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Abstract: Fluorescence probe technology holds great promise in the application of trace explosive
detection due to its high sensitivity, fast response speed, good selectivity, and low cost. In this work,
a designed approach has been employed to prepare the TPE-PA-8 molecule, utilizing the classic
aggregation-induced emission (AIE) property of 1,1,2,2-tetraphenylethene (TPE), for the development
of self-assembled monolayers (SAMs) targeting the detection of trace nitroaromatic compound (NAC)
explosives. The phosphoric acid acts as an anchoring unit, connecting to TPE through an alkyl chain
of eight molecules, which has been found to play a crucial role in promoting the aggregation of TPE
luminogens, leading to the enhanced light-emission property and sensing performance of SAMs.
The SAMs assembled on Al2O3-deposited fiber film exhibit remarkable detection performances,
with detection limits of 0.68 ppm, 1.68 ppm, and 2.5 ppm for trinitrotoluene, dinitrotoluene, and
nitrobenzene, respectively. This work provides a candidate for the design and fabrication of flexible
sensors possessing the high-performance and user-friendly detection of trace NACs.

Keywords: self-assembled monolayer; aggregation-induced emission; fluorescence; trace explosive

1. Introduction

The escalating global threats of terrorism and the potential public safety risks posed by
military explosives have instigated extensive research and innovation in explosive detection
technologies [1,2]. The pressing demand for national defense security has stimulated pro-
found investigations and advancements in explosive detection technologies to effectively
address these challenges [3]. Attaining a high level of sensitivity and selectivity in explosive
detection techniques holds paramount importance for counterterrorism efforts, safeguard-
ing homeland security, and ensuring environmental protection [4]. While conventional
approaches such as gas chromatography and liquid chromatography exhibit commendable
sensitivity, their intricate procedures and limitations in real-time detection underscore the
significance of exploring rapid explosive detection methods [5,6]. In recent years, optical
materials, particularly fluorescent probes, have garnered considerable attention owing to
their simplicity, portability, and swift response characteristics, thereby offering notable
technical advantages in the field of explosives detection [7–10].

Traditional fluorescent probe materials often suffer from a common drawback known
as aggregation-induced quenching (AIQ), which results in diminished fluorescence inten-
sity when the materials are in concentrated solutions or solid states [11–13]. This inherent
limitation considerably hinders the practical application of fluorescent materials in sensing
technologies. In order to overcome the AIQ effect and enhance the performance of fluores-
cent materials for the detection of trace nitroaromatic explosives, researchers have explored
the concept of aggregation-induced emission (AIE) in molecules [14,15]. Materials exhibit-
ing the AIE phenomenon display weak fluorescence in their individual monomeric state but
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demonstrate significantly enhanced fluorescence upon aggregation. This intriguing phe-
nomenon stems from the restriction of intramolecular rotation and alterations in aggregate
morphology, thereby broadening the application potential of fluorescent materials [16–18].

Recently, scientists have shifted their attention towards AIE compounds as a potential
remedy, particularly in the realm of nonaqueous phase liquid (NAPL) detection [19,20].
In order to explore pioneering methodologies, the utilization of AIE compounds, such as
1,1,2,2-tetraphenylethene (TPE), has exhibited tremendous potential in NAPL detection.
Nevertheless, prior investigations have predominantly centered around liquid-phase sys-
tems, thereby impeding their applicability in practical solid-state devices. The pursuit of
swift response times and exceptional sensitivity continues to pose a formidable challenge,
which needs the existence of high-concentration SAMs in a limited area or volume [21–23].

In our previous research, TPE was constructed as a sequence of functional molecules,
TPE-PA-n (n = 3–11), wherein each molecule possessed a distinct alkyl chain length [24,25].
These molecules have been employed as highly sensitive solid-state fluorescent probes
for trace explosives detection, which work based on the properties of AIE. Experimental
analysis has revealed that shorter alkyl chains exhibit limited flexibility and longer alkyl
chains restrict the coupling between molecules. Among the range of alkyl chains investi-
gated (n = 3–11), TPE-PA-8 with the advantages of strong fluorescence intensity and high
quenching efficiency, has been demonstrated as an ideal candidate for practical SAM sensor
preparation. However, in planar thin-film TPE structure, the optical cross-section of light
matter interaction is still limited, compared to TPE constructed on nanophotonic struc-
tures. To further enhance the sensitivity detection ability of TPE, designing and fabricating
materials on nanophotonic structures provides a promising technological route.

