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Abstract: Multiple Internet of Healthcare Things (IoHT)-based devices have been utilized as sensing
methodologies for human locomotion decoding to aid in applications related to e-healthcare. Different
measurement conditions affect the daily routine monitoring, including the sensor type, wearing style,
data retrieval method, and processing model. Currently, several models are present in this domain
that include a variety of techniques for pre-processing, descriptor extraction, and reduction, along
with the classification of data captured from multiple sensors. However, such models consisting of
multiple subject-based data using different techniques may degrade the accuracy rate of locomotion
decoding. Therefore, this study proposes a deep neural network model that not only applies the state-
of-the-art Quaternion-based filtration technique for motion and ambient data along with background
subtraction and skeleton modeling for video-based data, but also learns important descriptors from
novel graph-based representations and Gaussian Markov random-field mechanisms. Due to the
non-linear nature of data, these descriptors are further utilized to extract the codebook via the
Gaussian mixture regression model. Furthermore, the codebook is provided to the recurrent neural
network to classify the activities for the locomotion-decoding system. We show the validity of the
proposed model across two publicly available data sampling strategies, namely, the HWU-USP and
LARa datasets. The proposed model is significantly improved over previous systems, as it achieved
82.22% and 82.50% for the HWU-USP and LARa datasets, respectively. The proposed IoHT-based
locomotion-decoding model is useful for unobtrusive human activity recognition over extended
periods in e-healthcare facilities.

Keywords: human activity recognition; Internet of Healthcare Things; locomotion prediction;
multimodal systems; recurrent neural network; RGB; wearable sensors

1. Introduction

Recent trends in the Internet of Healthcare Things (IoHT) have boosted wearable and
visual-technology-based human locomotion decoding. This boost converts the healthcare
industry from cure to prevention [1–4]. Various IoHT devices are available for healthcare
and research, including smart devices, inertial units, and cameras. Data from such IoHT
devices have been extracted, processed, and analyzed for human locomotion decoding.
For ambient assisted living, sensor-based data have been used to support and supervise
people, also known as human activity recognition (HAR) [5–7]. Applications of such HAR
systems include injury recognition, medical analysis, long-term or short-term care, health
monitoring, and independent quality of life [8–12].

These HAR systems can use machine learning or deep learning techniques to decode
the activities of daily living by extracting data from motion, ambient, or vision-based
sensors [13–16]. Modern smart devices manipulate the data and thus cannot be utilized
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for locomotion decoding [17–20]. Some HAR systems have less efficiency due to errors
induced by the data acquisition that must be resolved using a robust filter [21–23]. Exiting
feature extraction methods cannot perform well for HAR systems and provide less efficient
results [24–28]. Therefore, a multimodal sensor-based human-locomotion-decoding (HLD)
system consisting of motion, ambient, and vision sensors is proposed in this paper. The
key contributions of this research are as follows:

• An innovative multimodal system for locomotion decoding via multiple sensors fused
to enhance the HAR performance [29–31];

• The effective and novel filtration of the inertial sensor data [32–34] by using a proposed
state-of-the-art Quaternion-based filter;

• A novel approach to filtering the ambient-based data that includes infrared cameras
and switches attached to the environment;

• Hand-crafted contemporary descriptor extraction methods [35–38] are proposed and
applied to acquire related descriptors [39–42] using novel techniques;

• Efficient ambient sensor descriptor extraction based on a unique and novel graph
representation;

• The proficient recognition of activities [43–46] for locomotion decoding via detection
through a recurrent neural network (RNN).

Section 2 explains the sensor-based activity recognition systems presented in the
literature. Next, Section 3 details the proposed locomotion-decoding system for the IoHT
industry [47–51]. The experiments performed over the selected datasets using the proposed
method and their results, along with a comparison of the baseline system and previous
state-of-the-art models, are discussed in Section 4. The conclusion of the whole paper is
presented in Section 5.

