
Citation: Zhang, J.; Han, M. Editorial

for the Special Issue on Flexible

Sensors and Actuators for

Biomedicine. Micromachines 2023, 14,

2184. https://doi.org/10.3390/

mi14122184

Received: 29 November 2023

Accepted: 29 November 2023

Published: 30 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Editorial

Editorial for the Special Issue on Flexible Sensors and Actuators
for Biomedicine
Jingyan Zhang and Mengdi Han *

Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China;
2301112473@pku.edu.cn
* Correspondence: hmd@pku.edu.cn

Flexible sensors and actuators typically rely on functional materials with low Young’s
moduli or ultrathin geometries. These materials undergo mechanical or electric changes in
reaction to external stimuli, such as pressure, temperature, and electromagnetic fields [1–3],
enabling sensing or motion capabilities. These flexible devices find widespread applica-
tions in wearable devices, implantable medical devices, and micro-robotics for biomedical
monitoring, diagnosis, and therapies. Flexible sensors continuously monitor human physi-
ological indices such as blood pressure, heart rate, blood oxygen saturation level, neural
electrical signals, and the chemical composition of body fluids [4–7]. Meanwhile, flexible
actuators are commonly employed in drug delivery microsystems, surgical robotics, pros-
thetics, and other assistive devices [8–10]. This Special Issue comprises five contributions,
including research and reviews on biochemical sensors, self-powered sensors driven by
nanogenerators, and soft robotics for colonoscopes.

Biochemical sensors are devices that detect and measure the presence or concentration
of specific chemical substances or biomolecules. These sensors have broad applications
in various fields, including environmental monitoring, food safety, industrial production,
and biomedicine [11–14]. For biomedical applications, biochemical sensing provides mea-
surements of specific chemicals in the human body for health diagnosis [15]. For example,
the continuous monitoring of glucose concentration in blood, interstitial fluid, or sweat
can serve as an effective means for the early diagnosis and management of diabetes [16].
Biochemical sensors with high specificity typically incorporate biological molecules (en-
zymes [17], antibodies [18], and aptamers [19]) modified on the surface of the electrode.
Such modifications enable specific binding with target molecules, thereby enabling highly
selective chemical sensing and reducing interference from other substances. Aptamers,
derived using an in vitro selection technique known as systematic evolution of ligands via
exponential enrichment (SELEX), are structured oligonucleotide sequences with a specific
recognition capability and high affinity for corresponding target molecules such as proteins,
viruses, bacteria, cells, small molecule compounds, heavy metal ions, etc. In contrast to
antibodies, aptamers offer advantages such as a shorter screening cycle, enhanced thermal
and chemical stability, and the capability to bind to diverse targets [20]. Nguyen et al. [21]
designed a simple, rapid, and ultrasensitive colorimetric aptasensor for detecting anatoxin-
a (ATX-a). The specific binding of ATX-a to aptamers absorbed on the surface altered the
aggregation state of gold nanoparticles, resulting in a color change in the solution. Using an
ultraviolet/visible spectrophotometer, researchers measured changes in ATX-a concentra-
tion through absorbance variations, providing a rapid method for detecting water quality
contaminated by microbial pollution. In a separate study, Chai et al. [22] demonstrated that
P-doped carbon quantum dots (CQD) wrinkled and damaged bacteria through electrostatic
interactions. The results suggested effective antibacterial activity of the P-doped CQD
against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Furthermore, these
nano-materials exhibited high biocompatibility and photostability, providing potential
applications in bacterial infection treatment and bioluminescence sensors. In a review
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article, Tang et al. [23] summarized wearable sensors and systems for pH and temperature
detection in the context of wound healing monitoring. Integrating pH and temperature
sensors with flexible fabrics and actuators enabled real-time diagnostics and precise drug
delivery. The wearable pH and temperature sensors demonstrated high sensitivity and
reliability, with the potential for continuous monitoring during wound healing. In sum-
mary, biochemical sensors can rapidly and precisely detect complex solvents. Achieving
high specificity and sensitivity to ensure accurate detection of target molecules is vitally
important, especially for complex biological systems where many chemicals coexist.

