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Abstract: Accurate hydrogen leakage detection is a major requirement for the safe and widespread
integration of this fuel in modern energy production devices, such as fuel cells. Quasi-1D nanowires of
seven different metal oxides (CuO, WO3, Nb-added WO3, SnO2, ZnO, α-Bi2O3, NiO) were integrated
into a conductometric sensor array to evaluate the hydrogen-sensing performances in the presence of
interfering gaseous compounds, namely carbon monoxide, nitrogen dioxide, methane, acetone, and
ethanol, at different operating temperatures (200–400 ◦C). Principal component analysis (PCA) was
applied to data extracted from the array, demonstrating the ability to discriminate hydrogen over
other interferent compounds. Moreover, a reduced array formed by only five sensors is proposed.
This compact array may be easily implementable into artificial olfaction systems used in real hydrogen
detection applications.

Keywords: hydrogen; metal oxide nanowires; chemical sensors

1. Introduction

Industrial and technological developments have resulted in a rapid increase in the rate
of global energy consumption, with the energy demand expected to increase even further in
the following years also due to the increase in world population [1]. Nowadays, fossil fuel
resources are still the dominant source of energy, despite strong attention being devoted
to alternative and renewable energy sources. In the past decade, due to the increased use
of fossil fuels, the amount of carbon emissions has grown dramatically, combined with
an increase in the emission of greenhouse gases (GHGs) like CO2, NOx, and SOx, which
contribute to climate change [2,3]. Moreover, with the world’s fossil reserves depleting, it
is necessary to move toward a sustainable and environmentally genial source of energy [4].
Recently, the European Commission launched the European Green Deal with the scope of
transforming the EU into a modern, resource-efficient, and competitive economy, ensuring
carbon neutrality by 2050 [5].

Unfortunately, an efficient and economical route for utilizing renewables, including
solar, bio, and wind, as a source for large-scale commercial energy production is not yet
available. This gives a significant scope for hydrogen, a clean source of fuel, to be one of the
future sources of energy. The combustion of hydrogen produces only water, and advances
in hydrogen fuel cell technology can significantly decrease the carbon emissions related
to automotive, local power generation, and others [6]. The major drawbacks of hydrogen
are that it is an odorless, colorless, and highly dangerous gas not readily available in its
elemental form, with lower and upper flammability limits of 4% and 75%, respectively.
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Therefore, it is necessary to accurately monitor the storage of hydrogen to promptly identify
possible leakages.

Nowadays, artificial olfaction systems integrate sensor arrays formed by a combination
of different sensing elements based on different materials and working principles, such as
conductometric [7,8], piezoelectric [9], field-effect transistors [10], optical sensors [11,12].
Among these, metal oxide (MOX) materials are a class of materials well known in the
chemical sensing field, representing the current state-of-the-art technology. These materials
have been investigated largely due to their abundance, cheap and easy fabrication, and
high performance [13].

In 1991, it was demonstrated for the first time that reducing the size of metal ox-
ide materials to the nanoscale could lead to a substantial enhancement of their sensing
properties [14]. Since then, researchers have paid specific attention to the development of
novel nanostructures, constantly reducing the grain size to improve the performance of
the devices [15]. Among the possible nano-scaled morphologies, metal oxide nanowires
are considered one of the most promising for the fabrication of chemical sensors due to
their extremely high surface-to-volume ratio, high stability and crystallinity, and unique
electrical and chemical properties [16–18].

In this work, quasi-1D nanowires of seven different metal oxides (CuO, WO3, Nb-
added WO3, SnO2, ZnO, α-Bi2O3, NiO) were integrated into a conductometric sensor
array to evaluate the hydrogen sensing performance in presence of interfering gaseous
compounds, namely carbon monoxide, nitrogen dioxide, methane, acetone, and ethanol.
Principal component analysis was performed to highlight the properties of the array.
Moreover, a reduced array was proposed, selecting the most uncorrelated features of the
original array.

