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Abstract: A new structure for PNPN tunnel field-effect transistors (TFETs) has been designed and
simulated in this work. The proposed structure incorporates the polarity bias concept and the gate
work function engineering to improve the DC and analog/RF figures of merit. The proposed device
consists of a control gate (CG) and a polarity gate (PG), where the PG uses a dual-material gate (DMG)
structure and is biased at −0.7 V to induce a P+ region in the source. The PNPN structure introduces
a local minimum on the conduction band edge curve at the tunneling junction, which dramatically
reduces the tunneling width. Furthermore, we show that incorporating the DMG architecture further
enhances the drive current and improves the subthreshold slope (SS) characteristics by introducing
an additional electric field peak. The numerical simulation reveals that the electrically doped PNPN
TFET using DMG improves the DC and analog/RF performances in comparison to a conventional
single-material gate (SMG) device.

Keywords: tunnel FETs (TFETs); electrically doped; dual-material gate (DMG); band-to-band tunneling
(BTBT); analog/RF performance

1. Introduction

It has become increasingly difficult for the industry to continuously scale traditional
Complementary Metal Oxide Semiconductor (CMOS) devices at the nanoscale level. At
room temperature, the 60 mV/dec subthreshold slope acts as a limit on transistor scaling in
Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs). One such candidate is the
Tunnel Field-Effect Transistor (TFET), whose subthreshold slope value at room temperature
is less than 60 mV/decade [1]. In addition to these advantages, TFETs have two major
disadvantages, namely low on-state current (ION) and ambipolarity during switching [2].
In order to overcome ION and the ambipolar issue, we have recently proposed an in-built
N+ pocket electrically doped TFET (ED-TFET) with and without an electrically doped
drain, using the concept of polarity bias [3,4]. An in-built N+ pocket ED-TFET structure is
very similar to a PNPN TFET structure, except that it does not require additional chemical
doping for the narrow N+ pocket [5,6]. By applying a bias voltage at both the polarity
gate and control gate, the principle of the polarity bias concept induces charge carriers
that modulate tunneling barriers [7,8]. Consequently, no additional doping processes are
required to build a narrow N+ pocket, thereby simplifying the manufacturing process [9].

In previous works, simulation studies have demonstrated that by replacing the single-
material control gate structure in the double-gate TFET with a dual-material control gate
structure, both the ON-current and subthreshold slope (SS) characteristics of the TFETs
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could be significantly improved [10,11]. For example, a new structure of Schottky tunneling
MOSFET has been designed and simulated using floating gates and dual-material main
gates to counter short-channel effects and improve analog/RF performances [12]. In
addition, a dual-material control gate with dual-oxide TFET has been investigated with
reduced ambipolar behavior and subthreshold swing [13]. Furthermore, an analytical
model of a dual-material single-gate doping-less TFET with gate underlap regions has been
proposed [14]. A dual-material gate GaAs/InAs/Ge junctionless TFET has been proposed
based on intraband tunneling and interband tunneling with improved SS and ION [15]. A
dual-material gate-oxide-stack double-gate TEFT has also been investigated as a biosensing
element, and the underlying device sensitivity has been estimated [16]. However, the effect
of dual-material polarity gates on TFET devices has not yet been investigated.

We present the application of a dual-material polarity gate (DMPG) to an in-built N+

pocket ED-TFET in this paper. In 2D device simulations, we demonstrate that engineering
the dual-polarity gates’ work functions enables the optimization of the ON-current ION,
the OFF-current IOFF, and the average subthreshold slope and analog/RF performance by
simultaneously optimizing the work functions of the dual-polarity gates.

In this work, we investigate the device design and DC and analog/RF performances
of the proposed DMPG ED-TFET with regard to several key parameters. A description
of the physical structure used in the simulation is presented in Section 2. In Section 3,
comparative results and analyses are presented. Finally, Section 4 summarizes the paper.