2. Related Work

Locomotion decoding with a combination of IoHT-based sensors can be utilized
for different applications [52–55], including the execution and tagging of data, which
associates the meanings of sensor data interpretations by using symbols. A single sensor
is not enough to provide the semantic meaning of a situation. Therefore, multimodal
sensor-based systems serve this purpose. For this resolution, multiple systems have been
proposed in history to evaluate the effectiveness, completeness, and reliability of such
sensor-based decoding systems.

2.1. Sensor-Based Locomotion Decoding

In [56], Franco et al. propose a multimodal system for locomotor activity recognition.
They used RGB video and other sensors for data acquisition. Histograms of oriented
gradient (HOG) descriptors and skeleton-based information were extracted from the RGB
data frames to capture the most prominent body postures. For the activity classification, a
voting system was defined to obtain votes from support vector machine (SVM) and random
forest classifiers. However, the proposed system could not achieve higher results due to
the absence of a filtration technique for the data. Another system is proposed in [57] that
collects motion sensor data. Next, data are processed using a linear interpolation filter
and segmentation. Features are extracted using four different extraction techniques and
normalized using the z-score function. Then, features are selected via correlation and
evolutionary search algorithms. Further, the class imbalance is removed using the synthetic
minority over-sampling method. Features are fused, and multi-view stacking is utilized to
classify humans.

2.2. Multimodal Locomotion Decoding

In [58], the authors propose a robust human activity recognition method. They used
multimodal data based on wearable inertial and RGB-D sensors. The inertial data were
pre-processed using magnitude computation and noise removal techniques, and dense
HOGs were extracted from video data. Time domain features are extracted from inertial
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signals, and bag-of-words encoding is utilized for video frame sequences. Furthermore,
the features are fused, and K-nearest-neighbor and support vector machines are used for
the human activity classification.

A long short-term memory (LSTM) network-based system is proposed in [59]. To
recognize activities of daily living, the authors used a deep learning model via data ac-
quired from real-world and synthetic environments. The sensors were attached to the
wrists, ankles, and waist to detect activities, including eating and driving. Each sensor’s
accuracy was observed to elaborate the custom weights for each sensor fusion. This study
recommended using one sensor on the upper body parts and one sensor on the lower body
parts to obtain reasonable results. However, due to the restricted data used and limited
weight learning in the system, the method cannot adapt to changes over time.

In [60], a system of Marfusion based on a convolutional neural network (CNN) and
attention mechanism is proposed. Features are extracted from multimodal sensors and a
set of CNNs is utilized for each sensor. Next, a dot-product, scaled, self-attention process is
applied to give weight to each sensor. Then, CNN and attention-based modules are utilized
for feature fusion with different parameters. Further, fully connected batch normalization,
dropout, ReLU, and softmax layers are used for the classification via the obtainment of the
probabilities for different activities. The proposed system gave an acceptable performance
but experimented with limited human locomotion. Therefore, the results are not robust for
real-time environments.

3. Materials and Methods

The proposed locomotion-decoding architecture is described in Figure 1. The in-
put data for the proposed IoHT-based system were taken from two publicly available
datasets named Logistic Activity Recognition Challenge (LARa) [61] and Heriot-Watt
University/University of Sao Paulo (HWU-USP) [62], which are present in the form of
time series in a time segment of size W from S sensors. Sensors of three types were used:
physical signals {pi}, ambient signals {pa}, and visual frame sequences {pv}. Algorithm
1 demonstrates the complete IoHT-based HLD system. The input {pi, pa, pv} from the S
sensors was pre-processed for each time segment of a W size. Next, the descriptors were
extracted and optimized {Vi*, Ki*, Si*, Ai*} for each W segment. Further, the descriptors
were trained by using an RNN and tested the remaining descriptors to recognize activities
{A*} to decode human locomotion. All these phases of the IoHT-based HLD system are
further explained in the next subsections.