2. Materials and Methods
2.1. Sensors Fabrication

ZnO, WO3, SnO2, NiO, and α-Bi2O3 nanowires have been prepared via the evaporation
condensation method using the vapor liquid solid (VLS) mechanism, which uses a catalyst
to assist the growth of the MOX nanowires and control the diameter of these nanostructures.,
The growth process mainly consists of the evaporation of a source material (metal or metal
oxide powder) followed by the condensation on the substrate previously catalyzed via the
specific catalyst. The interaction of the vapor (containing the atoms of the desirable MOX)
with the liquid catalyst clusters at high temperatures can be summarized in three steps:
nucleation, diffusion, and crystallization.

In our case, ZnO, WO3, SnO2, NiO, and α-Bi2O3 nanowires were grown using Au as a
catalyst to assist the growth. In particular, these Au catalysts behave as active sites for the
nucleation and growth of nanowires.

The noble metal catalyst was deposited via RF magnetron sputtering (Kenotec, Milano,
Italy) on alumina substrates (99% purity, 2 × 2 mm2, Kyocera, Kyoto, Japan) using an argon
plasma at room temperature (duration: 5 s; power: 70 W). Target metal oxide powder was
placed in the center of an alumina tubular furnace at a high temperature, while the catalyst
substrates were placed in a colder region of the furnace to promote condensation. An inert
gas flow (argon) was used to transfer the evaporated material toward the colder region of
the furnace to force condensation into the liquid droplets of noble metal catalyst. Detailed
information on the synthesis process and mechanism of ZnO [19], WO3 [20], SnO2 [21],
NiO [22], and α-Bi2O3 [23] nanowires may be found elsewhere.

Instead, CuO and Nb-added WO3 nanowires were prepared using a simple thermal
oxidation technique in a controlled environment. A thin copper (500 nm) was deposited via
RF magnetron sputtering starting from a pure copper target (99.9% purity). For Nb-added
WO3, we used a pure tungsten target (99.9% purity) with four niobium stubs inserted,
resulting in a metal alloy composed of 97% W–3% Nb [24]. In this case, the thickness of the
layer was 200 nm.
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Samples were placed in the tubular furnace and heated at the required temperature
to promote the formation of the nanowires. For thermal oxidation, no catalyst is required
as the formation of the nanowires is mainly due to the mechanical stress given by the
oxidation process [25].

Further details on the synthesis of CuO [26] and Nb-added WO3 [24] nanowires may
be found elsewhere. A summary of deposition techniques, experimental conditions and
related literature is reported in Table 1.

Table 1. Synthesis parameters used for the fabrication of the active sensing materials.

Material Technique Powder
Temperature

Substrate
Temperature Time Pressure Atmospheric

Conditions Catalyst Reference

ZnO Evaporation-
condensation 1200 ◦C 500 ◦C 15 min 10 mbar Argon flow:

75 sccm Au [19]

α-Bi2O3
Evaporation-
condensation 1000 ◦C 500 ◦C 10 min 10 mbar Argon flow:

75 sccm Au [23]

NiO Evaporation-
condensation 1450 ◦C 930 ◦C 12 min 1 mbar Argon flow:

100 sccm Au [22]

SnO2
Evaporation-
condensation 1370 ◦C 860 ◦C 2 min 10 mbar Argon flow:

100 sccm Au [21]

WO3
Evaporation-
condensation 1100 ◦C 525 ◦C 15 min 1 mbar Argon flow:

100 sccm Au [20]

Nb-WO3
Thermal
oxidation - 600 ◦C 1 h 1 mbar Argon flow:

10 sccm - [24]

CuO Thermal
oxidation - 400 ◦C 4 h 1000 mbar - - [26]

All metal oxide materials were directly synthetized on 2 × 2 mm2 alumina substrate.
After the growth of the sensing materials, platinum interdigited electrodes (IDE) and
heating elements were deposited on the top and bottom sides of the samples, respectively,
via DC magnetron sputtering using the shadow mask technique. More specifically, an
adhesion layer of TiW was deposited on top of active materials using a 75 W argon plasma
(3 min, 300 ◦C, 4.5 mTorr), followed by the deposition of the platinum IDE (20 min, 300 ◦C,
4.5 mTorr, 75 W argon plasma). On the other hand, on the backside of the samples, a TiW
adhesion layer followed by the platinum heating element (20 min, 300 ◦C, 4.5 mTorr, 75 W
argon plasma) was deposited. Sensing chips were then mounted on transistor outline (TO)
packages using electro-soldered gold wires.