2. Device Structure and Simulation Model

Figure 1a,b illustrate the cross-sectional views of the conventional single-material
polarity gate (SMPG) ED-TFET and the proposed dual-material polarity gate (DMPG) ED-
TFET. In both types of devices, there are two sets of gate electrodes: control gates (CG) and
polarity gates (PG). For comparison, an SMPG ED-TFET with the same channel length is
used. The proposed DMPG ED-TFET has two polarity gates with different work functions,
denoted by PG1 and PG2, which are set to 4.97 and 4.5 eV, respectively, corresponding
to the values of some common metals, as shown in Figure 1b. Initially, L1 and L2 are set
to 20 nm, and the total length of the polarity gate is fixed at 40 nm. In Table 1, we show
the detailed design parameters we used in our simulation. During the simulation, the
lengths and work functions of the two polarity gates can be varied. As shown in Table 1,
both devices have the same doping concentration at the source, channel, and drain, with a
starting NPN structure. A PNPN TFET structure is achieved by setting up polarity gates on
the source side of the device based on the polarity bias concept. The narrow N+ pocket is,
therefore, built into the device without the need for additional doping processes, thereby
simplifying manufacturing. In general, the proposed DMPG ED-TFETs have the same
working mechanism as the conventional SMPG ED-TFETs, except for the dual-material
polarity gate configuration. In Figure 2, the energy band diagrams for the proposed DMPG
and conventional SMPG ED-TFET at 1 nm below the Si-oxide interface are shown. It
appears that the conduction energy band edge (EC) at VCG = 0 V has a local minimum point.
By aligning the local minimum with the valence energy band edge (EV) at the source, the
introduction of the N+ pocket results in a decrease in the EC curve and a rapid decrease in
the tunneling barrier width. However, the incorporation of the DMPG leads to a reduction
in the local EC minimum, as shown in Figure 2, and the tunneling barrier width can be
further reduced due to the work function modulation of the DMPG.

In this paper, we used the Silvaco Atlas device simulation software (version 5.19.20.R) [17]
to perform all the simulations. Based on [18], we validated our simulation model using a
non-local band-to-band tunneling (BTBT) model. Based on the analysis of the energy band
diagrams, a non-local BTBT model was used to calculate the tunneling probability along
the lateral direction of the device. A fine mesh was used across the region of tunneling
in the simulations to perform non-local BTBT. Approximating the evanescent wavevector
was performed by Atlas using the Wentzel–Kramer–Brillouin method. To include the effect
of the electric field on mobility degradation, we used the Lombardi mobility model. In
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addition, Fermi Dirac and the Shockley–Read–Hall (SRH) recombination models were
used. In order to account for the high concentration of doping in the devices, a band-gap
narrowing (BGN) model was used. Because the thickness of the silicon film exceeded 7 nm,
quantum mechanical effects were not taken into account [19,20].
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Figure 1. Cross-sectional views of (a) the conventional SMPG ED-TFET and (b) the proposed DMPG
ED-TFET.

Table 1. Parameters used for device simulation.

Parameter Conventional SMPG ED-TFET [3] Proposed DMPG ED-TFET

Source Doping 4 × 1019 cm−3 (N+) 4 × 1019 cm−3 (N+)
Channel Doping 1 × 1017 cm−3 (P−) 1 × 1017 cm−3 (P−)

Drain Doping 5 × 1018 cm−3 (N+) 5 × 1018 cm−3 (N+)
CG Work function 4.74 eV 4.74 eV
PG Work function 4.33 eV -

PG1 Work function - 4.97 eV
PG2 Work function - 4.5 eV

Micromachines 2023, 14, x FOR PEER REVIEW 3 of 10 
 

 

Table 1. Parameters used for device simulation. 

Parameter Conventional SMPG ED-TFET [3] Proposed DMPG ED-TFET 
Source Doping 4 × 1019 cm−3 (N+) 4 × 1019 cm−3 (N+) 

Channel Doping 1 × 1017 cm−3 (P−) 1 × 1017 cm−3 (P−) 
Drain Doping 5 × 1018 cm−3 (N+) 5 × 1018 cm−3 (N+) 

CG Work function 4.74 eV 4.74 eV 
PG Work function 4.33 eV - 

PG1 Work function - 4.97 eV 
PG2 Work function - 4.5 eV 

In this paper, we used the Silvaco Atlas device simulation software (version 
5.19.20.R) [17] to perform all the simulations. Based on [18], we validated our simulation 
model using a non-local band-to-band tunneling (BTBT) model. Based on the analysis of 
the energy band diagrams, a non-local BTBT model was used to calculate the tunneling 
probability along the lateral direction of the device. A fine mesh was used across the re-
gion of tunneling in the simulations to perform non-local BTBT. Approximating the ev-
anescent wavevector was performed by Atlas using the Wentzel–Kramer–Brillouin 
method. To include the effect of the electric field on mobility degradation, we used the 
Lombardi mobility model. In addition, Fermi Dirac and the Shockley–Read–Hall (SRH) 
recombination models were used. In order to account for the high concentration of dop-
ing in the devices, a band-gap narrowing (BGN) model was used. Because the thickness 
of the silicon film exceeded 7 nm, quantum mechanical effects were not taken into ac-
count [19,20]. 

