11)

where Yr is the conductance at the resonant frequency, ∆ f is the half-peak width of the
conductance, far is the anti-resonant frequency, and the quality factor is given by Q = fsc−

∆ f .
When the above five COM parameters are available, the device response and temperature
behavior of the SAW device can be calculated.
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2.3. Model Verification

For validation, first, the COM parameters extracted using the proposed method are
verified for the normal SAW resonator based on bulk 128◦YX−LiNbO3 substrate. Due
to the almost negligible attenuation of Rayleigh waves excited on LiNbO3 substrates,
the attenuation coefficient was not extracted. Table 1 presents a comparison between
the extracted COM parameters and those of the previously reported results taken from
Refs. [25,26] in our previous work [27]. As can be seen, these extracted COM parameters
at a temperature (T) of 25 ◦C are compared well. Additionally, the COM parameters at a
temperature (T) of 100 ◦C are also calculated via the proposed method. It is obvious that the
temperature-dependent COM parameters vary with the temperature change. Compared to
the traditional COM and pure FEM methods, the proposed method takes into account the
temperature effects, allowing for a combination of faster and more accurate consideration
of practical influences when designing SAW devices in the manufacturing process. This
enhances the alignment between the expected and achieved outcomes.

Table 1. COM parameters for 128◦YX−LiNbO3 with hIDT = 0 [27].

Parameters Ref. [25] Ref. [26] This Work

T [°C] 25 25 25 100
v [m/s] 3899.98 3901 3899 3876
κp [%] −3.95 −3.95 −3.89 −3.93

αn

[
10−5 Ω−

1
2

]
68.618 69.65 69.81 70.15

Cn
[
10−5 pF/µm

]
49.263 48.36 49.3 48.3

Then, the extracted COM parameters are employed to simulate the admittance of
the SAW device with the P-matrix model. Figure 4 presents the calculated admittance of
the multi-layered SH-SAW resonator on a 36◦YX−LT/SiO2/SiC layered substrate. For
comparison, the measurement taken from Ref. [28] is also presented. As shown, the
admittance curves basically fit well, and there exists a small difference at the anti-frequency,
which is mainly caused by a bulk wave. Nevertheless, it is noted that the proposed COM
method accurately reproduces fluctuations at low frequencies and a spurious response at
high frequencies.
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3. Results and Discussion
3.1. Simulation of Resonators

Based on the advantages of fast and accurate simulations offered by the COM method,
this work employs the COM method for the simulation and optimization of SAW resonators
and DMS filters.

Figure 5 shows the calculated admittance of resonators for both bulk 36◦YX−LT
substrate and the 36◦YX−LT/SiO2/SiC multi-layered structure. The structural parameters
of the resonator are shown in Table 2. It can be observed that the multi-layered structure
exhibits significantly higher K2 and a larger oscillation amplitude. This can be attributed to
the SiC substrate in the multi-layered structure, which has a higher velocity and thus offers
an SAW energy confinement effect. This characteristic allows for the efficient conversion
of electrical energy into mechanical vibration, enabling the high performance of SAW
devices. Compared to the bulk LT substrate, the LT/SiO2/SiC multi-layered substrate has
advantages in terms of a higher Q and improved temperature stability. From this point
on, the 36◦YX−LT/SiO2/SiC multi-layered structure was further optimized in terms of
different Euler angles and geometric structural parameters.
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Table 2. The geometric structure parameters of the SAW resonator.

Parameters Value

Wavelength (λ) 4 (µm)
Aperture 15 ∗ λ

IDT thickness 0.06 ∗ λ
Metallization ratio 0.4

Number of IDT finger pairs 75
Number of reflector strips 40

The advantages of the multi-layered structure over those of a bulk LT structure, in
terms of SAW resonator fabrication, typically result in a higher Q and improved temperature
stability. Therefore, in this study, the multi-layered structure is optimized and employed
for the simulation of SAW devices.

