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Abstract: Printing technology will improve the complexity and material waste of traditional deposi-
tion and lithography processes in device fabrication. In particular, the printing process can effectively
control the functional layer stacking and channel shape in thin-film transistor (TFT) devices. We
prepared the patterning indium gallium zinc oxide (IGZO) semiconductor layer with Ga, In, and
Zn molar ratios of 1:2:7 on Si/SiO2 substrates. And the patterning source and drain electrodes were
printed on the surface of semiconductor layers to construct a TFT device with the top contact and
bottom gate structures. To overcome the problem of uniform distribution of applied voltages between
electrode centers and edges, we investigated whether the circular arc channel could improve the
carrier regulation ability under the field effect in printed TFTs compared with a traditional structure
of rectangular symmetry and a rectangular groove channel. The drain current value of the IGZO
TFT with a circular arc channel pattern was significantly enhanced compared to that of a TFT with
rectangular symmetric source/drain electrodes under the corresponding drain–source voltage and
gate voltage. The field effect properties of the device were obviously improved by introducing the
arc-shaped channel structure.

Keywords: thin film transistor; ink-jet printing; channel shape; indium gallium zinc oxide

1. Introduction

With the rapid development of electronic equipment, the demand for simplification
of the preparation process of display drive units is also gradually increasing. Among
them, the construction of thin-film transistors (TFTs), as the core technology of flat panel
displays, has been a hot research field [1–3]. High-performance TFTs have proved to be
one of the most challenging components in functional integrated circuits [4–6]. In terms of
device preparation, the construction of TFT devices mainly relies on traditional vacuum
deposition technology and lithography treatment, but it will be limited by the process
environment and complicated process [7,8]. As micro-printing technology matures, printed
TFT devices have become a new and transformative industry technology in the field of
display manufacturing. The technology of solution-processed TFT devices has rapidly
developed in terms of new materials, process optimization, and novel synthesis for high
performance [9,10]. The process of printing TFTs can be further simplified by directly
realizing the controllable patterning of film on substrates, which has become a new research
hotspot in this field [11,12].

For material selection, several types of semiconductors have potential for use in
large-size, low-cost, and low-power TFT devices with printing methods, such as metal
oxide materials [13,14], organic semiconductors [15,16], and carbon nanotubes [17,18]. In
contrast, inorganic oxides have appealing properties, such as environmental and electrical
stability, element ratio adjustability, and transparency, which are required for printable
driver devices [14,19]. Printed TFTs based on metal oxide semiconductors, such as indium
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oxide [20,21], zinc tin oxide [22], indium zinc tin oxide [8], indium tin oxide [23,24], and
indium gallium zinc oxide (IGZO) [25,26], can obtain good field effect performance and
become the focus of research. Among them, amorphous IGZO materials have been reported
to have advantages in mobility and stability that can be applied to TFTs [27]. Furthermore,
indium as a doping cation affects the electronic configuration in channel layers, and the
stability of the gallium–oxygen bond suppresses the generation of oxygen vacancies, thus
decreasing the free electron concentration [28].

For structural design, printed TFTs also showed advantages in the fabrication of
multilayer structural stacking, including the patterning design of semiconductor layers
and the accurate coverage of patterned source/drain electrodes [29]. Therefore, the circular
arc electrode structure can be explored to break the traditional rectangular symmetry
structure by printing technology in TFT devices. The structure of a circular arc can solve the
difference in electric field distribution between electrode centers and edges compared with
a traditional structure of rectangular symmetry [30]. In this paper, we used the printing
process to construct the IGZO TFTs with a bottom gate consisting of n-type doped silicon
(Si) wafers and a top contact consisting of silver nanoparticles. We propose a circular
arc source/drain electrode structure to improve the field effect performance of printed
TFTs. We investigated the arc channel to effectively improve the uniformity of potential
distribution in the IGZO channel and enhance the electrical properties of the TFT devices.