Flexible sensors generally require batteries for measurement, signal processing, and
data transmission. However, batteries usually have a larger, rigid form factor and limited
operating time, which can hinder the portability, comfort, and long-term implantation of
flexible sensors [24,25]. Self-powered flexible systems based on nanogenerators aim to
overcome these challenges. These nanogenerators exploit the piezoelectric or triboelectric
effect to convert mechanical energy into electricity, thus offering an alternative solution for
power supply to micro-devices or sensors [26,27]. Yang et al. [28] provided a comprehen-
sive overview of the evolution of piezoelectric/triboelectric nanogenerators, delving into
materials and structural designs for both types of nanogenerators. The authors highlighted
the biocompatibility and flexibility of the materials for better adherence to the skin surface
and the organs inside the body. Regarding the device structure, the authors illustrated a
diverse set of designs, such as three-dimensional structures, fabric structures, and thin-film
structures, to enhance the output performance of nanogenerators. Finally, the authors sum-
marized the broad applications of nanogenerators in wearable and implantable electronic
devices, including motion detection, wound repairing, battery-less cardiac pacemakers,
and in vivo health monitoring.

While flexible sensors have shown remarkable applications in biomedicine, they fall
short in generating motion or offering mechanical stimulation for more interventional
therapies. In such cases, soft actuators are often capable of producing motion [29] or de-
formation [30] under various stimuli such as mechanical input, laser irradiation, electric
and magnetic fields, temperature variation, etc. [31–33]. These actuators are generally
small, possess flexibility similar to biological tissues, and thus enable precise targeting
and intervention in biomedical applications. Examples include micro-robots for precise
drug delivery and balloon catheters for vascular occlusion therapy [34]. Chen et al. [35]
proposed a robot colonoscope that resembles a caterpillar, capable of contracting, expand-
ing, and turning in the horizontal, straight, or inclined porcine colons through anchoring
and elongation units. The robot’s exterior, composed of soft rubber and balloons, prevents
damage to the colon wall and alleviates discomfort. This robot can perform all functions
of traditional colonoscope instruments, such as biopsies, inflation, and water jet surgery,
presenting broad clinical application prospects. Although soft actuators have demonstrated
various applications, the inherent properties of soft materials sometimes limit their perfor-
mance [36]. Further research and improvements can be made in the output density, latency
characteristics, and long-term stability.

This Special Issue explores flexible sensors and actuators for diverse biomedical
applications. This editorial briefly introduces these works and overviews the working
mechanisms, application scenarios, and potential challenges of representative soft flexible
sensors and actuators. We thank all the contributors for submitting their papers to this
Special Issue. We also thank all the reviewers for dedicating their time to help improve the
quality of the submitted papers.

Conflicts of Interest: The authors declare no conflict of interest.



Micromachines 2023, 14, 2184 3 of 4

References
1. Lee, S.; Franklin, S.; Hassani, F.A.; Yokota, T.; Nayeem, O.G.; Wang, Y.; Leib, R.; Cheng, G.; Franklin, D.W.; Someya, T. Nanomesh

pressure sensor for monitoring finger manipulation without sensory interference. Science 2020, 370, 966–970. [CrossRef] [PubMed]
2. Webb, R.C.; Ma, Y.; Krishnan, S.; Li, Y.; Yoon, S.; Guo, X.; Feng, X.; Shi, Y.; Seidel, M.; Cho, N.H.; et al. Epidermal devices for

noninvasive, precise, and continuous mapping of macrovascular and microvascular blood flow. Sci. Adv. 2015, 1, e1500701.
[CrossRef] [PubMed]

3. Xie, C.; Yan, F. Flexible photodetectors based on novel functional materials. Small 2017, 13, 1701822. [CrossRef] [PubMed]
4. Franklin, D.; Tzavelis, A.; Lee, J.Y.; Chung, H.U.; Trueb, J.; Arafa, H.; Kwak, S.S.; Huang, I.; Liu, Y.; Rathod, M.; et al. Synchronized

wearables for the detection of haemodynamic states via electrocardiography and multispectral photoplethysmography. Nat.
Biomed. Eng. 2023, 7, 1229–1241. [CrossRef]