In this research, we present a novel approach for the preparation of a flexible sen-
sor utilizing the AIE property of TPE-PA-8 for the detection of NAC explosives. The
designed molecule consists of TPE luminogens connected to a phosphoric acid anchoring
unit through an alkyl chain of eight molecules, which plays a crucial role in promoting
the aggregation of TPE luminogens. These designed SAMs cooperating with fiber struc-
tures gain enhanced light-emission properties and sensing performances. The ability of
fluorescence detection detected by spectral analyses reveals that the SAM sensor exhibits
remarkable performances with detection limits of 0.68 ppm, 1.68 ppm, and 2.5 ppm for trini-
trotoluene, dinitrotoluene, and nitrobenzene, respectively. Our work provides a promising
candidate for the design and fabrication of flexible sensors that possess high-performance,
cost-effectiveness, and user-friendliness in detecting trace NACs.

2. Materials and Method
2.1. Materials

All reagents and chemicals were sourced from Sigma Aldrich (Saint Louis, MO, USA)
and J&K (Beijing, China) and unless specifically stated, did not require additional purifica-
tion before use. The reactions were performed using the conventional Schlenk technique
within an inert argon atmosphere, utilizing anhydrous solvents. The heavily doped n-type
silicon wafers underwent an initial cleaning in a Piranha solution (sulfuric acid to hydrogen
peroxide volume ratio of 70:30), followed by heating at 110 ◦C for two hours, a thorough
rinse with deionized water, and an RCA clean (a mixture of deionized water, ammonium
hydroxide, and hydrogen peroxide in a volume ratio of 5:1:1), before being dried with
nitrogen gas for immediate use. Fibers in PMMA solution were spin-coated on the PET
substrate forming the complex interleaved network. A 10 nm thick film of Al2O3 was
deposited using the ALD system at 200 ◦C after 110 cycles. Before the growth of SAMs,
flame treatment was employed to strip organic adhesives and other contaminants from the
samples. Then, Al2O3-coated wafers/fiber samples were immersed at room temperature in
a 0.1 mM TPE-PA-8 solution in tetrahydrofuran (THF) for 24 h under an argon atmosphere
to form the SAMs. After incubation, substrates were ultrasonically treated in THF and
ethanol, each for 5 min in three cycles, to remove any surface-adsorbed species. They were
then dried with nitrogen gas and stored in a glovebox for subsequent use.
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For sensing tests of NACs, the experiments were conducted by hanging designed
SAM-coated fiber films in a closed container, where NACs were dissolved in methanol so-
lutions and located at the bottom of the container (See Supplementary Materials). Different
concentrations of NAC solutions were first taken in an enclosed 20 mL glass bottle, with
4 microliters of solution in each case. Once the solutions were fully evaporated and stabi-
lized, SAM-coated fiber films were completely immersed in them for a duration of 1 min
(Supplementary Materials). High-explosive substances such as TNT (2,4,6-trinitrotoluene),
DNT (2,4-dinitrotoluene), and NB (nitrobenzene) were selected as solutes and dissolved in
methanol within a concentration of 1 mg/mL. After the TPE-PA-8 SAM-coated fiber film
was positioned in the bottle using a bracket for five minutes, the fiber film was then picked
out for fluorescence spectrum detection.

2.2. Characterization and Method

X–ray photoelectron spectroscopy: XPS data were acquired using an Axis Ultra Imag-
ing XPS (Manchester, UK) equipped with a 300 W AlKα radiation source, operating at
a base pressure of approximately 3 × 10−9 mbar, with the binding energy scale being
calibrated against the C1s peak at 284.8 eV.

Scanning electron microscope: The morphology of nanostructures was characterized
by the field-emission SEM (Nova NanoSEM 230, FEI, Los Angeles, CA, USA), with a
scanning voltage setting at 1.0 kV.

High–resolution transmission electron microscopy: TEM images were performed via
FEI Tecnai GX F20. HRTEM image was acquired using an image and probe Cs-corrected
Thermofisher Themis Z operated at 300 kV.

X–ray reflectivity: XRR measurements were conducted on a Bruker D8-Advance
diffractometer with λ = 0.154 nm. The qz vector was perpendicular to the sample surface.
Reflectivity, as a function of qz (where qz = 4π/(λsinθ ), was normalized to the incident
beam intensity. The R(qz) profiles, highly sensitive to the electron density along the surface
normal, allowed for independent ascertainment of SAM thickness, density, and roughness.
Motofit was employed to fit the XRR data, positing a two-layer composition of an Al2O3
base and TPE-PA-8 SAMs.