2.2. Gas Sensing Measurements

The goal of the present work is to evaluate the hydrogen (H2) sensing performance
of the fabricated array in presence of interfering gaseous compounds, namely carbon
monoxide (CO), nitrogen dioxide (NO2), methane (CH4), acetone (C3H6O) and ethanol
(C2H5OH). For this purpose, conductometric sensors were evaluated using a flow-through
volt-amperometric technique in a custom measurement chamber.

Sensors were placed in a custom stainless-steel chamber (1 L volume) located inside
a climatic chamber fixed at 20 ◦C to neglect any effect of external temperature variations.
A fixed voltage of 1 V was applied to the sensors (Agilent E3631A power supply, Santa
Clara, CA, USA), measuring at the same time the electrical conductance of each sensor
using dedicated picoammetters (Keithley 6485, Cleveland, OH, USA).

To identify the optimal working conditions of each device, measurements were per-
formed at different temperatures (200 ◦C, 250 ◦C, 300 ◦C, 350 ◦C, 400 ◦C), keeping the
relative humidity fixed at 50% @ 20 ◦C, to simulate real-world applications. The tempera-
ture of each sensor was controlled independently by modulating the electric power applied
to heaters using Thurlbly-Thandar PL330DP power supplies.

Prior to the effective measurements, sensors were thermally stabilized inside the cli-
matic chamber at desired working temperature for 8 h in the presence of a humid air flow
of 200 standard cubic centimeters per minute (SCCM). Humidified air was produced by
flowing synthetic dry air through a Drechsel bottle in a condensation vessel to favor the
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condensation of saturated vapor. Test chemical compounds, with a certified composition
and concentration, were supplied by SOL (Monza, Italy) and were mixed with dry syn-
thetic air by MKS Instrument (Andover, United States of America) mass flow controllers,
maintaining a total flow of 200 SCCM.

Table 2 reports the gas concentration injected in the chamber for each target compound.
After the 30 min exposure to the selected gas concentration, synthetic air flow was restored
for 60 min to allow the recovery of the electrical conductance baseline.

Table 2. Chemical compounds investigated and relative concentrations injected into the chamber.

Gas Type Concentrations Injected in Chamber (ppm)

CO 20, 20, 20, 100, 250, 250, 100, 20

NO2 0.5, 0.5, 0.5, 2, 5, 5, 2, 0.5

CH4 20, 20, 20, 100, 250, 250, 100, 20

H2 15, 15, 15, 100, 250, 250, 100, 15

C3H6O 2, 2, 2, 10, 25, 25, 10, 2

C2H5OH 2, 2, 2, 10, 25, 25, 10, 2

The response of each sensor is calculated as the ratio between the variation of the
electrical conductance over the baseline (∆G/G), using the following formulas for reducing
and oxidizing gases, respectively, for n-type materials:

Reducing compounds: Response = (Ggas − Gair)/Gair

Oxidizing compounds: Response = (Gair − Ggas)/Ggas

where Gair and Ggas are, respectively, the sensor conductance of the baseline and in presence
of target gaseous compound. For p-type materials (α-Bi2O3, CuO, and NiO), these formulas
are swapped.

3. Experimental Results
3.1. Materials Characterization

Figure 1 shows the SEM images of ZnO, WO3, SnO2, NiO, Nb-added WO3, CuO and
α-Bi2O3 nanowires. All materials show a scattered and homogenous nanowire morphology
with high density and high aspect ratio.
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α-Bi2O3 is a p-type semiconductor that has a monoclinic crystalline structure with
space group symmetry P21/c [23], while n-type ZnO nanowires have a hexagonal crys-
talline structure with space group symmetry P63mc [19].

