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Abstract: In this paper, a SAW winding tension sensor is designed and data fusion technology is
used to improve its measurement accuracy. To design a high-measurement precision SAW winding
tension sensor, the unbalanced split-electrode interdigital transducers (IDTs) were used to design
the input IDTs and output IDTs, and the electrode-overlap envelope was adopted to design the
input IDT. To improve the measurement accuracy of the sensor, the particle swarm optimization-least
squares support vector machine (PSO-LSSVM) algorithm was used to compensate for the temperature
error. After temperature compensation, the sensitivity temperature coefficient αs of the SAW winding
tension sensor was decreased by an order of magnitude, thus significantly improving its measurement
accuracy. Finally, the error with actually applied tension was calculated, the same in the LSSVM
and PSO-LSSVM. By multiple comparisons of the same sample data set overall, as well as the local
accuracy of the forecasted results, which is 5.95%, it is easy to confirm that the output error predicted
by the PSO-LSSVM model is 0.50%, much smaller relative to the LSSVM’s 1.42%. As a result, a new
way for performing data analysis of the SAW winding tension sensor is provided.

Keywords: surface acoustic wave (SAW); winding tension sensor; temperature compensation;
PSO-LSSVM algorithm

1. Introduction

Industrial winding equipment is an essential process of intelligent manufacturing;
modern winding equipment with high speed, high precision development, and tension
control technology is critical [1]. Tension is a vital evaluation index when monitoring the
running state of the winding system. The tension sensor is one of the essential devices for
obtaining the tension change of winding equipment, which plays a vital role in improving
the performance and parameters of winding capacity equipment [2]. A tension sensor
is widely used to monitor the tension of strip, cloth, strip, and linear materials in the
production process [3]. In the winding process, it is necessary to keep the winding tension
stable to avoid the phenomenon of winding breakage and flaring.

The precision of winding tension control will directly affect the adaptability of the coil
and the quality of the product [4]. Improper tension will affect the transmission effect and
production quality of the coil. If the winding tension is too large, the coil is easy to deform
or even fracture, affecting the quality of the coil and the appearance of the structure. If
the winding tension is too small, it will lead to slippage, lack of form, loose structure, and
wrinkles, resulting in rough and uneven rolls, reducing the utilization rate of rolls, etc.,
thus affecting production quality and efficiency [5].

Tension control is one of the most widely used technologies. In textile yarn winding, M.
Ali et al. studied the Arduino Mega 2560 controller to achieve tension control when the yarn
is rewound and dyed on a plastic cone [6]. In fiber winding, L. Wen et al. studied a 16-tow
prepreg slitting and winding machine, which can automate the place of fiber [7]. In lithium
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battery aluminum-plastic film winding, Y. Xiao et al. studied the fuzzy PID tension control
method of the lithium battery electrode mill based on the Genetic Algorithm (GA) [8]. In
slitting machine winding, C. Jiang et al. studied the nonlinear system characteristics of the
unwinding system, the unstable diaphragm tension caused by the uncertain interference,
and the inaccurate model in the unwinding process [9]. In copper foil winding, I. Jo et al.
studied a roll-to-roll (R2R) graphene synthesis system where tension control is crucial to
copper foils [10]. In printing and dyeing winding, Ç. Burak et al. studied a method of
unwinding and winding textile printing and dyeing machines, which applied to a system of
verification of the quality of the textile yarn through image processing [11]. In coil winding,
H. Hwang et al. investigated the disturbance observer (DOB) to enhance the robustness of
external disturbances to coil mass [12].

The surface acoustic wave (SAW) device has been widely used in mechanical en-
gineering, aeronautics and astronautics, signal processing [13], nondestructive testing,
sensor technology, and so on [14], and as important sensing technologies, SAW sensors
have exhibited promising characteristics because of their high sensitivity, fast response,
excellent specificity, reversibility, battery-powered operation, small size, and low cost, thus
offering extensive potential use in the future [15]. The SAW sensors can be used to measure
temperature [16], humidity [17], gas [18], force [19], and so on.