Figure 6a presents the calculated velocities and electromechanical coupling coefficients
of an SH wave mode on the LT/SiO2/SiC structure versus different β rotation angles of
the LT layer. The maximum K2 value of the device, which was approximately 13.88%, was
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achieved by setting the Euler angle of the LT layer in the COMSOL as (0◦, 151◦, 0◦) when
the LT layer thickness at 800 nm. In this configuration, the phase velocity reached around
4064 m/s.
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Additionally, Figure 6b illustrates the calculated velocities and electromechanical cou-
pling coefficients versus different piezoelectric layer thicknesses on a 29◦YX−LT/SiO2/SiC
structure. A K2 value of 13.89% is obtained when the piezoelectric layer thickness is 0.2λ,
with a corresponding phase velocity of 4060 m/s. This reduction in velocity is deemed
acceptable compared to the case for a piezoelectric layer thickness of 0.1λ. In the case of a
0.2λ thick LT layer, a K2 value of 13.91% is obtained when the electrode thickness is 0.06λ,
as shown in Figure 6c. It is worth noting that as the electrode thickness increases, the
velocity of the SH wave mode gradually decreases due to the influence of mass loading.
However, the velocity of 4085 m/s at the electrode thickness of 0.06λ is an acceptable value.
Under the condition of a 0.2λ thick LT layer and 0.06λ thick Al electrodes, an optimized
structure with a maximum K2 of 13.92% and suitable phase velocity of 4122 m/s obtained
simultaneously results when the metallization ratio is 0.4.

Figure 7a presents the simulation results of the optimized resonator compared to those
of a resonator on a 36◦YX−LT substrate. The optimized resonator on the 29◦YX−LT/SiO2/
SiC structure exhibits significantly larger K2 values and higher amplitudes compared to the
resonator on a 36◦YX−LT substrate. Figure 7b illustrates the temperature characteristics
of the optimized resonator on the 29◦YX−LT/SiO2/SiC structure. It is evident that as the
temperature increases, the overall admittance gradually shifts to the left. The temperature
coefficient of the resonance frequency (TCFr) is −10.67 ppm/◦C, while the temperature co-
efficient of the anti-resonance frequency (TCFa) is −40.36 ppm/◦C [29–31]. Table 3 presents
a comparison for the extracted COM parameters at different temperatures. As can be
seen, these extracted temperature-dependent COM parameters vary with the temperature
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change. The performance comparison between the resonators on a 36◦YX−LT substrate
and a 29◦YX−LT/SiO2/SiC substrate is shown in Table 4. The multi-layered structure
demonstrates a significant improvement in temperature stability, which effectively miti-
gates the impact of temperature variations on SAW resonators and meets the requirements
for precise and stable performance in practical applications.
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Table 3. COM parameters for the 29◦YX−LiTaO3 structure.

Parameters T = −50 ◦C T = 25 ◦C T = 100 ◦C

v [m/s] 4128 4122 4116
κp [%] −28.94 −28.66 −28.19

αn

[
10−5 Ω−

1
2

]
86.93 86.62 85.83

Cn
[
10−5 pF/µm

]
29.30 29.91 30.73

γp [/] 0.00231 0.00232 0.00232

Table 4. Performance comparison between the SAW resonators on the 36◦YX−LT substrate and
29◦YX−LT/SiO2/SiC substrate.

Structure
Configuration K2 (%) V (m/s) TCFr

(ppm/◦C)
TCFa

(ppm/◦C) Qr

Bulk 36◦YX−LT 10.16 4075 −30.21 −48.01 773
29◦YX−LT/SiO2/SiC 13.92 4122 −10.67 −40.36 1265

3.2. Simulation of DMS Filters

The advantages of the optimized 29◦YX−LT/SiO2/SiC structure over a 36◦YX−LT
structure typically imply a larger bandwidth and lower insertion loss for filters. Therefore,
this work extends the optimization results of multi-layered SAW resonators and applies
the optimized structure for a DMS filter simulation.

In order to obtain a wider bandwidth, the test DMS structure of three IDTs in which
the lateral IDTs are symmetrically arranged with respect to the center IDT is used [32].
Figure 8 presents the electrode configuration. The corresponding parameters of DMS filters
are shown in Table 5.
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Table 5. The geometric structure parameters of the DMS filter.

