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Abstract: To obtain accurate position information, herein, a one-assistant method involving the
fusion of extreme learning machine (ELM)/finite impulse response (FIR) filters and vision data
is proposed for inertial navigation system (INS)-based human motion capture. In the proposed
method, when vision is available, the vision-based human position is considered as input to an FIR
filter that accurately outputs the human position. Meanwhile, another FIR filter outputs the human
position using INS data. ELM is used to build mapping between the output of the FIR filter and the
corresponding error. When vision data are unavailable, FIR is used to provide the human posture and
ELM is used to provide its estimation error built in the abovementioned stage. In the right-arm elbow,
the proposed method can improve the cumulative distribution functions (CDFs) of the position errors
by about 12.71%, which shows the effectiveness of the proposed method.

Keywords: INS; vision; ELM; FIR; human position

1. Introduction

In recent years, human motion capture has garnered considerable attention, owing to
its diverse applications in entertainment, healthcare, and sports industries [1,2]. Accurate
motion capture is essential for realistic animation, immersive virtual reality experiences,
and a precise biomechanical analysis of human movements [3,4]. Traditional optical motion
capture systems are widely employed, but they often exhibit certain limitations, such as
high cost, restricted mobility, and dependency on controlled environments [5,6].

Many approaches have been proposed for human motion capture [7]. One of the most
famous examples is the vision-based method. For instance, in [8], a vision-based system for
tracking and interpreting leg motion in image sequences using a single camera is developed,
which is implemented on a commercial computer without any special hardware. A new
method for fast human motion capture based on a single red–green–blue-distance (RGB-D)
sensor is proposed [9]. To the visual-based human posture capture device, Microsoft’s
Kinect camera has gained popularity as a depth-sensing device that can capture human
movements with high accuracy [10]. This camera utilizes infrared sensors to measure
the distance between objects and the camera, generating a detailed three-dimensional
point cloud representation of a scene [11]. This depth information, combined with RGB
data, enables the precise tracking of human skeletal joints and facilitates real-time motion
capture [12]. Depth cameras, integral to Kinect’s operation, rely on the emission and
detection of infrared light to create depth maps of the surrounding scene [13,14]. However,
the presence of environmental obstructions can introduce uncertainties into the captured
data. Occurrences where the human body is temporarily occluded by objects within the
view of the camera can lead to data gaps or inaccuracies in the motion capture process.
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These transient interruptions can impede the seamless reconstruction of motion trajectories,
potentially affecting the fidelity and reliability of the captured human movement. In order
to deal with this problem, inertial sensors have been proposed to measure human body
movements. For instance, in [15], data on human activities are derived from the mobile
device’s inertial sensor. Meanwhile, Beshara and Chen proposed the use of inertial sensors
and Kinect cameras to capture human body movements in their study [16]. It should be
noted that although the inertial sensor is able to achieve the seamless measurement, the
sensors will experience cumulative errors.

Based on the measurement technology, the data fusion filter will also improve the
accuracy of the measurement. To the data fusion filter, it should be pointed out that the
Kalman filter (KF) has been widely used. For instance, in [17], the distributed Kalman filter
has been proposed to provide a human’s position. The dual predictive quaternion Kalman
filter is designed for the tracking of the human lower limb posture [18]. Moreover, one new
adaptive extended Kalman filter (EKF) for cooperative localization is proposed [19], which
is based on the nonlinear system. Moreover, the sigma-point update of cubature Kalman
filter is proposed in [20]. One can easily find that the Kalman filter’s performance depends
on the model’s accuracy and the noise description; however, it may be difficult to obtain in
practice. In order to overcome this shortcoming, the finite impulse response (FIR) filter is
proposed [21]. For example, the extended FIR (EFIR) is used to fuse the inertial navigation
system (INS) data and the ultra-wide band (UWB) data. It should be pointed out that
the approaches mentioned above do not consider the data outage, which may make the
filter’s measurement unavailable. In order to overcome this problem, one least-squares
support vector machine (LS-SVM)-assisted FIR filter is proposed. In [22], one self-learning
square-root cubature Kalman filter is proposed for the integrated global positioning system
(GPS)/INS in GPS-denied environments.