In this paper, we focus on the research of the SAW winding tension sensor. As is known
to us, many kinds of sensors can be used to measure tension, such as capacitive tension
sensors, resistance tension sensors, hall tension sensors, and so on. However, the output
signals of these traditional tension sensors are analog signals, which are susceptible to
environmental factors. In contrast, the output signal of the SAW force sensor is a frequency
signal, which is less susceptible to interference. In addition, compared to the traditional
force sensor, the cost of the SAW winding tension sensor is relatively low.

However, it cannot ignore the effect of temperature on its measuring accuracy, so
to further improve its measurement accuracy, temperature compensation has to be done.
This paper used data fusion technology to overcome the shortcomings of the hardware
compensation methods. That is, the PSO-LSSVM algorithm was used to compensate for the
temperature error of the SAW winding sensor in this paper. We also used the least-squares
method to obtain the fitting equation between the output frequency shift and the force of
the sensor under different temperature conditions after temperature compensation.

This paper is organized as follows. After this introductory Section 1, the principle of
temperature compensation for winding tension sensors by using PSO-LSSVM is shown in
Section 2. The SAW winding tension sensor is designed in Section 3. In Section 4, the SAW
winding tension sensor is measured by the winding measurement system. Temperature
compensation results and analysis are shown in Section 5. This paper’s conclusions are
offered in Section 6.

2. Principle of Temperature Compensation for SAW Winding Tension Sensor by
Using PSO-LSSVM

Figure 1 is the schematic diagram of temperature compensation for the SAW winding
tension sensor using PSO-LSSVM. Figure 1 shows the temperature compensator of the SAW
winding tension sensor, which is based on data fusion technology to establish a model that
can eliminate temperature interference. It mainly consists of the following three parts.

(1) The unwinding roller motor drives the unwinding roller, and the traction roller motor
drives the traction roller to work, causing the tension change of the coil. Finally, the
surface acoustic wave device changes through the floating roller;

(2) The surface acoustic wave winding tension sensor is a delay device composed of an am-
plifier and feedback circuit. The working environment temperature should be detected
by a temperature sensor, which is installed beside the SAW winding tension sensor;

(3) The model of eliminating temperature interference of the surface acoustic wave
winding tension sensor is based on the data fusion of the PSO-LSSVM model, which
finally achieves the purpose of temperature compensation of the sensor.
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Figure 1. The schematic of the SAW winding tension sensor with differential dual circuit system. 
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Figure 1. The schematic of the SAW winding tension sensor with differential dual circuit system.

The output frequency variation ∆ f of the SAW winding tension sensor and the out-
put UT of the temperature sensor is the input of the temperature compensator, and the
compensated result f ′ is the output.

3. Design of SAW Winding Tension Sensor
3.1. Design of the Input and Output IDT Using Unbalanced Split-Electrode Interdigital Transducers

The input and output frequency characteristics of the SAW sensor are susceptible
to sidelobe interference, which will affect the measurement accuracy of the SAW sensor.
The traditional IDT adopts uniform single-electrode interdigital transducers, which means
the width of the electrode is equal to the spacing of the electrode, as shown in Figure 2a.
However, this design method will cause the IDT to produce a second-order effect [17]. That
is, it will make the marginal reflection of the IDT accumulate, thus increasing the sidelobes
of the SAW sensor. To suppress the sidelobes, we adopted the unbalanced split-electrode
interdigital transducers, namely, in Figure 2b, within each λ length period, each electrode
of the input and output IDT is split into two electrodes by 1:3 according to its width a,
and then the split-electrodes are arranged at equal intervals. By adopting this structure,
the phase of the marginal reflection is close to 180 degrees so that most of the marginal
reflection can be offset near the center frequency [19].