2. Materials and Methods
2.1. Preparation of TFT Devices

An n-type phosphorus-doped Si wafer and a silicon dioxide (SiO2) layer with a thick-
ness of ~285 nm from HEFEI KEJING Materials Tech Co., Ltd. (Hefei, China) were used as
the bottom electrode and insulation layer of TFT devices. The colloidal precursors were
prepared from gallium nitrate [Ga(NO3)3], indium nitrate [In(NO3)3], and zinc acetate
[Zn(CH3COO)2] purchased by Shanghai Aladdin Biochemical Technology Co., Ltd. More-
over, they were dissolved in 5 mL of methyl glycol to achieve 0.4 M of IGZO solution with
Ga, In, and Zn molar ratios of 1:2:7. Furthermore, 1.2 mL of ethanolamine and 300 µL of
glacial acetic acid were successively added to the IGZO solution to act as stabilizers. The
Si/SiO2 substrates were ultrasonic cleaned in acetone, alcohol, and DI water for 10 min,
respectively. The treated substrates were dried with nitrogen and then cleaned with argon
plasma. The plasma processing conditions were set at a power supply of 75 W and a
processing time of 10 s. Removing the impurities adsorbed on the substrate can enhance the
wetting of the IGZO solution onto the surface of Si/SiO2 substrates. This allows for more
accurate printing of the patterning semiconductor layer on the substrate by a Sonoplot
printing instrument. However, there will still be coffee rings on the semiconductor layer,
which is an important problem that many research groups need to solve in printed devices.
The coffee ring effect originates from the significant outward flow of dropped inks, and
any roughness in the printed device will have an adverse effect on the electrical perfor-
mance because of defects formed in subsequently printed layers [31]. In order to avoid
the influence of the coffee ring effect on comparability, we constructed the channel in the
middle of the semiconductor layers to ensure the uniformity of the field effect performance
for the TFTs with different printed channel shapes. A commercial silver nanoparticle ink
(SILVER NANOPASTE NPS-J, purchased by Harima Materials Co., Ltd. (Tokyo, Japan)
was used as a printed conductor. The patterned source and drain electrodes were prepared
on the IGZO semiconductor layer using a SIJ printing instrument with a 150 V printing
voltage, 2 mm/s printing speed, 1000 Hz release frequency, and a 30 µm distance between
the tip and semiconductor layers. Then, the source/drain electrodes were annealed at
200 ◦C for 30 min to remove the organics in the silver nanoparticles printing ink. The
thickness of the resulting electrodes was about 100 ± 20 nm. The schematic illustration of
the structure of printed IGZO TFTs is shown in Figure 1. The channel length/width (L/W)
ratio of TFT devices is a geometrical factor in calculating field effect mobility (µeff). The
rectangular symmetrical channel was commonly used in TFTs, as shown in Figure 1a. The
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channel length and width of the IGZO TFT were about 100 µm and 300 µm, respectively.
In contrast, the circular arc channel can solve the difference in electric field distribution
between electrode centers and edges, as shown in Figure 1b. Moreover, this channel design
can reduce the waste of electrode materials and provide more channel contacts for TFT
applications in photoelectric detection and gas sensing.
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Figure 1. Schematic illustrations of the procedures for fabricating printed IGZO TFTs with the
symmetrical rectangular source/drain electrodes (a) and circular arc source/drain electrodes (c).
Microscope images of the rectangular (b) and circular arc channel patterns (d) of IGZO/SiO2/Si TFTs.
The scale bar is 100 µm.

2.2. Characterization

The microstructures of patterned channel layers were observed by means of an optical
microscope (AxioScope A1, Carl Zeiss, Oberkochen, Germany). Patterned channel layers
and source/drain electrodes were, respectively, prepared by inkjet printing instruments
(Microplotter II, Sonoplot, Middleton, WI, USA and S050, SIJ, Ibaraki, Japan). Output
characteristics and transfer characteristics of TFTs were measured by a semiconductor
parametric instrument (B1500A, Keysight, Santa Rosa, CA, USA). The argon plasma was
produced by a metal and organic evaporation system (LN-2063, SHENYANG LINING,
Shenyang, China).

3. Results and Discussion

The patterned IGZO semiconductor layers were printed onto the Si/SiO2 substrates.
In order to prevent cracks in the patterned IGZO, the annealing temperature of the pristine
IGZO channel layer was set to 350 ◦C for 1 h, with a transition annealing step at 450 ◦C
for 1 h, and finally annealing for 1 h at 550 ◦C in the air atmosphere with a heating rate
of 5 ◦C/min. The thickness of the patterned IGZO semiconductor layer after annealing
treatment was about 50 nm. The dumbbell shape of the IGZO semiconductor layers was
designed to get more carrier injection when the drain–source voltage (VSD) was applied.
The printed IGZO was covered with symmetrical rectangular source/drain electrodes
to obtain a TFT with a rectangular channel pattern. Figure 2a shows the drain–source
current (ISD) versus the VSD output characteristics of the IGZO TFT at gate voltages (VGS)
from 0 to 40 V with the rectangular channel pattern. The curves show typical n-type field
effect properties with an obvious transition from linear to saturation behavior in the IGZO
channel. Figure 2b,c shows the transfer curves of the printed IGZO TFT with the rectangular
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channel. The threshold voltage (Vth) of ~6.1 V was estimated by extrapolating the linear
portion of the (ISD)1/2 versus VG curves at VSD = 20 V in the typical transfer curves. The
values of field effect mobility (µeff) and subthreshold swing (SS) were extracted from the
transfer characteristics of the devices using the following formula:

µeff =
2L

WCi

(
∂
√

ISD

∂VG

)2

(1)