Specifically, long ZnO nanowires (around 700 nm in length) with small diameters
(around 25 nm) have been grown, while α-Bi2O3 nanowires have a bigger diameter (around
100 nm) but they are long (around 6 µm in length). Most importantly, the presence of gold
nanoparticles at the tip of nanowires in α-Bi2O3 nanowires confirms the VLS mechanism.
It has been reported that gold nanoparticles could contribute to enhancing the gas sensing
performance due to the spillover effect [23].

P-type NiO nanowires have a cubic crystallographic structure with an Fm-3m space
group. The diameter of the nanowires was in the range of 20 to 60 nm and a length at a
micrometer scale [22]. N-type SnO2 nanowires exhibit morphology similar to NiO one but
have a tetragonal crystal structure with a P42/mnm space group [21]. Instead, n-type WO3
nanowires possess a diameter in the range of 10–30 nm and a length under 100 nm, with a
monoclinic crystallographic structure belonging to the P2/m space group [20].

On the other hand, for thermally oxidized nanowires, Nb-added WO3 have the same
monoclinic structure and aspect ratio as pristine WO3 nanowires, as the amount of niobium
added does not significantly influence their crystal structure and morphology [24]. Moreover,
this material exhibits an n-type behavior like pristine WO3. CuO, instead, is a p-type material
that has a monoclinic structure with C2/c with an average length of a few micrometers [26].

3.2. Gas Sensing Performances

A typical dynamic response of the sensors at 400 ◦C is reported in Figure 2, reporting
the electrical conductance of each sensor overtime during the injections of the different
chemical compounds. At this temperature, most of the sensors exhibit a strong variation of the
conductance in the presence of hydrogen, which is the main target compound of the present
study. However, these sensors also respond to other compounds, mainly nitrogen dioxide,
acetone, and ethanol. Interestingly, CuO and α-Bi2O3 devices, despite a low overall response,
do not have any appreciable response to hydrogen but only to the identified interfering gases.
This is an important feature to enhance the selectivity of the array, as described afterward.

Micromachines 2023, 14, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 2. Dynamic response of the seven different sensors in presence of various gaseous 
compounds (CO, NO2, CH4, H2, C3H6O, and C2H5OH) at 400 °C and relative humidity (RH) of 50% 
@ 20 °C. 

Figure 3 reports the heatmaps of sensors’ response at different concentrations of 
chemical compounds in the 200–400 °C temperature range. Sensor responses have been 
calculated as ΔG/G, and reported numbers are the mean values of multiple 
measurements. Each sensing material has its own response spectrum, which is influenced 
by the operating temperature. Humidity in the environment often is considered an 
interfering compound and should be treated as other chemicals. However, at this stage, 
the relative humidity during all measurements was kept constant at 50%. 

α-Bi2O3 nanowires are not sensitive to hydrogen at the investigated temperature. 
However, at 400 °C, this sensor is very selective to ethanol (C2H5OH) and partially to 
acetone (C3H6O). Similar behavior is observed in the case of the CuO sensor at 400 °C, 
which is selective to ethanol, acetone, and nitrogen dioxide. Despite the values of 
calculated responses being relatively small, these sensors provide complementary 
information that is fundamental to increasing the selectivity of the array. 

NiO device is moderately sensitive to hydrogen at every temperature, exhibiting the 
maximum response at 250 °C with a partial cross-sensitivity with nitrogen dioxide. This 
cross-sensitivity is lower at 250 °C compared to other temperatures. 

The most sensitive material to hydrogen is pristine WO3, which has a huge response 
to 250 ppm at 200 °C. Interestingly, increasing the operating temperature leads to faster 
response and recovery times but decreases the response of the device. Nevertheless, the 
response and the selectivity of this material are still good even at 400 °C. Nb-added WO3 
has a completely different behavior, as the optimal response to hydrogen is obtained at 
400 °C but with a partial cross-sensitivity to acetone. 

ZnO and SnO2 have similar behavior, with a maximum response to hydrogen at high 
temperatures (350 °C and 400 °C, respectively) but with a significant cross-sensitivity to 
nitrogen dioxide and acetone. 