As shown in Figure 2b, a and c respectively, the widths of the split-electrode, b and
d is the electrode spacing, which satisfies c = λ

16 , e = 3λ
16 , and b = d = λ/8. The center

frequency f0 of the sensor design in this paper is 60 MHz, and the selected piezoelectric
substrate material is ST-X quartz (SiO2). The sound wave in this paper is the Rayleigh
wave, and its propagation velocity in ST-X quartz is v0 = 3158 m/s. We have

λ = λ0 =
v0

f0
=

3158
60000000

= 5.263× 10−5 m = 52.63 µm (1)

Thus, we can obtain c = 3.290 µm, e = 9.869 µm and d = 6.579 µm.
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3.2. Design of the Electrode-Overlap Envelope of the Input IDT

To further suppress the sidelobes of the SAW sensor, the electrode-overlap envelope
of the input IDT is weighted according to the Hamming function [20,21], which is a kind of
cosine square function, and it is shown as

h(t) =
[

0.08 + (1− 0.08)cos2 πt
2τ

]
= 0.54 + 0.46cos

πt
τ

(2)

where τ is the time length of the input IDT. The electrode-overlap envelope of the input
IDT is shown in Figure 2. In addition, the frequency response of Equation (2) is

H( f ) = 0.54τ
sin[2π f τ]

π f τ
+ 0.23τ

{
sin[2π( f τ − 0.5)]

π( f τ − 0.5)
+

sin[2π( f τ + 0.5)]
π( f τ + 0.5)

}
(3)

Equation (3) indicates that 99.96% of the energy is concentrated in the central lobes,
and the sidelobes level is extremely low so that it can effectively suppress the sidelobes.

The output transducer is the uniform split transducer. In order to decrease the bulk
acoustic wave, the pairs of the electrode number should be more than 20 [22], so we selected
the output IDTs finger pairs No = 24.

The overall response H(f ) can be split into two summations relating input and output
IDTs responses [23], exactly as in Equation (4).

H( f ) = Hout( f )Hin( f ) (4)

where Hout( f ) is the output IDTs frequency response, and Hin( f ) is the input IDTs fre-
quency response.
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The output IDTs frequency response Hout( f ) is

Hout(ω) =
N0

∑
m=1

A e−jωxm/v (5)

where A is the maximum aperture of the IDTs, xm is the m finger pair of the output finger
overlap.

The output IDTs frequency response Hin( f ) is

Hin(ω) =
Ni

∑
n=1

A (0.54 + 0.46cos
ωxn/v

2.1
)e−jωxn/v (6)

where xn is the n finger pair of the output finger overlap.
The −3 dB bandwidth can be written as [24]

B =
∆ f−3dB

f0
=

√
2

2
|H( f )| =

√
2

2
|Hin(ω)||Hout(ω)| (7)

We selected No = 24, so we calculated the relationship between B and Ni, that was

B =
∆ f−3dB

f0
=

6.6π

Ni
(8)

The bandwidth of the surface acoustic wave device in the winding tension sensor
designed in this paper is B = 1.43%, then the window length Ni = 145.

To increase the range of the sensor, it is necessary to ensure that the maximum energy
of the frequency response is contained within the bandwidth of −3 dB [25]. In this paper,
the device bandwidth is controlled by adjusting the window opening time. The window
length is defined as N, which must be satisfied to ensure that the surface acoustic wave
device has a linear phase

τ =
Ni − 1

2
(9)

Equation (9) is substituted into Equation (2), i.e.,

h(t) = 0.54 + 0.46cos(
2πt

Ni − 1
) (10)

Substitute N = 145 into the Equation (10)

h(t) = 0.54 + 0.46cos(
2πt
144

) (11)

Equation (11) is the expression of the function of the envelope curve of the input IDT
electrode strip, and t is the propagation time of the surface acoustic wave on the substrate.