To address the limitations of standalone INS and overcome the data gaps in Kinect
measurements [23,24], a previous study proposed the use of the extreme learning machine
(ELM) algorithm to establish new signals through mapping when UWB signals are in-
terrupted [25]. This allows the entire system to properly function. Building upon this
concept, this paper proposes an integrated human motion capture system using ELM, FIR
filtering, and INS data assisted by Microsoft’s Kinect camera [26], which can reconcile the
strengths of INS and Kinect while reducing their weaknesses. The proposed methodology
is outlined below.

The INS comprises miniature inertial sensors strategically placed on a subject’s body
to measure accelerations and angular velocities [27,28]. Raw INS data provide real-time
information about the orientation and motion of the subject [29]. The INS comprises
miniature inertial sensors accurately placed on the subject’s body to measure attitude
angles [30]. The raw INS data provide real-time information about the subject’s orientation
and motion [31] and serve as a foundation for subsequent processes [32]. Meanwhile, the
pivotal role of ELM lies in learning the intricate relation between INS-derived body pose
data and the corresponding pose data acquired from Kinect [33,34]. Using a shallow neural
network architecture, ELM efficiently maps the INS measurements to the corresponding
Kinect-based body poses.

Before utilizing ELM, FIR is applied to both the INS data and the pose data obtained
from Kinect [17,35]. This filtering process effectively eliminates sensor noise and mitigates
the effects of drift, ensuring the accuracy and reliability of the motion capture system [36].
Finally, other researchers previously mentioned that the use of an interactive multiple
model (IMM) filtering algorithm can further enhance positioning accuracy. Building upon
this idea, the IMM filtering algorithm is employed. The IMM filter is adopted to fuse the
INS data and the vision data from Kinect, alongside the ELM-processed data [37]. This
fusion process compensates for the missing or erroneous Kinect measurements and further
enhances the accuracy of the motion capture system [38,39].

By integrating INS, Kinect vision data, ELM algorithms, IMM algorithms, and FIR
filtering, the proposed approach offers an advanced solution for human motion capture.
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This integration effectively reduces issues related to data gaps caused by environmental
obstructions and high noise levels during Kinect measurements, contributing to improved
precision and positioning accuracy in motion capture [40,41]. The resulting system en-
sures accurate and reliable real-time motion capture, thereby opening up a wide range of
possibilities for applications in animation, virtual reality, sports analysis, and healthcare.

To obtain accurate position information, a one-assistant method fusing ELM/FIR
filters and vision data is proposed for INS-based human motion capture. In the proposed
method, when vision is available, the vision-based human position is inputted into an FIR
filter that outputs accurate human position. Meanwhile, another FIR filter outputs the
human position using INS data. Moreover, ELM is used to build mapping between the
output of FIR and the corresponding error. When vision data are unavailable, FIR is used
to provide human posture and ELM is used to provide the estimation error built in the
aforementioned stage. Test results confirm the effectiveness of the proposed method.

The main contributions of this study are as follows:

• A seamless INS/vision human motion capture scheme is designed.
• A dual ELM/FIR-integrated filtering is derived.
• An INS/vision human motion capture system is built.
• Experimental evidence shows the better performances of the proposed algorithms

than those of traditional algorithms.

The rest of this paper is structured as follows. Section 2 discusses the principle of an
INS-based human motion capture system. Section 3 presents the design of an ELM/FIR
filter for the human motion capture system. The investigation of experimental tests is
summarized in Section 4, and the conclusions are given in Section 5.

2. INS-Based Human Motion Capture System

In this section of the study, the scheme of INS-based human motion capture is designed.
The principle of the INS-based human motion capture system is illustrated in Figure 1. In
the system used herein, we employ two types of sensors: IMU and vision. First, IMUs are
fixed on a target person and employed to measure the posture of the target person’s torso.
In this work, we employ eight IMUs to measure the acceleration and gyroscope values of
the eight key joint points of the target human body. With the measured torso posture and
corresponding torso length, the position of the target human’s joint points LI,j

t , j ∈ [1, 8]
can be calculated. Meanwhile, we employ the Kinect-based vision sensor to measure the
corresponding eight key joint points’ vision-derived position LV,j

t , j ∈ [1, 8].
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Figure 1. Principle of the INS-based human motion capture system.