 
Figure 1. Cross-sectional views of (a) the conventional SMPG ED-TFET and (b) the proposed 
DMPG ED-TFET. 

 
Figure 2. Energy band diagrams of DMPG and SMPG ED-TFET at 1 nm below the Si/oxide inter-
face. 
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3. Simulation Results and Discussion

The DC and analog/RF characteristics of the proposed DMPG ED-TFET are inves-
tigated and compared with those of a corresponding compatible SMPG ED-TFET. The
influences of the key parameters are further analyzed in this section.

3.1. DC Characteristics

The transfer characteristics of the proposed DMPG ED-TFET and conventional SMPG
ED-TFET for various drain voltages are shown in Figure 3. The control gate voltage
overdrive VCGT is defined as VCGT = VCG − VTH, where VCG is the control gate voltage
and VTH is the threshold voltage referring to the control gate voltage when the device
is turned on. It is clearly seen from Figure 3 that the SS is significantly improved in the
proposed device and ION (calculated at VCG = VDS = 1.0 V, VPG = −0.7 V) is also higher.
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This can be explained using the electric field distributions, which are shown in Figure 4. By
using the dual-material polarity gates of work functions 4.97 eV and 4.5 eV in the proposed
device, an additional peak electric field is created in the source region, which provides
more acceleration to the tunneling carrier and enhances the non-local BTBT hole tunneling
rate near the N+ pocket, as shown in Figure 5.
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3.2. Device Optimizations

The transfer characteristics of the proposed DMPG ED-TFET for various PG2 work
functions (ΦPG2) are shown in Figure 6. The PG1 work function is fixed at 4.97 eV. The
ΦPG2 = 4.97 eV corresponds to that of the SMPG ED-TFET. As shown in Figure 6, both ION
and SS increase and the devices turn on at a lower control gate voltage with increasing
ΦPG2. We show the energy band diagrams of the proposed DMPG ED-TFET for various
PG2 work functions at 1 nm below the Si/oxide interface in the OFF-state in Figure 7. For
clarity, the band diagram near the local EC minimum is enlarged. From Figure 7, it can be
seen that increasing the PG2 work function leads to a reduced depth of the EC well where
the local minimum point is located, which results in band-to-band tunneling difficulties.
Thus, SS degrades considerably when ΦPG2 reaches 4.97 eV. Considering ION and SS, the
optimal work function of PG2 is 4.5 eV when keeping the work function of PG1 fixed at
4.97 eV.
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Figure 8 shows the transfer characteristics of the proposed DMPG ED-TFET for var-
ious PG1 work functions (ΦPG1) while keeping ΦPG2 fixed at 4.5 eV. The ΦPG1 = 4.5 eV
corresponds to that of the SMPG ED-TFET. In general, the OFF-state current IOFF (calculated
at VCG = 0 V, VDS = 1.0 V, VPG = −0.7 V) decreases with increasing ΦPG1, as shown in
Figure 8. However, SS, VTH, and ION are virtually unchanged since ΦPG2 is fixed. This can
be explained by the fact that in the ON-state, the band-to-band tunneling occurs at the
junction between the source region and pocket. Thus, an increase in ΦPG1 does not change
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the band diagram near tunneling significantly. The device with ΦPG1 of 4.97 eV has the
lowest IOFF, as shown in Figure 8. This can be understood from the electron concentration
distribution for different PG1 work functions in the OFF-state. In the case of the proposed
device with ΦPG1 = 4.97 eV, the electron concentration in the channel shows the lowest
value, as illustrated in Figure 9. This reduced electron concentration affects the conduction
band profile in the OFF-state. As a result, the conduction band well becomes wider, result-
ing in a lower IOFF. When the PG2 work function is fixed at 4.5 eV, the optimal PG1 work
function is 4.97 eV.
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The transfer characteristics of the proposed DMPG ED-TFET are studied when the
L2/LPG ratio is varied from 0.25 to 0.875 by changing L2 from 10 to 35 nm with a fixed
polarity gate length of LPG = L1 + L2 = 40 nm, as shown in Figure 10. It is evident that SS
degradation occurs when the L2/LPG ratio is 0.25 and 0.375. The SS is almost consistent
when the L2/LPG ratio exceeds 0.5; however, as the ratio increases, IOFF increases as well.
For all L2/LPG ratios, ION is essentially the same. In Figure 11, the characteristics of the SS
and ON/OFF current ratios (ION/IOFF) for the DMPG ED-TFET devices are shown. It can
be observed that the lowest SS and the highest ION/IOFF occur at L2/LPG = 0.5. Considering
the SS and ION/IOFF, as well as the actual photolithography conditions, L2/LPG = 0.5 seems
to be a reasonable optimal value for the proposed DMPG ED-TFET.
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3.3. Analog/RF Performance