The piezoelectric substrate used in the tension sensor is ST-X tangential quartz, and its
electromechanical coupling coefficient is only 0.14% [26]. The propagation velocity of the
surface acoustic wave on the ST-X tangent quartz substrate vsio2 = 3158 m/s, the center
frequency of the designed surface acoustic wave device, f0 = 60 MHz m/s, and the input
IDT adopts the unbalanced split-electrode design, and the design parameters are shown in
Table 1. Figure 3 shows the SAW transducer mask plate layout by L-edit V 8.30 software.
Figure 4 shows the SAW winding tension sensor fabricated on ST-X Quartz substrates.
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Table 1. Design parameters of SAW winding tension sensor.

Piezoelectric Substrate
Material ST-X Quartz

Size L = 30 mm, W = 6 mm, H = 0.5 mm

IDT

Structure Delay line
Frequency of center 60 MHz
−3 dB bandwidth 1.43% (854.5 Mhz)

Wavelength
Aperture width

λ = 52.633333 µm
3588.733333 µm

Number of input IDT 145
Number of output IDT 49

Distance between input and
output IDT center 27.422 mm (521 λ)
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4. Measurement of the SAW Winding Tension Sensor

To the SAW winding tension sensor’s properties, a winding measurement system was
developed to explore the association of the input variables with the output variables, as
shown in Figure 5. In this measurement system, we applied the network analyzer (E5061
A) to test the SAW winding tension sensor. The network analyzer connected the input and
output wires with the testing base. The base consisted of the circuit modules that the SAW
winding tension sensor pins to create the path from the sensor to the network analyzer. The
frequency characteristics of the SAW winding tension sensor are shown in Figure 6.
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The winding tension exerted on the sensor was between 0 N and 1 N, and the mea-
surement temperature changed from 30 ◦C to 50 ◦C. The tension of the winding’s initial
value is 0 N, with 0.1 N introduced each time, and the final value is 1 N. The tension
value of the winding and the matching frequency difference of the SAW winding tension
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sensor is recorded. To enrich the sample ability and improve the accuracy of the derived
conversion association of the output frequency difference with the winding tension of the
SAW winding tension sensor, we increase the amount of testing with the same experimen-
tal conditions. Since the output frequency of the SAW winding tension sensor read by a
network analyzer is dynamic, the output frequency under the same winding tension ought
to select a comparatively stable value. We set the number of tests to 10 and obtained the
testing data indicated in Table 2.

Table 2. Measurement data of the SAW winding tension sensor under different temperatures.

T/◦C

F (N)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

∆fδ (Hz)

30 0 1310 2611 3778 5121 6362 7612 8954 10,298 11,687 12,934
32 0 1345 2677 3881 5205 6508 7745 9196 10,542 11,895 13,246
34 0 1385 2738 3960 5367 6694 7999 9391 10,796 12,252 13,595
36 0 1396 2773 4083 5463 6810 8074 9559 10,968 12,356 13,918
38 0 1428 2844 4163 5587 6936 8223 9714 11,168 12,639 14,228
40 0 1451 2905 4232 5701 7105 8435 9922 11,435 12,929 14,564
42 0 1485 2954 4330 5829 7277 8632 10,146 11,619 13,243 14,825
44 0 1518 3011 4403 5951 7393 8778 10,367 11,814 13,532 15,122
46 0 1544 3062 4477 6085 7550 8965 10,583 12,028 13,795 15,471
48 0 1572 3111 4555 6185 7656 9132 10,751 12,288 14,018 15,773
50 0 1671 3336 4826 6503 8138 9752 11,442 13,092 14,963 16,631

In Figure 6, the frequency characteristics of the SAW winding tension sensor perform
very well. However, in Figure 7, the measurement results are quite different under differ-
ent temperatures, which indicates that the temperature variation can seriously affect its
measurement accuracy.
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In this paper, the temperature sensitivity coefficient αs measures the effect of tempera-
ture on the SAW winding tension sensor. The smaller the temperature sensitivity coefficient
αs of the sensor, the stronger its resistance to temperature interference. The temperature
sensitivity coefficient αs can be expressed as