From Figure 1, we can see that when vision data are available, the vision-derived
position of the target human’s joint points LV,j

t , j ∈ [1, 8] can be obtained. Both LI,j
t and
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LV,j
t are input to the ELM/FIR filter, which is derived in the following section. Then, the

ELM/EFIR filter outputs the estimated target human’s joints’ position Lj
t, j ∈ [1, 8], which

is used to compute the human posture. Notably, visual data are not continuously provided
to the human pose measurement system in practical applications. When vision data are
unavailable, only the LI,j

t are used by the ELM/FIR filter. Note that we only consider
the human posture in this work, and the Kinect data may be difficult to obtain, which
may result in data outage. It should be emphasized that a Kinect data outage of the eight
joints does not occur simultaneously, but randomly. The main motivation of our proposed
algorithm in this work is that it can provide relatively accurate pose information when the
two types of sensors are working properly. Once visual information experiences an outage,
it can also ensure the normal operation of the pose system.

Calculation of the Human Joints’ Position

In this section, the calculation of the human joints’ position is proposed. First, the
coordinate system and key parameters of the human body used herein are introduced.
Second, the method of data measurement using the inertial and visual sensors is designed.
Figure 2 shows the body frame (b-frame) and the navigation frame (n-frame) as well
as the key parameters of the human body used herein. We employ the upper chest’s
position as the coordinate origin. Only the positions of the elbows, wrist, knee, and ankle
(PoL

2 , PoR
2 , PoL

3 , PoR
3 , PoL

4 , PoR
4 , PoL

5 , and PoR
5 shown in Figure 2) are considered. Here, we

obtain PoL
1 =

(
x1

l , y1
l , z1

l
)

and PoR
1 =

(
x1

R, y1
R, z1

R
)
. Thus, we can obtain the following:

Cbi
n =

 cos γi 0 − sin γi
0 1 0

sin γi 0 cos γi

 1 0 0
0 cos θi sin θi
0 − sin θi cos θi

 cos ϕi − sin ϕi 0
sin ϕi cos ϕi 0

0 0 1


=

 cos γi cos ϕi + sin γi sin ϕi sin θi − cos γi sin ϕi + sin γi cos ϕi sin θ − sin γi cos θi
sin ϕi cos θi cos ϕi cos θi sin θi

sin γi cos ϕi − cos γi sin ϕi sin θi − sin γi sin ϕi − cos γi cos ϕi sin θi cos γi cos θi

 , (1)

where C
bj
n , j ∈ [0, 8] indicates the rotation matrix from the b-frame of the jth point to

the n-frame. θ, γ, and ϕ are pitch, roll, and yaw, respectively. Then, we can compute
the joint’s position of the left and right upper arm (denoted as PoL

2 and PoR
2 ) using the

following equations:
Cb0

b1
= Cb0

n Cn
b1
= Cb0

n (Cb1
n )T , (2)

PoL
2 = lL

ECb0
b1,2 + PoL

1 , (3)

Cb0
bR

1
= Cb0

n Cn
bR

2
= Cb0

n (CbR
2

n )T , (4)

PoR
2 = lR

E Cb0
bR

1 ,2
+ PoR

1 . (5)

Similarly, the position of the left and right wrist joints (denoted as PoL
3 and PoR

3 ) can
be computed using the following equations:

Cb0
bL

3
= Cb0

n Cn
bL

3
= Cb0

n (CbL
3

n )T , (6)

PoL
3 = lL

WCb0
bL

3 ,2
+ PoL

2 , (7)

Cb0
bR

3
= Cb0

n Cn
bR

3
= Cb0

n (CbR
3

n )T , (8)



Micromachines 2023, 14, 2088 5 of 21

PoR
3 = lR

WCb0
bR

3 ,2
+ PoR

2 . (9)

We can compute the joint’s position of the left and right knee (denoted as PoL
4 and

PoR
4 ) using the following equations:

Cb0
bL

4
= Cb0

n Cn
bL

4
= Cb0

n (CbL
4

n )T , (10)

PoL
4 = lL

k Cb0
bL

4 ,2
+ PoL

6 , (11)

Cb0
bR

4
= Cb0

n Cn
bR

4
= Cb0

n (CbR
4

n )T , (12)

PoR
4 = lR

k Cb0
bR

4 ,2
+ PoR

6 . (13)