SS =
∂VG

∂
(
log10 ISD

) (2)

where Ci is the capacitance of the SiO2 gate insulator with a thickness of about 285 nm
per unit area, and L and W are the channel length and width of the patterned IGZO,
respectively. The printed IGZO TFT with a rectangular channel exhibited a µeff value of
0.069 cm2 V−1 s−1, a SS of 8.6 V dec−1, and an on/off ratio (Ion/Ioff) of 1.8 × 102.
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In contrast, we presented a structure of circular arc source/drain electrodes, which
can solve the difference in electric field distribution between electrode centers and edges
compared with a traditional structure of rectangular symmetry (see Figure 1b). The arc
channel is more conducive to the effective injection of carriers through the source/drain
electrodes. This was demonstrated by the value of the ISD in the output curves of the IGZO
TFT with a circular arc channel pattern under a VG value of above 20 V, which was more
than twice as large as that of a TFT with the rectangular symmetric source/drain electrodes
at the corresponding VSD (see Figure 3a). From the representative transfer curves as shown
in Figure 3b,c, the TFT device with a circular arc channel exhibits an n-type behavior with
a Vth of ~2.2 V, a SS of 4.4 V dec−1, and an Ion/Ioff of 1.1 × 103 at a VDS of 20 V. The
geometrical factor as the effective channel length/width (L/W) of TFT devices with an arc
channel can be expressed as follows [32,33]:

L
W

=
ln(R2/R1)

π
(3)

where R1 is the radius of the internal source electrode (~50 µm) and R2 is the sum of the
radius of the internal source electrode and the length of the IGZO channel (~50 + 100 µm).
By substituting the value of L/W into Equation (1), a µeff value of 0.208 cm2 V−1 s−1 was
obtained for an IGZO TFT with the circular arc source/drain electrodes. The µeff value of
the printed TFT was increased by two times with a circular arc IGZO channel. The value
of Ion/Ioff increased by about an order of magnitude, which can more effectively reduce
noise interference during TFT device operation. The reduction in the value of Vth can
effectively reduce the power consumption of the printed TFTs. This was due to the fact that
the uniformly distributed VSD promoted the efficient injection and migration of the carriers
in the channel.
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In contract, we changed the circular arc channel into a corresponding rectangular
groove channel to verify the improvement of the field effect performance of the printed
TFT devices (see Figure 4a). As shown in Figure 4b, the transition from the linear to the
saturation regime and a good regulating effect on the ISD are observable in the output
characteristics of the IGZO TFT with a structure of rectangular groove channels under
different voltages. However, under the same VG, the value of ISD was smaller than that
of the printed TFT with a circular arc channel and larger than that of the device with a
rectangular symmetrical channel. This showed that the arc channel was not affected by the
electrode tip on the potential distribution, and the plug-in structure of the source/drain
electrodes was more conducive to carrier transport. Figure 4c,d illustrates the transfer
characteristics of the IGZO TFT fabricated by ink-printing with a rectangular groove
channel. The TFT device exhibited ~3.1 V Vth, 4.9 V dec−1 SS, and 5.9 × 102 Ion/Ioff at a
VDS of 20 V. The channel L/W of this type of transistor was estimated using the following
formula [34]:

L
W

=
L

a + 2b
(4)

where L is the length of the channel; a and b are the width of the source electrode (~100 µm)
and the distance between the two ends of the groove structure of the drain electrode and the
source electrode (~100 + 200 µm), as shown in Figure 4a. By substituting the value of L/W
into Equation (1), a µeff value of 0.093 cm2 V−1 s−1 was obtained for the IGZO TFT with a
rectangular groove channel. Compared with TFT with a circular arc channel structure, this
type of TFT device still has a certain gap in the performance of carrier regulation, which
proves that the symmetry of potential distribution in the channel is helpful in improving
the electrical properties of TFT devices. Finally, the field effect parameters of the TFT
devices with various printed channel shapes are summarized in Table 1. Compared with
the circular arc channel TFT, the other two types of TFT devices still have a certain gap in the
performance of carrier regulation, which proves that the symmetry of potential distribution
in the channel is helpful in improving the electrical properties of TFT devices. Compared
with the mature TFTs, our printed preparation process still has a certain gap in the field
effect characteristics, but we will improve the performance of the TFTs by modifying the
interface next, especially to improve the problems that silver nanoparticles as electrodes
will diffuse into the channel layer with the application of voltage and the defects at the
interface between the channel layer and electrodes will affect the carrier transport.

Table 1. The field effect parameters of the TFTs with various printed channel shapes.

Type On/Off Ratio Field Effect Mobility
(cm2 V−1 s−1)

Threshold
Voltage (V)

Symmetrical rectangular channel 1.8 × 102 0.069 6.1
Rectangular groove channel 5.9 × 102 0.093 3.1

Circular arc channel 1.1 × 103 0.208 2.2
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4. Conclusions

We investigated a printing method to construct the bottom gate and top contact TFT
devices with different IGZO channel patterns. We prepared an IGZO ink for printing with
Ga, In, and Zn molar ratios of 1:2:7. A structure of a circle-arc channel was presented
to solve the difference in electric field distribution between electrode centers and edges
for TFTs. Compared with the traditional rectangular symmetrical and rectangular groove
structures of source/drain electrodes for TFTs, the electrical performance of the device was
significantly improved by introducing the circle-arc channel. The optimized printed TFT
exhibited a Vth of ~2.2 V, a SS of ~4.4 V dec−1, an Ion/Ioff of ~1.1 × 103, and a µeff value of
0.208 cm2 V−1 s−1. Among them, the Vth and µeff values are greatly increased, which is
conducive to reducing the power consumption and improving the carrier regulation ability
in printed TFT devices.
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