αs =
∆dmax

∆T·∆ f (FS)
(12)

where ∆T is the maximum temperature variation range, ∆dmax is the maximum deviation
of the output frequency shift ∆ f under all different temperature conditions in the full-range
magnitude of the winding tension F, and ∆ f (FS) is the full-range magnitude of the output
frequency shift ∆ f . The larger the temperature sensitivity coefficient αs, the greater the
influence of temperature on the measurement accuracy of the sensor. As shown in Table 2
and Figure 7, ∆T = 50− 30 = 20 ◦C, ∆dmax = 16631− 12934 = 3697 Hz (when F = 1.0 N),
and ∆ f (FS) = 16631 Hz, so

αs0 =
∆dmax

∆T·∆ f (FS)
=

3697
20× 16631

= 1.1115× 10−2 ◦C−1 (13)

The result of Equation (13) further verifies that the temperature variations can greatly
affect the measurement accuracy of the winding tension sensor. Therefore, to improve the
measurement accuracy of the sensor, temperature compensation must be done.

5. Temperature Compensation Results and Analysis

The LSSVM algorithm is a supervised learning technique that offers a model designed
specifically for addressing regression and classification problems [27]. Compared to the
SVM model, LSSVM transforms the quadratic programming problem of SVM into a lin-
ear equation-solving problem, thereby increasing computational complexity [28]. This
model exhibits exceptional nonlinear modeling capabilities, enabling it to adapt to com-
plex relationships by mapping data into high-dimensional spaces through kernel tricks.
Consequently, it aids in predicting the impact of sensor temperature on output. With
this advantage, LSSVM can effectively capture complex temperature sensor output rela-
tionships in sensor temperature compensation, improving the accuracy of temperature
compensation while enhancing prediction accuracy [29]. However, the key parameter
regularization parameter γ and kernel function parameters σ are crucial parameters for
the model’s generalization ability and convergence efficiency. The values of these two
parameters usually need to be manually adjusted based on specific issues [30].

To sum up, the selection of the above parameters γ and σ is performed blindly, which
increases the likelihood of encountering local optimal solutions. As a global optimization
algorithm, the Particle Swarm Optimization (PSO) algorithm possesses robustness, fast
convergence rate, and strong global search capability [31]. By employing this algorithm
for parameter selection purposes, errors resulting from experiential or random choices
can be circumvented while enabling automatic and efficient adjustment of parameters
γ and σ to achieve a globally optimal solution that aligns with the current problem [32].
The parallelism inherent in this algorithm proves highly advantageous for optimizing
large-scale datasets and complex models. LSSVM integrates the PSO algorithm into its
framework to automatically adapt parameters γ and σ, enhancing model flexibility across
diverse datasets and problems [33–35]. This adaptive nature coupled with global optimiza-
tion properties becomes crucial for sensor temperature compensation since temperature
variations can exert intricate non-linear effects on sensor output. Compared to the LSSVM
model, PSO-LSSVM can demonstrate better robustness and accuracy.

For validating the fitting analysis scheme for the SAW winding tension sensor based on
the PSO-LSSVM model, this article introduces the PSO algorithm into LSSVM as the selection
strategy to improve the effect of the LSSVM model. First, the LSSVM model is trained, and
the temperature sensitivity coefficient αs1 is calculated. Second, the PSO-LSSVM model is
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trained, and calculated temperature sensitivity coefficient αs2 . Finally, the maximum mean
error in measurement data, LSSVM curve fitting error, and PSO-LSSVM curve fitting error
are calculated.