Algorithm 1 HLD Algorithm

Input: physical IMU signals {pi}, ambient signals {pa}, visual frame sequences {pv};
Output: recognized activities {A*};

1. Pre-process {pi, pa, pv} for each segment W in Module I;
2. Extract descriptors {Vi*, Ki*, Si*, Ai*} for W in Module II;
3. Optimize descriptors for W in Module III;
4. Train descriptors over classifier to obtain f (X,θ);
5. Test remaining descriprtors to obtain {θ,θ*};
6. Recognize activities {A*};

3.1. Pre-Processing Motion and Ambient Data

A novel quaternion-based filter is proposed in this study to pre-process the physical-
motion [63] and ambient data from the sensor inertial measurement units (IMUs). The
signals are clarified via low- and high-pass Butterworth filters [64,65] for further processing.
Next, the signals are normalized using the Euclidean distance [66,67]:

Norm =
√

LPF1 + LPF2 + LPF3 +
√

HPF1 + HPF2 + HPF3 (1)
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where LPF1, LPF2, and LPF3 denote the filtered values for the x-, y-, and z-axes via the
Butterworth filter, respectively. HPF1, HPF2, and HPF3 represent the filtered values of the
x-, y-, and z-axes through the Butterworth filter, respectively.
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Then, for the accelerometer signals, gravity from a stationary activity, such as lying
down, is extracted as the minimum gravity (gm) and average gravity (ga). Then, the
gravitational error (ge) [68,69] is removed from the accelerometer signals, giving more
accurate and error-free signals for further processing. Similarly, the earth’s magnetic field
is used to remove the magnetic errors from magnetometer signals [70,71].

After normalization, discrete wavelet transform [72] is applied to the gyroscope signals
to transform them into quaternions in order to avoid the gimbal lock problem. Later, the
derivative of the quaternions is considered, and gradient descent is applied to attain the
minimum rate of change. Further, a local minimum [73] is selected, and the gyroscope
signals are normalized using the Euler angles:

Axz = atan2(z, x), (2)

Ayz = atan2(z, y), (3)

Axy = atan2(y, x), (4)

where Axz, Ayz, and Axy are the Euler angles. Lastly, all three pre-processed signals are
normalized together. Figure 2 explains the pre-processing step for the physical-motion
module in detail.

3.2. Pre-Processing Visual Data

For the pre-processing, videos from both datasets were converted into frame sequences.
A delta of 50 was chosen to restrict the number of pre-processing sequences to avoid redun-
dant data processing. Next, we retrieved a background image from both data sequences.
Then, the background was removed by subtracting the background image from the original
frame sequences [74,75]. The background subtraction from the original image sequence is
displayed in Figure 3. Discrete wavelet transform was used over the frame sequences to
reduce the noise present.
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Figure 3. (a) Before background deduction and (b) after background deduction of a frame sequence
from HWU-USP dataset.

Skeleton modeling was performed through blob and centroid techniques for human
detection in the frame sequences. First, the blobs were defined from the human movable
parts, which was followed by taking the centroids and deciding on five types of skeleton
body points—head, shoulders, elbows, wrists, torso, knees, and ankles [76]. Figure 4 shows
the skeleton points extracted for drinking tea and reading a newspaper.
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Figure 4. Skeleton point decoding from frame sequences of (a) drinking tea and (b) reading
a newspaper.

3.3. Data Segmentation

Next, to deal with the dimensions of the datasets, this study segmented the mo-
tion and ambient pre-processed data into overlapped [77] and time-based [78] segments,
whereas the vision-based data were segmented through event-based segments. For all three
types of data {pi

∗, pa
∗, pv

∗}, Figure 5 shows the segmentation process by using manifold
locomotion activities.

3.4. Motion Descriptor Extraction

The pre-processed and segmented motion-based data were further provided to
two different techniques for the descriptor extraction, including Gaussian Markov random
field (GMRF) and a novel contribution in the form of a multisynchrosqueezing transform
(MSST)-based spatial–temporal graph.

GMRF can take multidimensional data, and a stochastic process becomes Gaussian
when all its distributions are Gaussian-normalized [79]. Equations (5) and (6) show the
expectation function (µ̃t) and covariance function (∑̃s, t) using s samples and t times.
Figure 6 presents the results for the GMRF for a window of kinematic physical data
on HWU-USP.