5. Kwon, K.; Kim, J.U.; Won, S.M.; Zhao, J.; Avila, R.; Wang, H.; Chun, K.S.; Jang, H.; Lee, K.H.; Kim, J.-H.; et al. A battery-less
wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature. Nat. Biomed. Eng. 2023, 7,
1215–1228. [CrossRef]

6. Zhao, Z.; Zhu, H.; Li, X.; Sun, L.; He, F.; Chung, J.E.; Liu, D.F.; Frank, L.; Luan, L.; Xie, C. Ultraflexible electrode arrays for
months-long high-density electrophysiological mapping of thousands of neurons in rodents. Nat. Biomed. Eng. 2023, 7, 520–532.
[CrossRef]

7. Wu, J.; Liu, H.; Chen, W.; Ma, B.; Ju, H. Device integration of electrochemical biosensors. Nat. Rev. Bioeng. 2023, 1, 346–360.
[CrossRef]

8. Gu, H.; Hanedan, E.; Boehler, Q.; Huang, T.-Y.; Mathijssen, A.J.T.M.; Nelson, B.J. Artificial microtubules for rapid and collective
transport of magnetic microcargoes. Nat. Mach. Intell. 2022, 4, 678–684. [CrossRef]

9. Cianchetti, M.; Laschi, C.; Menciassi, A.; Dario, P. Biomedical applications of soft robotics. Nat. Rev. Mater. 2018, 3, 143–153.
[CrossRef]

10. Li, M.; Pal, A.; Aghakhani, A.; Pena-Francesch, A.; Sitti, M. Soft actuators for real-world applications. Nat. Rev. Mater. 2022, 7,
235–249. [CrossRef]

11. Atkinson, J.T.; Su, L.; Zhang, X.; Bennett, G.N.; Silberg, J.J.; Ajo-Franklin, C.M. Real-time bioelectronic sensing of environmental
contaminants. Nature 2022, 611, 548–553. [CrossRef]

12. Mazur, F.; Tjandra, A.D.; Zhou, Y.; Gao, Y.; Chandrawati, R. Paper-based sensors for bacteria detection. Nat. Rev. Bioeng. 2023, 1,
180–192. [CrossRef]

13. Pasqualeti, A.M.; Shimizu, F.M.; de Oliveira, L.P.; de Oliveira, R.A.G.; de Carvalho, R.M.; Fontes, R.A.; Gobbi, A.L.; Lima, R.S.
Sensors for detection of production chemicals and oil in produced water. TrAC Trends Anal. Chem. 2023, 168, 117305. [CrossRef]

14. Kim, J.; Campbell, A.S.; de Ávila, B.E.-F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37,
389–406. [CrossRef] [PubMed]

15. Tehrani, F.; Teymourian, H.; Wuerstle, B.; Kavner, J.; Patel, R.; Furmidge, A.; Aghavali, R.; Hosseini-Toudeshki, H.; Brown, C.;
Zhang, F.; et al. An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial
fluid. Nat. Biomed. Eng. 2022, 6, 1214–1224. [CrossRef] [PubMed]

16. Liu, Y.; Yu, Q.; Luo, X.; Yang, L.; Cui, Y. Continuous monitoring of diabetes with an integrated microneedle biosensing device
through 3D printing. Microsyst. Nanoeng. 2021, 7, 75. [CrossRef] [PubMed]

17. Vong, K.; Eda, S.; Kadota, Y.; Nasibullin, I.; Wakatake, T.; Yokoshima, S.; Shirasu, K.; Tanaka, K. An artificial metalloenzyme
biosensor can detect ethylene gas in fruits and Arabidopsis leaves. Nat. Commun. 2019, 10, 5746. [CrossRef]

18. Guo, K.; Wustoni, S.; Koklu, A.; Díaz-Galicia, E.; Moser, M.; Hama, A.; Alqahtani, A.A.; Ahmad, A.N.; Alhamlan, F.S.; Shuaib, M.;
et al. Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical
transistors. Nat. Biomed. Eng. 2021, 5, 666–677. [CrossRef] [PubMed]