Then, we can compute the joint’s position of the left and right ankle (denoted as PoL
5

and PoR
5 ) using the following equations:

Cb0
bL

5
= Cb0

n Cn
bL

5
= Cb0

n (CbL
5

n )T , (14)

PoL
5 = lL

a Cb0
bL

5 ,2
+ PoL

4 , (15)

Cb0
bR

5
= Cb0

n Cn
bR

5
= Cb0

n (CbR
5

n )T , (16)

PoR
5 = lR

a Cb0
bR

5 ,2
+ PoR

4 . (17)

where Cb0
bL

j ,2
, Cb0

bR
j ,2

, j ∈ [0, 8] represents the first column of Cb0
bL

j
, Cb0

bR
j

, j ∈ [0, 8].
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Figure 2. Coordinate system and key parameters of the human body used in this work.
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3. ELM/FIR Integrated Filtering

In this section, we design ELM/FIR filtering, as shown in Figures 1 and 2. First, we
introduce the scheme of the ELM/FIR filter. Second, a data fusion model is derived. Third,
the ELM and FIR methods designed based on the data fusion model are presented.

3.1. Scheme of the ELM/FIR-Integrated Filtering

In this work, we divide the combined filtering algorithm into two stages—training
and prediction stages—when the Kinect data are available and unavailable, respectively.

The scheme of the ELM/FIR integrated filtering when Kinect data are available is
shown in Figure 3. In this stage, we employ three FIR filters and two ELM methods. First,
both the IMU and Kinect measure the joint position in parallel. Then, FIR filters 1 and 2 are
used to estimate the positions of the IMU and Kinect. Thereafter, their estimations are fused
using the IMM and Rauch–Tung–Striebel (R–T–S) smoothing method. Then, the output
of the RTS smoothing method is used to compute the positions. Meanwhile, IMU’s and
Kinect’s solutions are, respectively, used as the input and target of ELM 1, which is used to
build the mapping between the IMU-measured position and the Kinect-measured position.
The output of ELM 1 is used as the measurement of FIR filtering 3. ELM 2 employs the
outputs of ELM 1 as input and the difference between the RTS method’s output and FIR
filtering 3’s output as the target, which is used to build the mapping between them.

Figure 3. Scheme of the ELM/FIR-integrated filtering when Kinect data are available.

The scheme of the ELM/FIR-integrated filtering when Kinect data are unavailable is
shown in Figure 4. In this stage, because we cannot obtain Kinect data, the IMU-measured
position is input to ELM 1 directly. Then, ELM 1 outputs its estimated position with the
mapping built in the training stage, which is employed by FIR filtering 3 as its measurement.
Then, ELM 2 works to estimate the corresponding error, which is used to correct FIR filtering
3’s solution.

With all the joint points’ estimations, the positions can be computed. Notably, the
Kinect data of each node may not necessarily be lost simultaneously.
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Figure 4. Scheme of the ELM/FIR-integrated filtering when Kinect data are unavailable.

3.2. Data Fusion Model of FIR Filtering

From the scheme mentioned above, we can see that three FIR filters are used in this
work. The state equation used in this work can be given as follows:

Lxm,j−
t

vxm,j−
t

Lym,j−
t

vym,j−
t


︸ ︷︷ ︸

Lm,j−
t

=


1 δt 0 0
0 1 0 0
0 0 1 δt
0 0 0 1


︸ ︷︷ ︸

Tm,j


Lxm,j

t
vxm,j

t
Lym,j

t
vym,j

t


︸ ︷︷ ︸

Lm,j
t

+wm,j
t , (18)

where
(

Lxm,j−
t , Lym,j−

t

)
is the jth joint’s position at the time index t,

(
vxm,j−

t , vym,j−
t

)
is the

jth joint’s velocity at the time index t, m denotes the mth FIR filter used for the jth joint, δt
is the sampling time, and wm,j

t ∼ N (0, Q) is the system noise.[
Lx̂m,j

t
Lŷm,j

t

]
︸ ︷︷ ︸

Zm,j
t

=

[
1 0 0 0
0 0 1 0

]
︸ ︷︷ ︸

G

Lm,j−
t + vm,j

t , (19)

where
(

Lx̂m,j
t , Lŷm,j

t

)
, m ∈ [1, 3] is the jth joint’s position measured using IMU, Kinect, and

ELM 1’s output and vm,j
t ∼ N (0, R) is the measurement noise.