Contact Angle: Contact angle measurements were performed on a Biolin THETA
optical tensiometer (Danderyd, Sweden).

Atomic force microscope: AFM measurements of the film morphology were conducted
using the ScanAsyst model (Bruker Dimension Icon with Nanoscope V controller (Saar-
brucken, Germany) in ambient conditions. The data were processed using Nano Scope
Analysis software version 1.8.

UV–Visible absorption: The UV spectra for both solutions (with acetonitrile as the
solvent) and films (on quartz substrates) were determined using the WITec Alpha300
optical system and the Horriba iHR 550 spectrophotometer (Kyoto, Japan).

Fluorescence spectrometer: Fluorescence measurements were carried out at room tem-
perature using a time-correlated single-photon counting (TCSPC) spectrometer, employing
a front-face approach. The steady-state spectroscopy utilized a 450 W xenon lamp as the
light source, and lifetime testing was conducted using a PELED260 (Edinburgh, UK).

2.3. Calculation

The quenching efficiency was calculated by Equation (1).

γ =

(
1− F

F0

)
× 100% (1)

In this equation, γ represents the quenching efficiency, F0 is the fluorescence intensity
at time t in the absence of a quencher, and F0 is the fluorescence intensity of the film at
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time t. If the fluorescence quenching efficiency is greater than the upper limit for methanol
detection, the detection limits for NACs can be inferred using Equation (1).

LOD =
Nnac

Nnac + Nmeth + Nair
=

VnacC
Mnac

ρmethVmeth
Mmeth

+ VnacC
Mnac

+ ρairVair
Mair

(2)

where LOD is the detection limit. Nnac, Nmeth, and Nair are the NACs, air, and methanol
molecule number, respectively. Vnac is the volume of the NACs solution. ρmeth, Vmeth, and
Mmeth are the density, volume, and molar mass of methanol, respectively. In the situation of
small concentration, ρmeth is regarded as 0.7918 g mL−1. Vmeth and Vnac are 4 µL. Simplified
detection limit calculations can be derived through the molecular counts of NACs, air, and
methanol in the instrument (20 mL) along with the densities, volumes, and molar masses
of methanol and air, where they are 1.29 kg m−3, 20 mL, and 29 g mol−1, respectively.

D =
4046NACC

NACM
(3)

NACC and NACM are the concentration and the molar mass of NACs.

3. Results and Discussion

Figure 1a shows the application scenario of a flexible SAM sensor on a finger for
the trace explosive detection. The molecule has been specifically engineered to serve
as a highly sensitive solid-state fluorescent probe with ordered superstructures and the
inset shows the structure of the designed SAMs. Usually, the classic TPE is chosen as the
chromophore unit, while the phosphoric acid is selected as the anchor group, and they
are connected through an alkyl chain. To fabricate the device, conventional spin-coating
and atomic layer deposition (ALD) have been employed to prepare the Al2O3-coated
fiber layer on the substrate. First, fibers in a PMMA solution were spin-coated on the
PET substrate forming the complex interleaved network. After depositing the Al2O3
adhesive layer using ALD and activating surface bonds through oxygen plasma treatment
(Figure 1c, steps 1–2), the substrates were then immersed in a solution containing the
functional molecules, forming SAMs (Figure 1c, step 3). The formation of stable covalent
bonds between phosphoric acid and the Al2O3 layer on the surface of the flexible substrate
guarantees the robustness and durability of the device. The anchoring of phosphoric acid
to the aluminum oxide layer provides the necessary flexibility for self-assembly, leading
to the aggregation of the TPE molecules, as shown in Figure 1b. Finally, TPE-PA-8 SAMs
undergo fluorescence quenching in the presence of NACs, showing strong fluorescence
intensity and high sensitivity (Figure 1c, step 4).