5.1. Training and Prediction of the LSSVM Model

The Support Vector Machine (SVM) is a machine learning model that converts low-
dimensional features of data points into high-dimensional features and uses structural
optimization principles to generate decision boundaries. As the most significant contribu-
tion, SVM transforms the training of the model into a quadratic programming problem, i.e.,

min
1
2
‖ω‖2 +

1
2

γ
n

∑
i=1

ξi
2 (14)

which has inequality constraints

yi(ω
τ ϕ(Xi) + b) ≥ 1− ξi (15)

In Equation (15), ω represents regression weight; yi represents the Xi classification category;
γ represents the penalty coefficient; ξi represents the relaxation factor; ϕ(Xi) is the dimension
raising function; b represents the linear regression weight. SVM obtains the decision boundary
by solving the quadratic programming problem described in Equations (14) and (15). SVM can
effectively solve the problem of linear indivisibility of samples, but its transformed quadratic
programming problem has considerable computational complexity.

The Least Squares Support Vector Machine (LSSVM) is an improved method of SVM.
LSSVM converts the inequality constraints in SVM into equality constraints, so that the
solution of dual problems can be converted into the solution of linear equations, which
greatly simplifies the calculation.

In LSSVM, inequality constraints in SVM are transformed into equality constraints,
namely

yi = ωτ ϕ(Xi) + b + ξi, i = 1, 2, . . . , n (16)

The problem described in the Equations (14) and (15) also can be transformed into

L(ω, b, ξ, α) =
1
2

ωτω +
1
2

γ
n

∑
i=1

ξ2
i −

n

∑
i=1

αi(ω
τ ϕ(Xi) + b + ξi − yk) (17)

where α is a Lagrangian operator. Finally, combined with the kernel method, the original
linear equation can be transformed into a nonlinear form

f (X) =
n

∑
i=1

αiK(X, Xi) + b (18)

where K(X, Xi) represents a kernel function, usually replacing ϕ(X) and ϕ(Xi). In this
paper, the kernel function we used is a radial basis function (RBF) kernel, namely,

K(X, Xi) = exp

(
−‖X− Xi‖2

2σ2

)
(19)

where σ is a fixed parameter of kernel function of K(X, Xi).
The LSSVM model effectively reduces the computational complexity of the model by

transforming inequality constraints into equality constraints. But in the LSSVM model,
parameter σ, γ , as a fixed parameter, greatly affects the accuracy of the whole model.
Therefore, this paper will optimize it through the PSO algorithm to make the LSSVM effect
more accurate [27–29].

In this paper, the output frequency shift ∆ f of the SAW winding tension sensor at
34 ◦C in Table 2 is taken as the expected output value of the LSSVM algorithm, and this
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algorithm is used to train the output frequency shift ∆ f under other temperature conditions
in Table 3. After temperature compensation, the values of the frequency shift ∆ f of the SAW
winding tension sensor under different temperature conditions were obtained, as shown
in Table 3 and Figure 8; ∆T = 50− 30 = 20 ◦C, ∆dmax = 10912− 10326 = 586 Hz (when
F = 0.8 N), and ∆ f (FS) = 10912 Hz, so we have the temperature sensitivity coefficient

αs1 =
∆dmax

∆T·∆ f (FS)
=

586
20× 10912

= 2.6851× 10−3 ◦C−1 (20)

Table 3. LSSVM compensation of the SAW winding tension sensor under different temperatures.

T/◦C

F (N)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

∆fδ (Hz)

30 0 1326 2657 3804 5152 6411 7677 9012 10,326 11,742 13,132
32 0 1331 2671 3817 5183 6453 7705 9044 10,393 11,801 13,199
34 0 1337 2684 3832 5220 6497 7736 9073 10,449 11,864 13,247
36 0 1342 2698 3845 5246 6529 7765 9109 10,500 11,920 13,313
38 0 1347 2711 3861 5280 6567 7792 9147 10,558 11,988 13,381
40 0 1353 2724 3882 5318 6609 7822 9175 10,632 12,031 13,438
42 0 1358 2734 3900 5349 6642 7855 9212 10,688 12,079 13,497
44 0 1364 2744 3921 5387 6678 7894 9244 10,749 12,123 13,542
46 0 1370 2754 3935 5414 6706 7933 9281 10,912 12,166 13,612
48 0 1375 2763 3953 5453 6736 7968 9320 10,970 12,211 13,679
50 0 1412 2816 4017 5558 6890 8116 9409 11,017 12,439 13,855
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5.2. Principle and Training of the PSO-LSSVM Model