3.3. IMM-FIR Filtering

Based on models (18) and (19), the FIR filtering method used in this paper can be listed
as Algorithm 1. In Algorithm 1, Dm,j is the dimension of Lm,j

t , and Lm,j is the filtering size.
To the mth FIR filter, this algorithm has a dead zone. In this work, when the time index
is in the dead zone, we employ the Kalman filer to replace the FIR’s work (lines 3–9 in
Algorithm 1). When the time index is grater than the Lm,j

t , the FIR filer run the one-step
prediction by using the following equations:

Lm,j−
jj = Tm,jLm,j

jj + wm,j
jj , (20)
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Then, the gain can be computed by using the following equation:

Hjj
m,j =

(
GGT+

(
Tm,jHm,j

jj−1Tm,j
)−1

)−1
, (21)

Km,j
jj = Hm,j

jj GT . (22)

Then, the measurement update can be computed:

Lm,j
jj =Lm,j−

jj +Km,j
jj

(
Zm,j

jj −GLm,j−
jj

)
. (23)

Note that the subscript jj is the counting of internal loops in FIR filter. The FIR filter
employs the recent measurement to estimate the robust output.

Algorithm 1: mth FIR filter used for the jth joint’s position in this work

Data: Zm,j
t , Lm,j

0 , Q, R, Pm,j
0 , Dm,j, Lm,j

Result: ŝl , Ôl
1 begin
2 for t = 1 : ∞ do
3 if t < Lm,j then
4 Lm,j−

t = Tm,jLm,j
t−1;

5 Pm,j−
t = Tm,jPm,j

t−1
(
Tm,j)T

+ Q;

6 Km,j
t = Pm,j−

t GT
(

GPm,j−
t GT+R

)−1
;

7 Lm,j
t =Lm,j−

t +Km,j
t

(
Zm,j

t −GLm,j−
t

)
;

8 Pm,j
t =

(
I−Km,j

t G
)

Pm,j−
t ;

9 else
10 m = t− Lm,j + 1, jj = m + Dm,j − 1;

11 L̃jj = L̂m,j
jj ;

12 P̃jj = P̂m,j
jj ;

13 for jj = m + Dm,j : t do
14 Lm,j−

jj = Tm,jLm,j
jj + wm,j

jj ;

15 Hjj
m,j =

(
GGT+

(
Tm,jHm,j

jj−1Tm,j
)−1

)−1
;

16 Km,j
jj = Hm,j

jj GT ;

17 Lm,j
jj =Lm,j−

jj +Km,j
jj

(
Zm,j

jj −GLm,j−
jj

)
;

18 end for

19 L̂m,j
t = L̃m,j

jj ;

20 P̂m,j
t = P̃m,j

jj ;

21 end if
22 end for
23 end

Figure 3 shows that we employ FIR filters 1 and 2 to measure the jth joint’s position
L1,j

t and L2,j
t using IMU and Kinect’s data, respectively. Then, we introduce the Markov

matrix, which can be given as follows:

Γ =

[
Γ11 Γ12
Γ21 Γ22

]
. (24)
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Thus, we can determine that the predicted probability (normalization constant) cm of
model i to model r is:

cm =
r

∑
i=1

Γm
i µ

m,j−
i , m ∈ [1, 2] . (25)

The mixed probability µ
m,j−
i from model i to model r is:

µ
m,j−
i =

r

∑
i=1

Γiµ
m,j−
i /cm, m ∈ [1, 2] , (26)

where µ is the model probability for each filter and Γ is the probability transfer matrix.
With the FIR filters 1 and 2, we can determine that the blended state estimation of the

model L̂m,j−
0 and the mixed covariance estimation of the model Pm,j−

0 :

L̂m,j−
0 =

r

∑
i=1

L̂m,j−
i µ

m,j−
i , (27)

Pm,j−
0 =

r

∑
i=1

µ
m,j−
i (Pm,j−

i + (L̂m,j−
i − L̂m,j−

0 )(L̂m,j−
i − L̂m,j−

0 )T) . (28)

Take L̂m,j, Pm,j−, and Zt as inputs to update prediction state L̂m,j
t and filter covariance