Figure 2. Dynamic response of the seven different sensors in presence of various gaseous compounds
(CO, NO2, CH4, H2, C3H6O, and C2H5OH) at 400 ◦C and relative humidity (RH) of 50% @ 20 ◦C.



Micromachines 2023, 14, 2124 6 of 11

From Figure 2, it is possible to observe that ZnO is not recovering the baseline properly.
This behavior has been observed for all temperatures investigated and could lead to some
issues in case it is selected and used in the final array. Moreover, all sensors have a very
low response to methane, which affects the electrical conductance of the nanowires only at
concentrations higher than 100 ppm.

Figure 3 reports the heatmaps of sensors’ response at different concentrations of
chemical compounds in the 200–400 ◦C temperature range. Sensor responses have been
calculated as ∆G/G, and reported numbers are the mean values of multiple measurements.
Each sensing material has its own response spectrum, which is influenced by the operating
temperature. Humidity in the environment often is considered an interfering compound
and should be treated as other chemicals. However, at this stage, the relative humidity
during all measurements was kept constant at 50%.
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α-Bi2O3 nanowires are not sensitive to hydrogen at the investigated temperature.
However, at 400 ◦C, this sensor is very selective to ethanol (C2H5OH) and partially to
acetone (C3H6O). Similar behavior is observed in the case of the CuO sensor at 400 ◦C,
which is selective to ethanol, acetone, and nitrogen dioxide. Despite the values of calculated
responses being relatively small, these sensors provide complementary information that is
fundamental to increasing the selectivity of the array.

NiO device is moderately sensitive to hydrogen at every temperature, exhibiting the
maximum response at 250 ◦C with a partial cross-sensitivity with nitrogen dioxide. This
cross-sensitivity is lower at 250 ◦C compared to other temperatures.

The most sensitive material to hydrogen is pristine WO3, which has a huge response
to 250 ppm at 200 ◦C. Interestingly, increasing the operating temperature leads to faster
response and recovery times but decreases the response of the device. Nevertheless, the
response and the selectivity of this material are still good even at 400 ◦C. Nb-added WO3
has a completely different behavior, as the optimal response to hydrogen is obtained at
400 ◦C but with a partial cross-sensitivity to acetone.

ZnO and SnO2 have similar behavior, with a maximum response to hydrogen at high
temperatures (350 ◦C and 400 ◦C, respectively) but with a significant cross-sensitivity to
nitrogen dioxide and acetone.

We compared the performance of developed nanowire-based sensors with some
commercial devices. TGS 2616-C00 by Figaro (Osaka, Japan) is a device that is specifically
designed for hydrogen sensing [27]. According to sensor specifications, the response to
250 ppm of hydrogen is ≈25, lower than the proposed WO3-nanowire sensor. GMV-2021B,
a MEMS hydrogen sensor developed by Zhengzhou Winsen Electronic Technology Co., Ltd.
(Zhengzhou, China), has a response of ≈10 to the same concentration of hydrogen while
exhibiting some cross-interference to carbon monoxide [28]. The performance of this
device is lower compared to WO3, Nb-WO3, and NiO. MiCS-5524 from SGX Sensortech
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(Neuchatel, Switzerland) is a compact MOS sensor for indoor carbon monoxide and natural
gas leakage detection [29]. Despite having a good response of >30 to 250 ppm, it has a
huge cross-sensitivity to carbon monoxide and ethanol. Finally, GGS 6530 T from UST
Umweltsensortechnik GmbH (Geratal, Germany) has a response of ≈10 but is also sensitive
to methane [30].

Response and recovery times are calculated as the time required by each sensor to
reach 90% of the response and 90% of the baseline, respectively. The measurement chamber
used in our experimental setup has a volume of 1 L to host multiple sensing devices
simultaneously. However, using a 200 sccm flow, it takes 3–5 min to completely fill or
empty the chamber. According to the performed measurements, recorded response and
recovery times at temperatures higher than 300 ◦C are always comparable with the chamber
filling time, with the sole exception of ZnO, as seen in Figure 2. Therefore, we are not able
to estimate properly the kinetics of the surface reactions. For this purpose, we rely only
on the electrical response for the identification of the features of the principal component
analysis (PCA) introduced in the next section.