µ̃t = EX̃t, (5)
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∑̃s, t = cov
(

X̃s, X̃t

)
. (6)
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MSST represents multiple synchrosqueezing transforms iteratively [80] and is calcu-
lated as follows:

Ts[M](t, γ) =
∫ +∞

−∞
TsM−1(t, γ)δ(γ− ω̂(t, ω))dω, (7)

where M gives the iteration number ≤ 2 and Ts[M](t, γ) is the spread time–frequency
coefficient. The short-time periodogram is further calculated as follows:

p(s, f ) =
1
T

∣∣∣∣ Y(s, f )
∣∣∣∣2 (8)

where p(s, f ) is the result of frequency ( f ) and time (s). T shows the window length. Further,
the spatial–temporal graph was constructed using six nodes or frequencies. Figure 7 shows
the novel spatial–temporal graph extracted from MSST for a random static pattern.
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3.5. Ambient Descriptor Extraction

A graph-based representation has been proposed as a novel descriptor extraction for
ambient sensor pre-processing [81]. For each sensor attached to the ambient, a graph (R) is
produced using a descriptor matrix (M) and adjacency matrix (K) given by the following:

R = (M, K) (9)

where M is the descriptor matrix consisting of the sensor type, number of neighbors,
and sensor orientation. K contains the number of adjacent sensors for each node and the
names of neighboring sensors. Figure 8 presents the details of the proposed graph-based
ambient descriptors.
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3.6. Vision Descriptor Extraction

In thermal descriptors, the movement from one frame to another is captured in the
form of thermal maps. More movement is described using higher heat values in yellow,
and less movement is shown using red or black [82]. In Equation (10), x represents a
one-dimensional vector comprising the extracted values, i represents the index value, and
R denotes the RGB value. Figure 9 presents the heat map for the full-body frame sequence.

TM(x) = ∑k
i=0 ln R(i). (10)
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The full-body descriptor extraction method for visual data utilized is called the saliency
map (SM) approach. It is computationally expensive to process an entire frame simultane-
ously; therefore, the SM approach suggests sequentially looking at or fixating on the salient
locations of a frame. The fixated region is analyzed, and then attention is redirected to other
salient regions using saccade movements requiring more focus [83]. The SM approach
is a successful and biologically plausible technique for modeling visual attention. The
generalized Gaussian distribution shown in Equation (11) is used to model each of these:

P( fi) =
θi

2σiγ
(

θ−1
i

) exp

(
−
∣∣∣∣ fi
σi

∣∣∣∣θi
)

, (11)

where θi > 0 is the shape parameter, σi > 0 provides the scale parameter, and γ gives
the gamma function. Figure 10 presents the results of SMs applied over a full-body
frame sequence.
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The orientation descriptor technique is the first descriptor extraction technique for
the skeleton body points. Five skeleton body points are used to make triangles and obtain
angles from them. The tangent angle in Equation (12) is measured between the three sides
of each triangle [84]:

tan θ =
u·v
|u||v| , (12)
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where u·v is the dot product of vectors u and v that are any two sides of a triangle. Figure 11
demonstrates the examples of triangles formed by combining two human skeleton body
points in some activities, such as drinking tea and reading a newspaper.
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The second descriptor extraction technique used for the skeleton body points is the
spider local image feature (SLIF) technique. A spiderweb representation emulates the
skeleton body point nodes as web intersection points in a frame sequence [85,86]. The
position of each node (n, m) is denoted by a set of two-dimensional coordinates, as follows:

xn,m =

(
m·cos

( 2πn
N
)

M
,

m·sin
( 2πn

N
)

M

)
, (13)

where the first and second terms represent the horizontal and vertical coordinates, re-
spectively. For a set of previously defined skeleton body points, the SLIFs are extracted
by selectively extracting pixel information from around the neighborhood of each point
and applying a spiderweb over the point. Figure 12 shows a spiderweb applied over two
sample frame sequences.
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3.7. Codebook Generation