Pm,j
t :

L̂1,j = T1,j−L̂1,j−
0 , (29)

L̂2,j = T2,j−L̂2,j−
0 , (30)

P1,j− = T1,j−P1,j−
0 [T1,j−]

T
+ Q , (31)

P2,j− = T2,j−P2,j−
0 [T2,j−]

T
+ Q , (32)

K1
t = P1,j−GT

(
GP1,j−GT + R

)−1
, (33)

K2
t = P2,j−GT

(
GP2,j−GT + R

)−1
, (34)

L̂1,j
t = L̂1,j− + K1

t

(
Z1,j

t −GL̂1,j
)

, (35)

L̂2,j
t = L̂2,j− + K2

t

(
Z2,j

t −GL̂2,j
)

, (36)

P1,j
t =

(
I−K1

t G
)

P1,j− , (37)

P2,j
t =

(
I−K2

t G
)

P2,j− . (38)

The likelihood function Λi
t is used to update the model probability µt, calculated

as follows:

Λ1
t =

1

(2π)n/2∣∣S1
t
∣∣1/2 exp

{
−1

2

(
v1

t

)T(
S1

t

)−1
v1

t

}
, (39)

Λ2
t =

1

(2π)n/2∣∣S2
t
∣∣1/2 exp

{
−1

2

(
v2

t

)T(
S2

t

)−1
v2

t

}
, (40)
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where vi
t and Si

t are the measurement error and measurement error covariance matrix,
calculated as follows:

v1
t = Z1,j

t − T1,jL̂1
t,j , (41)

S1
t = GP1,jGT + R , (42)

v2
t = Z2,j

t − T1,jL̂2,j
t , (43)

S2
t = GP2,jGT + R , (44)

where µt is the credibility after fusion and c is the denominator coefficient to achieve
normalization, calculated as follows:

c =
r

∑
m=1

Λm
t cm (45)

µ1
t = Λ1

t c/c . (46)

Based on the updated confidence level µm
t , the models can be fused sequentially to

obtain the output target state and covariance matrix of the algorithm:

L̂m,j
t =

r

∑
m=1

L̂m,jµm
t , (47)

Pm,j
t =

r

∑
j=1

µm
t

(
Pm,j

j +
(

L̂m,j
j − L̂m,j

)(
L̂m,j

j − L̂m,j
)T
)

. (48)

3.4. ELM Method

The ELM method used in this work is similar to the method we proposed previ-
ously [42]. In this section, we introduce this method briefly. On the basis of the data fusion
model mentioned above, we can compute ELM’s activation function χ(·) as follows:

d

∑
q=1

αqχ
(

βqIe + bq
)
= δe, e ∈ [1, s− 1] , (49)

where Ie=[I1, I2, ..., Is−1]. Thus, we can obtain the following equation:

d

∑
q=1

αqχ
(

βqIe + bq
)
= ye, e ∈ [1, s− 1] . (50)

Then, (50) can be rewritten as f E
1 (I1)

...
f E
s−1(Is−1)


︸ ︷︷ ︸

FE

 β1
...

βs−1


︸ ︷︷ ︸

βE

=

 z1
...

zs−1


︸ ︷︷ ︸

zE

, (51)

and βE can be computed using the following equation:

β̂E = FE+zE . (52)
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4. Test

In this work, we perform one real test to show the effectiveness of the proposed method.
First, the corresponding experimental parameters are presented. Then, the performance of
the proposed method is investigated.

4.1. Experimental Parameters

Experimental parameters are introduced in this section. Figure 5 shows the block
diagram of the experimental system. Herein, we employed eight IMUs fixed on the target
human to measure the corresponding posture. Meanwhile, Kinect was also used to measure
the target human’s joint positions. All the sensors’ data were collected using a computer. In
this work, the model of the IMU is ICM-20948, and the IMU parameters are given in Table 1.
Only eight joint positions were considered herein, as shown in Figure 1. Meanwhile, we
employed Kinect 2.0 as the visual sensor in this work; its parameters are given in Table 2.
The test environment is shown in Figure 6. When we performed the test, the target human
moved in front of Kinect and the IMUs were fixed on the target human’s body. The
human moved according to predetermined movements, and the computer collected all the
sensor data.