19. Lin, S.; Cheng, X.; Zhu, J.; Wang, B.; Jelinek, D.; Zhao, Y.; Wu, T.-Y.; Horrillo, A.; Tan, J.; Yeung, J.; et al. Wearable microneedle-
based electrochemical aptamer biosensing for precision dosing of drugs with narrow therapeutic windows. Sci. Adv. 2022, 8,
eabq4539. [CrossRef]

20. Dunn, M.R.; Jimenez, R.M.; Chaput, J.C. Analysis of aptamer discovery and technology. Nat. Rev. Chem. 2017, 1, 0076. [CrossRef]
21. Nguyen, D.-K.; Jang, C.-H. A Simple and Ultrasensitive Colorimetric Biosensor for Anatoxin-a Based on Aptamer and Gold

Nanoparticles. Micromachines 2021, 12, 1526. [CrossRef]
22. Chai, S.; Zhou, L.; Pei, S.; Zhu, Z.; Chen, B. P-Doped Carbon Quantum Dots with Antibacterial Activity. Micromachines 2021, 12,

1116. [CrossRef]
23. Tang, N.; Zheng, Y.; Jiang, X.; Zhou, C.; Jin, H.; Jin, K.; Wu, W.; Haick, H. Wearable Sensors and Systems for Wound Healing-

Related pH and Temperature Detection. Micromachines 2021, 12, 430. [CrossRef]
24. Zamarayeva, A.M.; Ostfeld, A.E.; Wang, M.; Duey, J.K.; Deckman, I.; Lechêne, B.P.; Davies, G.; Steingart, D.A.; Arias, A.C. Flexible

and stretchable power sources for wearable electronics. Sci. Adv. 2017, 3, e1602051. [CrossRef] [PubMed]
25. Li, Y.; Li, N.; De Oliveira, N.; Wang, S. Implantable bioelectronics toward long-term stability and sustainability. Matter 2021, 4,

1125–1141. [CrossRef]
26. Briscoe, J.; Dunn, S. Piezoelectric nanogenerators–a review of nanostructured piezoelectric energy harvesters. Nano Energy 2015,

14, 15–29. [CrossRef]
27. Wang, Y.; Yang, Y.; Wang, Z.L. Triboelectric nanogenerators as flexible power sources. npj Flex. Electron. 2017, 1, 10. [CrossRef]

https://doi.org/10.1126/science.abc9735
https://www.ncbi.nlm.nih.gov/pubmed/33214278
https://doi.org/10.1126/sciadv.1500701
https://www.ncbi.nlm.nih.gov/pubmed/26601309
https://doi.org/10.1002/smll.201701822
https://www.ncbi.nlm.nih.gov/pubmed/28922544
https://doi.org/10.1038/s41551-023-01098-y
https://doi.org/10.1038/s41551-023-01022-4
https://doi.org/10.1038/s41551-022-00941-y
https://doi.org/10.1038/s44222-023-00032-w
https://doi.org/10.1038/s42256-022-00510-7
https://doi.org/10.1038/s41578-018-0022-y
https://doi.org/10.1038/s41578-021-00389-7
https://doi.org/10.1038/s41586-022-05356-y
https://doi.org/10.1038/s44222-023-00024-w
https://doi.org/10.1016/j.trac.2023.117305
https://doi.org/10.1038/s41587-019-0045-y
https://www.ncbi.nlm.nih.gov/pubmed/30804534
https://doi.org/10.1038/s41551-022-00887-1
https://www.ncbi.nlm.nih.gov/pubmed/35534575
https://doi.org/10.1038/s41378-021-00302-w
https://www.ncbi.nlm.nih.gov/pubmed/34631143
https://doi.org/10.1038/s41467-019-13758-2
https://doi.org/10.1038/s41551-021-00734-9
https://www.ncbi.nlm.nih.gov/pubmed/34031558
https://doi.org/10.1126/sciadv.abq4539
https://doi.org/10.1038/s41570-017-0076
https://doi.org/10.3390/mi12121526
https://doi.org/10.3390/mi12091116
https://doi.org/10.3390/mi12040430
https://doi.org/10.1126/sciadv.1602051
https://www.ncbi.nlm.nih.gov/pubmed/28630897
https://doi.org/10.1016/j.matt.2021.02.001
https://doi.org/10.1016/j.nanoen.2014.11.059
https://doi.org/10.1038/s41528-017-0007-8