A Gaussian mixture model (GMM) codebook is used to encode the descriptors ex-
tracted from previous subsections. An expectation maximization (EM) algorithm is used in
the GMM to present complex descriptors. This algorithm approximates the parameter set
(Θ) and aids in calculating the maximum likelihood through an initial parameter set (Θ1),
and then continuously applies the E and M steps. Then, it produces {Θ1, Θ2, . . ., Θm, . . .}
and both E and M steps as follows:

γm (zj
k | xj, Θm) =

ωm
k f (xj|µm

k , ∑m
k )

∑K
i=1 ωm f (xj| µm

i , ∑m
i )

, (14)

∑m−1
k =

∑N
j=1 γm(zj

k|xj, Θm)
(

xj − µm+1
k

)
(xj − µm+1

k )
T

∑N
j=1 γm(zj

k|xj, Θm)
. (15)

where γm (zj
k | xj, Θm) gives the probability of the jth example and the kth Gaussian at

the mth iteration with weights (ωm
k ), means (µm

k ), and covariance (∑m
k ) values. Similarly,

a single generalized signal is extracted from the set of descriptors given using Gaussian
mixture regression (GMR). Henceforth, a smooth signal via regression can be taken out by
coding the temporal signal features [87] through a mixture of Gaussians. Each vector of the
signals’ GMM is taken as the input (xI) and output (xO) using GMR via this method.

3.8. Locomotion Decoding

A simple feedforward neural network poorly handles the sequence of data. It never
forms a cycle between two hidden layers, and information always flows in one direction,
never going back. It comprises an input layer, a hidden layer, and an output layer. An
RNN [88] also contains these three layers, but it focuses on considering the current state
along with the previous state in the form of output from the previously hidden layer via
memory. Thus, the current state and previous state are used to produce output for the next
time step, as shown in Figure 13. An activation function is also used to calculate the current
state; we used tan h as the activation function. Due to the input pattern change, the RNN
performs better by incorporating backpropagation.
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4. Performance Evaluation

In order to evaluate the IoHT-based HLD system, the following datasets and evaluation
criteria were used.

4.1. Dataset Descriptions

Several publicly available datasets are present for human locomotion decoding via
activity recognition. However, they can be different in terms of the number of subjects,
number of activities performed, environmental setup, number of sensors, type of sensors,
and sampling rates. In the proposed IoHT-based HLD system, we used two publicly
available datasets, HWU-USP [62] and LARa [61], captured in diverse environmental
setups and three different sensor modalities to make the system more robust. A 10-fold
cross-validation technique was utilized to evaluate the proposed system. The following
sections give details on the datasets mentioned above:

HWU-USP: A dataset recorded in a “living-lab” was selected for this study. It contains
recordings from binary switches, PIR sensors, RGBD cameras installed over a robot, and
IMU devices. The camera color is VGA 640 × 480 at 25 fps. A total of 16 participants
performed nine activities with 144 instances with an average length of 48 s [62]. The
participants were voluntary and healthy with neither functional nor visual impairments.
The dataset contains activities of daily living with either periodical patterns or long-term
dependencies and, hence, it is different from other multimodal environments. A variety of
activities have been performed, such as making a cup of tea, making a sandwich, making a bowl
of cereal, setting the table, using a laptop, using a phone, reading a newspaper, cleaning the dishes,
and tidying the kitchen. Figure 14 represents the sample of activities performed by one of
the participants in the HWU-USP dataset;
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LARa: This dataset consists of an OmoCap system, a VICON system of 38 infrared
cameras, three sets of IMU devices, and 30 recordings of 2 min for each of the 14 subjects.
A wide range of participants were selected, including both male and female, ranging in
age from 22 to 59 years, weighing from 48 to 100 lbs, left- and right-handed, and with
heights from 163 to 185 cm. The dataset was recorded in a total of seven sessions of 758 min
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of recording. Acceleration sensors recorded the locomotion at a rate of 100 Hz [61]. The
dataset is unbalanced regarding the annotations due to the complex process. The dataset
is based on the activities performed in a logistics-based context. An expert trained the
subjects in advance to recordings. A total of eight activities were recorded for each subject,
including standing, walking, carting, handling (upwards), handling (centered), handling
(downwards), synchronization, and none. Figure 15 gives a few sample frame sequences
from the dataset.
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4.2. Experiment 1: Evaluation Protocol