Parameters Value

p1 2 [µm]
p2 1.9 [µm]
p3 2.3 [µm]

Gap 1 [µm]
IDT finger pairs of the input part 15.5

IDT finger pairs of the output part 9
Number of reflector strips 60

Figure 9 illustrates a comparison of the transmission spectrums between the filters on
the 36◦YX−LT and 29◦YX−LT/SiO2/SiC substrates. The DMS filter on the 29◦YX−LT/
SiO2/SiC substrate exhibits a significantly wider bandwidth compared to that of the com-
mon filter. This expanded bandwidth enables the filter to transmit a broader range of
frequencies, meeting the requirements for processing various frequency signals. Addition-
ally, the 29◦YX−LT/SiO2/SiC structure demonstrates a flatter passband, ensuring uniform
signal transmission and avoiding an uneven frequency response and distortion. This is
crucial for applications that demand good signal quality and accuracy. Therefore, the DMS
filter on the 29◦YX−LT/SiO2/SiC substrate provides more flexible and high-performance
signal processing capabilities.
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Figure 10 illustrates the computed temperature characteristics of the two DMS filters,
indicating that the optimized 29◦YX−LT/SiO2/SiC structure exhibits superior temperature
stability compared to that of the 36◦YX−LT structure. Particularly, TCF suppression is
evident at lower frequencies in the 29◦YX−LT/SiO2/SiC structure. TCF values at the
lower edge (TCFl) are reduced to −14.35 ppm/◦C, while TCF values at the higher edge
(TCFh) are reduced to −22.02 ppm/◦C compared to those of the DMS filter on a 36◦YX−LT
structure (TCFl = −32.87 ppm/◦C, TCFh = −37.55 ppm/◦C). The 29◦YX−LT/SiO2/SiC
structure effectively suppresses the TCF to a satisfactory level, emphasizing its contribution
to improved temperature stability. Table 6 presents the specific performance of the two
DMS filters. In addition to the improvement in TCF, in-band insertion loss is optimized
from −3 dB to −2 dB, effectively enhancing the application potential of the filter at high
temperatures and enabling the better performance of signal transmission. It can be inferred
that by employing the improved method, it is possible in the early stages of designing SAW
devices to simulate the propagation characteristics and temperature properties of DMS
filters rapidly and accurately in the manufacturing process. This facilitates the identification
of filters that meet the expected requirements, enabling mass production and reducing
material wastage caused by inaccurate or incomplete simulations.
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and (b) the optimized 29◦YX−LT/SiO2/SiC structure at different temperatures.

Table 6. Performance comparison between the two DMS filters based on a 36◦YX−LT substrate and a
29◦YX−LT/SiO2/SiC substrate.

Structure
Configuration Insert Loss (dB) TCFl (ppm◦C−1) TCFh (ppm◦C−1)

Bulk 36◦YX−LT −3 −32.87 −37.55
29◦YX−LT/SiO2/SiC −2 −14.35 −22.02

4. Conclusions

In this paper, an advanced method combining the COM theory with a quasi-3D
periodic FEM model coupled with a thermal field is proposed. Accurate simulations and
analyses of the electroacoustic and temperature behavior of SAW resonators and filters
are performed. This is of great assistance in the manufacturing process of SAW devices,
effectively preventing production wastage caused by inaccurate simulations or the neglect
of temperature stability. On this basis, a comparison is made between resonators on a
36◦YX−LT structure and those on a 29◦YX−LT/SiO2/SiC multi-layered structure. This
comparison demonstrates the advantages of the multi-layered structure with a larger
K2 of 13.92% and a lower TCF of −10.67 ppm/◦C. Frequency response calculations are
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performed for both the SAW resonators and filters based on this optimized structure,
revealing significant improvements in performance compared to that of a normal structure.
In particular, the temperature stability and the in-band insertion loss of the optimized
DMS filter are improved, highlighting the tremendous potential of SAW filters in high-
temperature applications.
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