Micromachines 2023, 14, 2184 4 of 4

28. Yang, L.; Ma, Z.; Tian, Y.; Meng, B.; Peng, Z. Progress on Self-Powered Wearable and Implantable Systems Driven by Nanogenera-
tors. Micromachines 2021, 12, 666. [CrossRef] [PubMed]

29. Chen, Y.; Zhao, H.; Mao, J.; Chirarattananon, P.; Helbling, E.F.; Hyun, N.-S.P.; Clarke, D.R.; Wood, R.J. Controlled flight of a
microrobot powered by soft artificial muscles. Nature 2019, 575, 324–329. [CrossRef] [PubMed]

30. Yang, Q.; Enríquez, Á.; Devathasan, D.; Thompson, C.A.; Nayee, D.; Harris, R.; Satoski, D.; Obeng-Gyasi, B.; Lee, A.; Bentley,
R.T.; et al. Application of magnetically actuated self-clearing catheter for rapid in situ blood clot clearance in hemorrhagic stroke
treatment. Nat. Commun. 2022, 13, 520. [CrossRef]

31. He, Z.; Dong, Z.; Fang, G.; Ho, J.D.-L.; Cheung, C.-L.; Chang, H.-C.; Chong, C.C.-N.; Chan, J.Y.-K.; Chan, D.T.M.; Kwok, K.-W.
Design of a percutaneous MRI-guided needle robot with soft fluid-driven actuator. IEEE Robot. Autom. Lett. 2020, 5, 2100–2107.
[CrossRef]

32. Wang, J.; Li, P.; Jing, Z.; Leydecker, T.; Neogi, A.; Wang, Z. Fast and Multifunctional Optically-Driven Actuators based on Stable,
Efficient, and Superhydrophobic Photothermal Paper Films. Adv. Opt. Mater. 2023, 11, 2202201. [CrossRef]

33. Kim, M.S.; Heo, J.K.; Rodrigue, H.; Lee, H.T.; Pané, S.; Han, M.W.; Ahn, S.H. Shape memory alloy (SMA) actuators: The role of
material, form, and scaling effects. Adv. Mater. 2023, 35, 2208517. [CrossRef] [PubMed]

34. Kim, D.H.; Lu, N.; Ghaffari, R.; Kim, Y.S.; Lee, S.P.; Xu, L.; Wu, J.; Kim, R.H.; Song, J.; Liu, Z.; et al. Materials for multifunctional
balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat. Mater. 2011, 10, 316–323.
[CrossRef]

35. Chen, J.; Yang, J.; Qian, F.; Lu, Q.; Guo, Y.; Sun, Z.; Chen, C. A Novel Inchworm-Inspired Soft Robotic Colonoscope Based on a
Rubber Bellows. Micromachines 2022, 13, 635. [CrossRef]

36. Dou, W.; Zhong, G.; Cao, J.; Shi, Z.; Peng, B.; Jiang, L. Soft robotic manipulators: Designs, actuation, stiffness tuning, and sensing.
Adv. Mater. Technol. 2021, 6, 2100018. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/mi12060666
https://www.ncbi.nlm.nih.gov/pubmed/34200150
https://doi.org/10.1038/s41586-019-1737-7
https://www.ncbi.nlm.nih.gov/pubmed/31686057
https://doi.org/10.1038/s41467-022-28101-5
https://doi.org/10.1109/LRA.2020.2969929
https://doi.org/10.1002/adom.202202201
https://doi.org/10.1002/adma.202208517
https://www.ncbi.nlm.nih.gov/pubmed/37074738
https://doi.org/10.1038/nmat2971
https://doi.org/10.3390/mi13040635
https://doi.org/10.1002/admt.202100018

	References