Evaluation metrics can be used to evaluate the performance of the chosen deep learning
classifier, including the accuracy, precision, and F1-score [89]. Table 1 shows the evaluation
metrics derived from the experimental results. In our study, these metrics were chosen
where the accuracy was the ratio between the decoded samples and the total number of
samples. The three metrics can be defined as follows:

Acc =
TP + TN

TP + FN + FP + TN
, (16)

rec =
TP

TP + FN
, (17)

F1− score =
2× (rec·pre)
(rec + pre)

, (18)

where TP, TN are the true-positive and true-negative values, FP, FN give the false-positive
and false-negative values, and pre is the precision, which can be calculated as follows:

pre =
TP

TP + FP
(19)

Table 1. Comparative analysis of proposed IoHT-based HLD system with other deep learning
approaches using accuracy, recall, precision, and F1-score for the two benchmarked datasets.

Performance Proposed System
with First Novelty

Proposed System with
Second Novelty

Proposed System with
Both Novelties CNN LSTM

HWU-USP

Accuracy 78.89% 80.00% 82.22% 72.22% 70.00%
Recall 0.79 0.80 0.82 0.72 0.70

Precision 0.79 0.81 0.83 0.73 0.71
F1-Score 0.79 0.81 0.82 0.72 0.70

LARa

Accuracy 80.00% 77.50% 82.50% 78.75% 76.25%
Recall 0.80 0.77 0.82 0.78 0.76

Precision 0.80 0.78 0.83 0.79 0.76
F1-Score 0.80 0.77 0.82 0.79 0.76
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4.3. Experiment 2: Comparison with Baseline HLD Systems

In the first experiment, we tested to highlight the importance of novel techniques
introduced in this system. The first novelty is the motion and ambient data filtration
technique that can handle sensor signal-based errors, biasness, and drift. The second
novelty is ambient and motion descriptor extraction through a graph-based approach that
helps extract robust descriptors related to the data type. The comparative results for the
proposed IoHT-based HLD system with the first novelty, second novelty, and both together
are given in Table 1, along with a comparison of the same system classification through the
CNN [90] and LSTM [91].

We used the scikit-learn library to train all three classifiers. We set the learning rate for
the CNN to 0.001, and the maximum epoch number was 200. The input layer contained
the descriptors extracted. Then, we proposed three convolution layers with the ReLU
activation function. Next, the pooling layer was utilized after each convolution layer. A
flattened layer was also used to flatten the shape of the layers. Further, a fully connected
layer with two hidden layers and a softmax layer were also used to test the trained data
through output. For the LSTM, we used the architecture proposed in [92], where an input
layer, a few LSTM-based temporal models, a flattened layer, and a fully connected network
were used to recognize the ADL. Table 2 shows the confidence levels of extracted skeleton
body-points compared to the ground truth values over HWU-USP and LARa datasets.

Table 2. Confidence levels for skeleton body points over HWU-USP and LARa datasets.

Skeleton Body Points Confidence Levels for
HWU-USP Confidence Levels for LARa

Head 0.95 0.94
Shoulders 0.92 0.90

Elbows 0.88 0.89
Wrists 0.91 0.90
Torso 0.85 0.88
Knees 0.89 0.92
Ankles 0.95 0.94

Mean Confidence 0.90 0.91

4.4. Experiment 3: Comparison with Other Works Utilizing Filtration and Descriptors

This section will focus on comparing the two novelties with the existing techniques
by comparing them with the proposed HLD system. Figure 16 compares the accuracies
of the proposed HLD mechanism and other existing techniques [93–95] that also used
data filtration along with feature extraction. In [93], the authors utilized a combination of
IMU, mechanomyography, and electromyography sensors and filtered them using median,
band-pass, and moving-average filters to remove noise. Next, they made windows of 5 s
each from the data and applied different techniques for the feature extraction, including
peak-to-peak, abrupt changes, skewness, and mean frequency. Further, to reduce the
features’ vector dimension, they propose a multi-layer sequential forward selection method
followed by classification via the random forest.