We simulate and compare the analog/RF performance of the proposed DMPG ED-
TFETs with that of the conventional SMPG ED-TFETs with identical dimensions, as shown
in Figure 12. An analog/RF figure of merit (FoM) consists of the following: transconduc-
tance (Gm), transconductance generation factor (TGF), gate capacitance (CGG), gate–drain
capacitance (CGD), cutoff frequency (f T), gain bandwidth product (GBW), and transconduc-
tance frequency product (TFP). For fair comparisons, the same VcGT is used to subtract the
effect of the threshold voltage.

This can be expressed as Gm = dIDS/dVCG, where Gm is the slope of the log(IDS)–VCG
curve when VDS remains at 1.0 V. In analog circuits, transconductance is crucial for achiev-
ing high gains and f T. As shown in Figure 12a, the Gm of the DMPG ED-TFET is larger than
that of the SMPG device. The improved SS of the DMPG structure results in a significant
change in IDS with VCG, whereas ION maintains a high value, resulting in a greater Gm.
Furthermore, Gm increases as VCGT is increased until saturation occurs. The maximum
Gm of the proposed DMPG and conventional SMPG ED-TFETs are 5.57 and 5.35 µS/µm,
respectively. Both devices’ transconductance drops rapidly when they enter the saturation
region (VCGT of 0.69 V for DMPG, 0.95 V for SMPG). A device’s efficiency can also be
quantified by TGF, which represents Gm divided by the IDS. Figure 12a also shows TGF
with varying VCGT for the DMPG and SMPG devices. We can see that the proposed DMPG
device has a lower TGF because Gm is less dominant than the drain current. Therefore,
in spite of the higher Gm of DMPG, TGF remains relatively small. As VCGT increases, the
drain current increases rapidly, and the TGF decreases accordingly.



Micromachines 2023, 14, 2149 8 of 10

Micromachines 2023, 14, x FOR PEER REVIEW 8 of 10 
 

 

3.3. Analog/RF Performance 
We simulate and compare the analog/RF performance of the proposed DMPG 

ED-TFETs with that of the conventional SMPG ED-TFETs with identical dimensions, as 
shown in Figure 12. An analog/RF figure of merit (FoM) consists of the following: trans-
conductance (Gm), transconductance generation factor (TGF), gate capacitance (CGG), 
gate–drain capacitance (CGD), cutoff frequency (fT), gain bandwidth product (GBW), and 
transconductance frequency product (TFP). For fair comparisons, the same VcGT is used 
to subtract the effect of the threshold voltage. 

 
Figure 12. Variation in (a) transconductance and TGF, (b) CGG and CGD, (c) fT and GBW, and (d) TFP 
versus VCGT of the conventional SMPG and proposed DMPG ED-TFET. 

This can be expressed as Gm = dIDS/dVCG, where Gm is the slope of the log(IDS)–VCG 
curve when VDS remains at 1.0 V. In analog circuits, transconductance is crucial for 
achieving high gains and fT. As shown in Figure 12a, the Gm of the DMPG ED-TFET is 
larger than that of the SMPG device. The improved SS of the DMPG structure results in a 
significant change in IDS with VCG, whereas ION maintains a high value, resulting in a 
greater Gm. Furthermore, Gm increases as VCGT is increased until saturation occurs. The 
maximum Gm of the proposed DMPG and conventional SMPG ED-TFETs are 5.57 and 
5.35 µS/µm, respectively. Both devices’ transconductance drops rapidly when they enter 
the saturation region (VCGT of 0.69 V for DMPG, 0.95 V for SMPG). A device’s efficiency 
can also be quantified by TGF, which represents Gm divided by the IDS. Figure 12a also 
shows TGF with varying VCGT for the DMPG and SMPG devices. We can see that the 
proposed DMPG device has a lower TGF because Gm is less dominant than the drain 
current. Therefore, in spite of the higher Gm of DMPG, TGF remains relatively small. As 
VCGT increases, the drain current increases rapidly, and the TGF decreases accordingly. 