3.3. Data Analysis

Collected data were analyzed with chemometrics tools based on multivariate statistics,
i.e., principal component analysis (PCA). PCA is a simple, non-parametric method for
extracting relevant information from confusing or complex data sets, such as the one
coming from multiple sensors. It is a powerful tool to reduce complex data sets to lower
dimensions to extract hidden or simplified information [31].

For the calculation of the principal components, we selected the response of each
device at every temperature as a feature. However, we removed from the dataset the
measures at 200 ◦C due to the slow kinetics of the sensors and the overall small responses
(except pristine WO3), which can cause problems in the identification of the compounds.
Therefore, we defined 48 features to be used in the PCA.

We used ClustVis and Mathworks MATLAB R2021a software to elaborate the data [32,33].
Original values are ln(x + 1)-transformed to reduce numerical spread as data from sensors
are distributed over multiple orders of magnitude. Unit variance scaling is applied to rows,
while singular value decomposition (SVD) with imputation is used to calculate principal
components. Figure 4 reports the first free principal components in 3D and their respective
projections in 2D space.

The calculated PCA in three dimensions takes more than 90% of the total variance
of the data (Figure 5, Left). Data points related to hydrogen (highly correlated to PC1),
nitrogen dioxide, acetone, and ethanol (highly correlated to PC3) are clearly distinguishable,
being fuzzy only at the lowest concentration tested. It is not possible to easily detect
carbon monoxide and methane with the proposed array, but this hardly affects hydrogen
recognition. A quantitative estimation of the presence of hydrogen is even possible, as data
points from the same concentration are close and isolated from others.

Despite the promising performance of the array, the number of sensors required (28,
operating at different temperatures) limits its use in real applications. Moreover, it is
observed that there is a sort of correlation among data obtained from different materials or
data obtained from the same material but at different temperatures, as seen in the heatmaps
of Figure 3. By calculating the Pearson correlation coefficients extracted from the features
data it is evident that many features (the sensors) carry redundant information. This is
confirmed also by checking the PCA loadings: many features have similar loadings on the
first three principal components. Therefore, some of the features may be safely disregarded
without any appreciable loss of performance. Recursively removing the features exhibiting
the higher correlation to the others, we reduced the array to only five different sensors:
α-Bi2O3 @ 400 ◦C, SnO2 @ 350 ◦C, WO3 @ 300 ◦C, CuO @ 250 ◦C and SnO2 @ 250 ◦C.
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even possible, as data points from the same concentration are close and isolated from 
others. 

  

Figure 5. Scree plots of the individual (in blue) and cumulative (in red) variance carried in principal 
components calculated using all sensors at 250–400 °C (Left) and using the reduced array (Right). 

Figure 4. PCA applied to data from all sensors working in 250–400 ◦C temperature range. Axes
report the principal components 1, 2, and 3 that explain 68%, 11.6%, and 10.1% of the total variance,
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As performed for the original array, values are ln(x + 1)-transformed, unit variance
scaling is applied to rows, while singular value decomposition (SVD) with imputation
is used to calculate principal components. The selection of the first three components
includes 94% of the original variance (Figure 5, Right). PCA plots of the five-sensors array
reported in Figure 6 resemble the ones extracted from the original and complete array
(Figure 4). Differences are related to the loss of information. Hydrogen is still bound to
PC1, while ethanol is bound to PC3, as in the original array. The reduced array allows
the discrimination of hydrogen, ethanol, and nitrogen dioxide but loses the ability to
distinguish acetone as data points are too close to other gases. However, detection and
quantification of hydrogen, which was the main target of this work, is still possible.