Particle Swarm Optimization (PSO) is a stochastic optimization algorithm inspired
by population behavior. Its core idea is to update each random particle according to the
status of other particles and its state in the interpretation space continuously iterates to find
the optimal solution. In the idea of the PSO algorithm, the state of each random particle
contains location and vector velocity, representing the potential solution and historical
update trajectory of the particle. In the process of seeking a solution, each particle will be
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affected by the global optimal particle and optimal particles in the neighborhood to change
its vector speed, and update the position. By continuously iterating the state of the particle,
we finally obtain the optimization solutions satisfying given conditions.

Assuming that there are N particles in the D dimension solution space, the orientation
of the i-th particle can be set to a D dimension vector, i.e.,

Xi = (xi1, xi2, . . . , xiD), i = 1, 2, 3, . . . , N (21)

In addition, the vector velocity of the i-th particle can also be set to a D dimension
vector, i.e.,

Vi = (vi1, vi2, . . . , viD), i = 1, 2, 3, . . . , N (22)

In the update process of the i-th particle, there will be a local particle pole value in the
local area, and its orientation can be set to

Pi = (pi1, pi2, . . . , piD), i = 1, 2, 3, . . . , N (23)

Each time the particle group is updated, there is a global particle pole value in the
solution space, and its orientation can be set to

Pbest = (p1, p2, . . . , pD) (24)

The position and vector velocity of the i-th particle will be updated in the k-th round
through the following two equations

Vk+1
i = ωVk

i + c1r1

(
Pk

i − Xk
i

)
+ c2r2

(
Pk

best − Xk
i

)
(25)

Xk+1
i = Xk

i + Vk+1
i (26)

Among them, r1, r2 is a pseudo-random number of 0 to 1, c1, c2 is the learning factor,
and ω is an inertial coefficient.

This article introduces the PSO algorithm into LSSVM as the selection strategy of
parameters σ and γ to improve the effect of the LSSVM model. In the PSO-LSSVM al-
gorithm, we set c1 = 1.6, c2 = 1.1, ε = 10−8, tmax = 200, ωmin = 0.5, and ωmax = 1.6.
After temperature compensation, the values of the frequency shift ∆ f of the SAW winding
tension sensor under different temperature conditions were obtained, as shown in Table 4
and Figure 9; ∆T = 50− 30 = 20 ◦C, ∆dmax = 10590− 10326 = 264 Hz (when F = 0.8 N),
and ∆ f (FS) = 10590 Hz, so we have the temperature sensitivity coefficient

αs2 =
∆dmax

∆T·∆ f (FS)
=

264
20× 10590

= 1.2466× 10−3 ◦C−1 (27)

By fitting the above experimental data with the least square method, the fitting curves
between the winding tension F and the output frequency shift ∆ f under different tempera-
ture conditions can be obtained, which is shown in Figure 9.
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Table 4. PSO-LSSVM compensation of the SAW winding tension sensor under different temperature
conditions.