As we know, capacitance is an important parameter closely related to the power 
consumption and switching speed characteristics of transistors. Therefore, variations in 
CGG and CGD with respect to VCGT of both the proposed DMPG and conventional SMPG 
ED-TFETs are shown in Figure 12b. It has been observed that CGG and CGD in the pro-
posed DMPG device are higher than those in the conventional SMPG device. When VCGT 
exceeds 0.6 V, both capacitances of the DMPG device increase rapidly as VCGT increases. 
For the SMPG devices, the capacitances increase slowly. Other important parameters for 
RF applications are the cutoff frequency (fT) and the gain bandwidth product (GBW). At 
the cutoff frequency, the short-circuit current gain reaches unity and is represented by fT = 

Figure 12. Variation in (a) transconductance and TGF, (b) CGG and CGD, (c) f T and GBW, and (d) TFP
versus VCGT of the conventional SMPG and proposed DMPG ED-TFET.

As we know, capacitance is an important parameter closely related to the power
consumption and switching speed characteristics of transistors. Therefore, variations in
CGG and CGD with respect to VCGT of both the proposed DMPG and conventional SMPG
ED-TFETs are shown in Figure 12b. It has been observed that CGG and CGD in the proposed
DMPG device are higher than those in the conventional SMPG device. When VCGT exceeds
0.6 V, both capacitances of the DMPG device increase rapidly as VCGT increases. For
the SMPG devices, the capacitances increase slowly. Other important parameters for RF
applications are the cutoff frequency (f T) and the gain bandwidth product (GBW). At
the cutoff frequency, the short-circuit current gain reaches unity and is represented by
f T = Gm/2πCGG. For high-frequency circuits, it is generally beneficial to have a high f T to
ensure that the device can be used widely. The GBW can be expressed as a ratio of Gm to
CGD for a DC gain value equal to 10, and it is represented by GBW = Gm/2π10 CGD. It can
be inferred from Figure 12c that both f T and GBW are improved in the DMPG ED-TFET,
which is similar to the trends in Figure 12a. Based on the formulas listed above, the values
of f T and GBW are both proportional to Gm, so the changing trends are also similar. As
VCGT further increases, Gm drops sharply and the capacitance increases, resulting in a
decrease in f T and GBW. The proposed DMPG and conventional SMPG ED-TFETs achieve
a maximum f T of 0.388 and 0.352 THz, and a maximum GBW of 55.52 and 48.01 GHz at
VCGT of 0.59 V and 0.85 V, respectively.

Another important FoM for high-frequency circuits is the TFP, which is essentially
calculated by multiplying the TGF by the f T, or TFP = (Gm/IDS) × f T. As shown in
Figure 12d, the proposed DMPG ED-TFET exhibits higher TFP values than the conventional
SMPG ED-TFET due to its higher f T. The DMPG and SMPG devices achieve a maximum
TFP of 2.12 and 1.48 THz/V at VCGT of 0.49 V and 0.8 V, respectively. Compared to
conventional SMPG ED-TFETs for low-voltage circuits, the proposed DMPG ED-TFETs
appear to be more suitable for RF applications.

4. Conclusions

In this paper, we presented a device structure that incorporates a dual-material gate
in a PNPN ED-TFET based on the polarity bias concept. The dual-material gate was used
on the polarity gate, which was biased at −0.7 V to induce a P+ region in the source. By
introducing an additional electric field peak, we demonstrated that the DMPG architecture
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further improves the drive current and SS characteristics. Furthermore, the device design
was optimized by modulating the work functions of PG1 and PG2 and the L2/LPG ratio.
In general, L2/LPG = 0.5, PG1 work function ΦPG1 = 4.97 eV, and PG2 work function
ΦPG2 = 4.5 eV are recommended for DMPG ED-TFET. Two-dimensional simulations were
used to evaluate DC and analog/RF performance. The simulated performance of the DMPG
ED-TFET performed better than that of the conventional SMPG ED-TFET at the optimized
dimensions of SS, ION, Gm, TGF, f T, GBW, and TFP in low-voltage situations. Based on this,
we anticipate that the circuit performance would be better with the DMPG architecture.
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