Micromachines 2023, 14, 2124 9 of 11

Micromachines 2023, 14, x FOR PEER REVIEW 9 of 12 
 

 

Despite the promising performance of the array, the number of sensors required (28, 
operating at different temperatures) limits its use in real applications. Moreover, it is 
observed that there is a sort of correlation among data obtained from different materials 
or data obtained from the same material but at different temperatures, as seen in the 
heatmaps of Figure 3. By calculating the Pearson correlation coefficients extracted from 
the features data it is evident that many features (the sensors) carry redundant 
information. This is confirmed also by checking the PCA loadings: many features have 
similar loadings on the first three principal components. Therefore, some of the features 
may be safely disregarded without any appreciable loss of performance. Recursively 
removing the features exhibiting the higher correlation to the others, we reduced the array 
to only five different sensors: α-Bi2O3 @ 400 °C, SnO2 @ 350 °C, WO3 @ 300 °C, CuO @ 250 
°C and SnO2 @ 250 °C. 

As performed for the original array, values are ln(x + 1)-transformed, unit variance 
scaling is applied to rows, while singular value decomposition (SVD) with imputation is 
used to calculate principal components. The selection of the first three components 
includes 94% of the original variance (Figure 5, Right). PCA plots of the five-sensors array 
reported in Figure 6 resemble the ones extracted from the original and complete array 
(Figure 4). Differences are related to the loss of information. Hydrogen is still bound to 
PC1, while ethanol is bound to PC3, as in the original array. The reduced array allows the 
discrimination of hydrogen, ethanol, and nitrogen dioxide but loses the ability to 
distinguish acetone as data points are too close to other gases. However, detection and 
quantification of hydrogen, which was the main target of this work, is still possible. 

 
Figure 6. PCA applied to data from α-Bi2O3 @ 400 °C, SnO2 @ 350 °C, WO3 @ 300 °C, CuO @ 250 °C, 
and SnO2 @ 250 °C. Axes report the principal components 1, 2, and 3 that explain 42%, 35.1%, and 
16.7% of the total variance, respectively. Prediction ellipses are such that with a probability of 0.95, 
a new observation from the same group will fall inside the ellipse. 

Further reducing the number of features (sensors) is possible, such as removing WO3 
@ 300 °C. However, this is not recommended as hydrogen data points at low 

Figure 6. PCA applied to data from α-Bi2O3 @ 400 ◦C, SnO2 @ 350 ◦C, WO3 @ 300 ◦C, CuO @ 250 ◦C,
and SnO2 @ 250 ◦C. Axes report the principal components 1, 2, and 3 that explain 42%, 35.1%, and
16.7% of the total variance, respectively. Prediction ellipses are such that with a probability of 0.95, a
new observation from the same group will fall inside the ellipse.

Further reducing the number of features (sensors) is possible, such as removing WO3
@ 300 ◦C. However, this is not recommended as hydrogen data points at low concentrations
start to overlap those of other compounds, limiting the performance of the array.

4. Conclusions and Future Perspectives

In this work, quasi-1D nanowires of seven different metal oxides (CuO, WO3, Nb-
added WO3, SnO2, ZnO, α-Bi2O3, NiO), synthesized via evaporation condensation and
thermal oxidation techniques, were integrated into a conductometric sensor array. Ac-
curate gas sensing measurements in a controlled environment allow us to evaluate the
hydrogen sensing performances in the presence of possible interfering compounds, namely
carbon monoxide, nitrogen dioxide, methane, acetone, and ethanol, at different operating
temperatures (200–400 ◦C).

Principal component analysis (PCA) was applied to data extracted from the array,
demonstrating the ability to discriminate hydrogen over interferent compounds but also a
strong redundancy and correlation of the different sensors operated at various temperatures.
Therefore, we selected the most promising materials to be included in a revised and
compact array composed of only five sensors: α-Bi2O3 @ 400 ◦C, SnO2 @ 350 ◦C, WO3
@ 300 ◦C, CuO @ 250 ◦C, and SnO2 @ 250 ◦C. According to PCA, the discrimination
capabilities of the reduced array were similar to the original ones. However, for the
precise assessment of the hydrogen sensing performance, multiple classification methods
should be implemented and evaluated, such as learning vector quantization (LVQ) neural
network [34], partial least squares discriminant analysis (PLS-DA) or nearest neighbor
(k-NN) [35] or artificial neural networks (ANNs) [36]. Nevertheless, the proposed compact
array is suitable to be implemented into artificial olfaction systems (e-noses) used in real
hydrogen detection applications.
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