Notably, during the incubation process, a substantial change in contact angle was
observed. Within the first 5 min of incubation, there is a significant increase in the surface
contact angle, shifting from initial values of 67.04◦ and 67.54◦ to 76.29◦ and 76.13◦, respec-
tively (Figure 2a,b). After 24 h, incubation increases the hydrophobic characteristics of the
SAM-coated substrate with maximum contact angle values reaching to 90.52◦ and 90.37◦,
as depicted in Figure 2c. Figure 2d shows the scanning electron microscope (SEM) image of
the test substrate. Scale bar is 4 µm. This complex structure enhances the specific surface
area, which is advantageous for the formation and adsorption of the SAMs. Figure 2e
shows the observation of smoothness of the SAM-coated alumina fibers. Scale bar is 2 µm.
Figure 2f presents the cross-sectional view of the interface between fiber and SAM layer,
detected from a high-resolution transmission electron microscope (HRTEM). Scale bar is
5 nm. Also, from the image of atomic force microscopy (AFM), the surface of SAM/fiber
remains remarkably flat, exhibiting an average roughness of only 0.252 nm. This indicates
that the SAM surface maintains a high level of smoothness and uniformity, contributing to
the overall quality and consistency of the device.
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Figure 2. The contact angle observation of (a) bare substrate with Al2O3 layer and SAM-coated
substrate at the time of preparation (b) and after 24 h aging (c). SEM images of the Al2O3-coated fiber
film at low (d) and high (e) resolution. (f) HRTEM image of the interface between Al2O3/fiber and
SAM layers. (g) AFM image of SAMs layer. (h) High-resolution XPS of P 2p and (i) O 1s.

X-ray photoelectron spectroscopy (XPS) measurements have been performed to ver-
ify the bonding between the functional molecules and Al2O3. These results from XPS
measurements indicate the presence of the P 2p peak even after subjecting the samples
to multiple cleaning cycles with organic solvents (Figure 2h). The persistence of the P 2p
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peak, as depicted in Figure 2f, suggests that there is a strong interaction or adsorption
of phosphorus-containing species on the sample surface, which remains resistant to the
organic solvent cleaning process. This observation is consistent across the multiple cleaning
attempts with organic solvents. Additionally, the O 1s peak analysis revealed distinct peaks
at 532.5, 532.3, and 532.1 eV, corresponding to Al-O-Al, Al-O-P (or P=O), and C-O-C bonds,
respectively (Figure 2i). These findings provide further confirmation of the covalent bond-
ing between the phosphoric acid and the substrate, establishing the successful preparation
of the SAMs.

To verify the dense and uniform thickness of TPE-PA-8 SAMs, low-angle X-ray re-
flection (XRR) was measured, and the corresponding results are presented in Figure 3a.
The XRR analysis enables the determination of the scattering length density (SLD) fitting,
providing valuable insights into the structural composition of the sensor, as depicted in
Figure 3b. Based on the SLD fitting, the sensor structure was found to own two layers, in-
cluding an Al2O3 layer with a thickness of 10 nm, followed by the TPE-PA-8 SAM layer with
a thickness of 1.9 nm. It is worth noting that, for a clearer display of the SAMs thickness,
the thickness of the Al2O3 layer is not fully depicted in Figure 3b. These measurements
consist of the maximum height difference observed through AFM measurements. The XRR
analysis confirmed the dense and uniform nature of the TPE-PA-8 SAMs on the substrate.
Furthermore, the successful bonding of TPE-PA-8 SAMs to the Al2O3-coated fibers was
observed, akin to their bonding on the Al2O3-coated silicon wafer.
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In order to detect the NACs using the as-prepared SAM sensor, the device is placed in
a saturated nitrobenzene atmosphere for complete fluorescence quenching, as shown in
Figure 3c. This spectral graph displays the fluorescence spectra of both the unquenched
(original, blue line) and fully quenched states (total quenching, red line). The fluorescence
intensity of SAM sensor after quenching decreased dramatically. Figure 3d shows the time-
resolved fluorescence-quenching processes on both hard wafer and flexible fiber substrate,
where the quenching efficiency approaches 100% after nearly 20 min. It was also found that
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both the wafer and test substrate responded rapidly, with quenching efficiencies of 94.3%
and 93.5% in 8 min, respectively. Interestingly, the fluorescence lifetime basically remains
constant throughout the quenching process as reported before [24], indicating that the
quenching process of NACs is a static quenching process, whereby a fluorochrome in the
ground state can form a nonemissive bound complex with the quencher. Under the light
excitation, TPE-PA-8 exhibits high-efficiency emissions through radiative decay. However,
when the sensor is complexed with nonaromatic compounds, a quenching of fluorescence
occurs due to photo-induced electron transfer (PET). The electrons preferentially transfer
from TPE-PA-8 to the NACs, facilitated by the lower energy levels of the NACs’ lowest
unoccupied molecular orbitals as discussed in previous works [21]. Therefore, the presence
of NACs creates a nonradiative decay channel, reducing the luminescence efficiency while
having minimal effect on the luminescence lifetimes of TPE-PA-8.