T/◦C

F (N)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

∆fδ (Hz)

30 0 1334 2648 3986 5166 6397 7641 8996 10,334 11,828 13,096
32 0 1335 2670 4000 5172 6406 7651 9004 10,350 11,836 13,114
34 0 1336 2675 4011 5178 6421 7659 9017 10,375 11,843 13,126
36 0 1337 2684 4023 5187 6434 7668 9026 10,392 11,850 13,138
38 0 1338 2690 4035 5194 6447 7674 9037 10,412 11,856 13,152
40 0 1340 2700 4049 5204 6458 7682 9047 10,432 11,862 13,165
42 0 1342 2714 4063 5213 6472 7691 9059 10,456 11,869 13,180
44 0 1343 2719 40 72 5220 6486 7697 9072 10,471 11,877 13,196
46 0 1344 2721 4086 5226 6500 7705 9084 10,494 11,886 13,215
48 0 1345 2727 4097 5233 6512 7712 9094 10,518 11,895 13,229
50 0 1357 2730 4146 5271 6552 7750 9130 10,590 11,930 13,309
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Figure 9. PSO-LSSVM curve fitting between the tension F and the output frequency shift ∆f of the
SAW winding tension sensor under different temperature conditions.

5.3. Numerical Comparison

For facilitating data comparison, this paper makes a comparison and analysis of the
same data sample set, respectively comparing the unoptimized test data, LSSVM model,
and PSO-LSSVM model.

The measurement accuracy is a vital index for surface acoustic wave winding sensors.
The output average error is a significant parameter for measuring the accuracy of surface
acoustic wave winding sensors. In the range of 0–1 N test interval, the output average error
of each tension test point is obtained, that is

σae =
1
n ∑n

i=1|xi − x|
x

(28)

The average output error is shown in Table 5 and Figure 10. The predicted output error
represents the accuracy of the best SAW winding tension sensor. As shown in Figure 10,
the average output error of the unoptimized test data is 5.95%. For the LSSVM network,
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the average fitting output error reaches more than 1.42%, while in the PSO-LSSVM model,
the average fitting output error can reach 0.50% or even better. As a result, the PSO-LSSVM
model for the temperature compensation of the SAW winding tension sensor is better.

Table 5. The average output error of the SAW winding tension sensor in the 0–1 N measurement
interval.

Error (%)
F (N)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Avg

Sensor measurement data error 5.83 5.74 5.87 6.09 6.03 6.06 5.96 5.63 6.16 6.18 5.95
LSSVM Curve fitting error 1.33 1.30 1.34 1.85 1.65 1.29 1.08 1.82 1.29 1.30 1.42

PSO-LSSVM Curve fitting error 0.35 0.83 0.92 0.47 0.59 0.31 0.37 0.59 0.19 0.35 0.50
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6. Conclusions

This paper presented a designed SAW winding tension sensor, and data fusion technol-
ogy was used to improve its measurement accuracy. To suppress the sidelobes, we choose
the unbalanced split-electrode interdigital transducers to design the input and output IDTs.
We created the electrode-overlap envelope to design the input IDT. Also, to verify the effect
of temperature variations on the sensor, we experimented with the sensors under different
temperature conditions by winding the measurement system. We found that the sensor’s
frequency characteristics performed very well under the same temperature conditions.
However, when the temperature changed, its measurement accuracy was seriously affected.
To improve the measurement accuracy, we used the LSSVM and PSO-LSSVM algorithms to
compensate for the temperature error. After temperature compensation, the conclusions
are as follows.

(1) By using the LSSVM and PSO-LSSVM model, the temperature sensitivity coefficient
αs of the SAW winding tension sensor was decreased from 1.1115×10−2 ◦C−1 to
2.6851×10−3 ◦C−1 and 1.2466×10−3 ◦C−1, which was reduced by an order of magni-
tude. Thus, data fusion technology can significantly improve the anti-temperature
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interference performance of the SAW winding tension sensor, thereby further improv-
ing its measurement accuracy;

(2) The average output error of the unoptimized test data is 5.95%. For the LSSVM
network, the average fitting output error reaches more than 1.42%, while in the PSO-
LSSVM model, the average fitting output error can reach 0.50% or even better. Thus,
the PSO-LSSVM model for the temperature compensation of the SAW winding tension
sensor is better.
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