Haresamudram et al. present a self-supervised technique called masked reconstruc-
tion for HAR in [94]. They used small-labeled datasets and filtered data using transformer
encoders. Then, they trained the network using different features and transfer learning
mechanisms. In [95], a similar method to filter the data from motion, ambient, and vision-
based sensors is proposed. The authors extracted features such as dynamic time warping,
hidden Markov random fields, Mel-frequency cepstral coefficients, a gray-level co-variance
matrix, and geodesic distance. Further, these features were optimized using a genetic algo-
rithm and the system-recognized activities via a hidden Markov model-based classifier. As
can be observed in Figure 16, the proposed HLD system with two novelties outperformed
the existing works in terms of accuracy, sensitivity, and specificity.
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4.5. Experiment 4: Comparisons with Existing Works

This section gives a comparison of our proposed IoHT-based HLD method with other
previous state-of-the-art systems. We compared the proposed HLD system with method-
ologies that have hand-crafted descriptor extraction techniques, multiple datasets, machine
learning, and applied deep learning techniques. Table 3 summarizes the comparison of the
proposed system with other systems based on the classifiers, descriptor domain, modality,
and accuracy achieved.

Table 3. Comparative analysis of proposed IoHT-based HLD system in terms of accuracy with
existing work in the literature.

Ref. Classifier Descriptor Domain Modality Accuracy

[96] Random Forest Time-based Multiple 81.00
[97] CNN-LSTM Deep-learning-based Multiple 75.00
[98] HMM Machine learning Single 78.33
[99] Multi-Layer Perceptron Frequency and time Single 74.20
[100] Multi-Layer Perceptron Entropy Multiple 75.50
[101] Markov Chain Multi-features Multiple 74.94
[102] Recurrent Neural Network Convolutional Multiple 82.00
[103] Recurrent Neural Network Raw Single 80.43

Proposed Recurrent Neural Network Energy, Graph, Frequency, and Time Multiple 82.36

The comparison between multiple human activity recognition models is explained
in the table. It focuses on the classifiers used to recognize these activities. The descriptors
extracted for classification are also presented. Different models acquired either single- or
multiple-sensor-based raw data. Single-sensor-based means that the data were acquired
from one sensor type. In contrast, multimodal-sensor-based means that the data were
gathered from multiple sensor types. The accuracies of each system compared are given in
the table.

5. Discussion

Although human locomotion decoding was achieved successfully using the proposed
IoHT-based HLD system, this study also has a few limitations. The skeleton body points
extracted can be obstructed in different human postures, which can cause limitations for
accurate locomotion decoding. A couple of examples are highlighted in Figure 17 using red
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ellipses. The proposed filtration technique and descriptor extraction methodologies have
to be assessed using some systems and datasets to verify the results. There is still a need to
test this novel HLD system over different settings and datasets to validate the outcomes.
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other previous state-of-the-art methodologies, we conclude that the proposed IoHT-based 
HLD architecture enhances the accuracy rates for human locomotion decoding. Therefore, 
the proposed system has many applications in human activity decoding and can be scaled 
for more practical solutions in smart homes, ambient assisted living, and care-based facil-
ities. In the future, we can compare and improve the results of the current study using 
different settings, datasets, and deep learning techniques. 
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6. Conclusions

This article proposes a deep-learning-based human-locomotion-decoding system via
novel filtration techniques and two innovative descriptor extraction mechanisms. The study
compared two novelties of the proposed system using an RNN, a CNN, and LSTM. The
RNN outperformed the other two deep learners concerning the accuracy of the IoHT-based
HLD system. We have also shown that all the compared classifiers performed acceptably
over the HWU-USP and LARa datasets. By comparing the three classifiers and other
previous state-of-the-art methodologies, we conclude that the proposed IoHT-based HLD
architecture enhances the accuracy rates for human locomotion decoding. Therefore, the
proposed system has many applications in human activity decoding and can be scaled for
more practical solutions in smart homes, ambient assisted living, and care-based facilities.
In the future, we can compare and improve the results of the current study using different
settings, datasets, and deep learning techniques.