To test the sensor performance, various experiments of sensors exposed to NACs
were carried out. The reversibility of the device responsivity was evaluated through
the measurement of fluorescence intensity. Prior to immersing the device in a saturated
nitrobenzene atmosphere for 5 min, fluorescence tests were then carried out. Subsequently,
the device was immersed in ethanol for 5 min to facilitate recovery, followed by another
round of fluorescence tests after drying. The reversibility of the sensor device was assessed
based on 20 tests, as illustrated in Figure 4a. It was observed that the device exhibited
commendable reversibility, with a quenching efficiency over 92% and a recovery efficiency
over 88%, indicating its capability to effectively respond to the presence and removal of the
target analyte. The selectivity of the SAM probe was investigated to determine its ability
to differentiate the target NACs from common reagents such as esters, ethers, acids, and
ketones. Figure 4b presents the results of sensing selectivity, demonstrating that the SAM
probe exhibits an optimal response to nitrobenzene (representative of NACs). This outcome
demonstrates its promise in detecting NACs in complex environments, demonstrating the
diversity of responses to various chemicals.
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shows the enlarged view of quenching efficiencies at low concentrations.
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For long-term efficient operation, device stability is crucial. Thus, the fluorescence
spectrometer analysis was carried out through 10 consecutive scans. These results, depicted
in Figure 4c, demonstrate that the fluorescence intensity can be maintained at a level above
96.6% throughout the 10 cycles, affirming the excellent stability of the sensor device. Fur-
thermore, sensitivity characterization is performed using TNT, DNB, and NB, as depicted in
Figure 4d. These compounds possess different levels of electron deficiency due to varying
numbers of nitro groups. As the most electron-deficient system, TNT exhibited the highest
ability to attract electrons, resulting in significant fluorescence quenching of the SAMs.
Consequently, the detection abilities and limits vary for TNT, DNB, and NB. Quenching effi-
ciency exceeding 5% is effective, surpassing the upper limit of solvent methanol-quenching
fluctuation. As a result, the detection limits for TNT, DNB, and NB were determined
as 0.68 ppm, 1.68 ppm, and 2.5 ppm, respectively. The sensing performances of related
materials reported in the recent literature are summarized in Table 1, and our SAM sensor
devices have been proved to have good stability, reversibility, selectivity, and sensitivity. Al-
though TPE-PA-8 does not exhibit the highest sensitivity to explosives compared with other
materials, the data presented in this study demonstrate its considerable future potential
due to the high selectivity exhibited in complex environments, along with its repeatability
and inherent flexibility as a wearable sensor [26,27].

Table 1. Sensing performances of related materials.

Sensing Materials
NAC Explosives

NB TNT DNB DNT Ref.

Pyrimidine scaffold with a pyrene-donative fragment 6 ppb 5 ppb - - [26]
Sol-Gel Materials - 5 ppb - - [27]
Oligomer P1 - 698 ppb - - [28]
3,3′-{[1,4-phenylenebis-(methylene)] bis(oxy)}
dibenzoic acid (H2L) 3.53 ppm - 3.06 ppm 1.56 ppm [29]

1-pyrene-based
derivatives - 3.11 ppm - 1.82 ppm [30]

Ultrathin PTPE 4.1 ppm 0.07 ppm 0.35 ppm - [21]
TPE-PA-8 2.5 ppm 0.68 ppm 1.68 ppm - This work

4. Conclusions

In this study, TPE-PA-8 has been successfully designed as a SAM sensor for the
detection of trace NAC explosives. The SAMs are constructed by connecting a classic
AIE molecule, TPE, and phosphoric acid, which serve as the chromophore and anchor,
respectively. The stability of the device is ensured through the covalent bonding of SAMs to
the Al2O3-coated fiber substrate, while any unbonded molecules are subsequently removed,
leaving behind a monolayer film. The synthesized SAMs exhibit strong fluorescence
intensity, sensitive quenching ability and excellent performance in reversibility, selectivity,
and stability. It promises to be a suitable candidate for practical SAM sensor preparation.
Overall, this work highlights significant potential for the development and application
of flexible, wearable, and transparent devices for NAC explosive detection, providing an
experimental foundation for future sensor advancements.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mi14122179/s1, Figure S1: Sensing Tests and Synthesis of SAMs.
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