Author Contributions: Conceptualization: M.J., M.A. and A.A.; methodology: M.A. and M.J.;
software: M.A. and A.J.; validation: M.J. and M.A.; formal analysis: A.J. and A.A.; resources: M.J.,
A.A., M.A. and A.J.; writing—review and editing: M.J., M.A. and A.J.; funding acquisition: M.J., M.A.,
A.A. and A.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by Princess Nourah bint Abdulrahman University Researchers
Supporting Project Number (PNURSP2023R97), Princess Nourah bint Abdulrahman University,
Riyadh, Saudi Arabia.

Data Availability Statement: Data are contained within the article.

Acknowledgments: Princess Nourah bint Abdulrahman University Researchers Supporting Project
Number (PNURSP2023R97), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ramanujam, E.; Perumal, T.; Padmvavathi, S. Human Activity Recognition with Smartphone and Wearable Sensors Using Deep

Learning Techniques: A Review. IEEE Sens. J. 2021, 21, 13029–13040. [CrossRef]
2. Ouyed, O.; Allili, M.S. Group-of-features relevance in multinomial kernel logistic regression and application to human interaction

recognition. Expert Syst. Appl. 2020, 148, 113247. [CrossRef]
3. Abid Hasan, S.M.; Ko, K. Depth edge detection by image-based smoothing and morphological operations. J. Comput. Des. Eng.

2016, 3, 191–197. [CrossRef]

https://doi.org/10.1109/JSEN.2021.3069927
https://doi.org/10.1016/j.eswa.2020.113247
https://doi.org/10.1016/j.jcde.2016.02.002


Micromachines 2023, 14, 2204 17 of 20

4. Batool, M.; Jalal, A.; Kim, K. Telemonitoring of daily activity using Accelerometer and Gyroscope in smart home environments.
J. Electr. Eng. Technol. 2020, 15, 2801–2809. [CrossRef]

5. Javeed, M.; Mudawi, N.A.; Alabduallah, B.I.; Jalal, A.; Kim, W. A Multimodal IoT-Based Locomotion Classification System Using
Features Engineering and Recursive Neural Network. Sensors 2023, 23, 4716. [CrossRef] [PubMed]

6. Shen, X.; Du, S.-C.; Sun, Y.-N.; Sun, P.Z.H.; Law, R.; Wu, E.Q. Advance Scheduling for Chronic Care Under Online or Offline
Revisit Uncertainty. IEEE Trans. Autom. Sci. Eng. 2023, 1–14. [CrossRef]

7. Wang, N.; Chen, J.; Chen, W.; Shi, Z.; Yang, H.; Liu, P.; Wei, X.; Dong, X.; Wang, C.; Mao, L.; et al. The effectiveness of case
management for cancer patients: An umbrella review. BMC Health Serv. Res. 2022, 22, 1247. [CrossRef]

8. Hu, S.; Chen, W.; Hu, H.; Huang, W.; Chen, J.; Hu, J. Coaching to develop leadership for healthcare managers: A mixed-method
systematic review protocol. Syst. Rev. 2022, 11, 67. [CrossRef]

9. Azmat, U.; Ahmad, J. Smartphone inertial sensors for human locomotion activity recognition based on template matching
and codebook generation. In Proceedings of the IEEE International Conference on Communication Technologies, Rawalpindi,
Pakistan, 21–22 September 2021.

10. Lv, Z.; Chen, D.; Feng, H.; Zhu, H.; Lv, H. Digital Twins in Unmanned Aerial Vehicles for Rapid Medical Resource Delivery in
Epidemics. IEEE Trans. Intell. Transp. Syst. 2022, 23, 25106–25114. [CrossRef] [PubMed]
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