Figure 5. Block diagram of the experimental system.
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Table 1. Parameters of the IMUs used in the test.

Parameter Value

Sensor’s precision 0.01◦ (pitch and roll), 0.1◦ (yaw)
Sampling frequency 100 Hz

Measurement dimension 3
Data transmission distance 100 m

Working voltage 4.2 V

Table 2. Parameters of Kinect used in the test.

Parameter Value

Resolution of color image frames 1920× 1080
Resolution of deep frames 512× 424

Detectable range 0.5–4.5 m
Resolution of infrared image frames 512× 484

Field of view 70◦ × 60◦

Figure 6. Test environment.

4.2. Positioning Accuracy

In this section, six joints’ positioning accuracies measured using the proposed method
were investigated. Herein, we employed the solutions of IMU, Kinect, and ELM/KF
filtering to compare their performances. Figure 7 displays the positions measured using
Kinect, IMU, ELM/FIR, and ELM/KF in the right-arm elbow. In this figure, the black line
represents the solution of the ELM/FIR method, the blue line represents the solution of
the ELM/KF method, the green line represents the solution of the IMU-only solution, the
pink line represents the solution of the Kinect-only solution, and the red line represents
the reference value. The figure shows that in this joint, the performances of ELM/FIR and
ELM/KF were similar, and the positions estimated using the methods mentioned above
were between the outputs of the Kinect and IMU. It can be seen that in the figure, the blue
and black lines are almost identical in all three directions. In the figure, it can be seen that
there are some protrusions in the solution values of the ELM/FIR and ELM/KF filters,
which indicate that the Kinect data are not available in these time indexes. However, when
Kinect data were unavailable, the output of the proposed ELM/FIR method was closer to
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the solution of the ELM/KF method, which deduced that the proposed ELM/FIR method
was effective in maintaining the performance of the filter during Kinect data outage.

The cumulative distribution functions (CDFs) of the position errors measured using
ELM/FIR and ELM/KF in the right-arm elbow are shown in Figure 8. In this figure, the red
line represents the solution of the ELM/FIR method, the blue line represents the solution of
the ELM/KF method. As shown in this figure, the proposed ELM/FIR method exhibited
better performance than that of ELM/KF. At 0.9, the proposed ELM/FIR filter could reduce
the localization error from 0.0866 to 0.0678 m, improving the localization accuracy by
approximately 12.71%, which indicates that the proposed ELM/FIR is more effective than
the proposed ELM/KF method in this joint.
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Figure 7. Positions measured using Kinect, IMU, ELM/FIR, and ELM/KF in the right-arm elbow.
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Figure 8. CDF of the position errors measured using ELM/FIR and ELM/KF in the right-arm elbow.
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The positions measured using Kinect, IMU, ELM/FIR, and ELM/KF in the right-arm
wrist are listed in Figure 9. Similar to the case of the right-arm elbow, when the data of IMU
and Kinect are available, the performance of the ELM/FIR and ELM/KF are almost the
same. And when the Kinect data experience an outage, it can bee seen that the black lines
are closer to the reference value compared to the blue line, which means that the proposed
method is more effective in reducing the localization error when Kinect data are unavailable.
Figure 10 displays the CDF of the position errors measured using ELM/FIR and ELM/KF
in the right-arm wrist. The proposed method thus improved the localization error by
approximately 16.40%. Moreover, the root-mean-squared errors (RMSEs) measured using
the ELM/FIR and ELM/KF filters in the right-arm wrist are listed in Table 3. The table
shows that the ELM/FIR method improved the localization error from 0.0690 to 0.0641 m
compared to the ELM/KF method. From the figures and the table mentioned above, it can
be seen that the proposed ELM/FIR is more effective than the proposed ELM/KF method
in this joint.

The CDFs of the position errors measured using ELM/FIR and ELM/KF in the left-
arm elbow are shown in Figure 11. Therein, the position error of ELM/FIR is smaller
than that of ELM/KF. This shows that the proposed method is effective in reducing the
positioning error.

Table 3. RMSEs measured using the ELM/FIR and ELM/KF filters in the right-arm wrist.

Methods X (m) Y (m) Z (m) Mean (m)

ELM/KF filter 0.0959 0.0819 0.0292 0.0690
ELM/FIR filter 0.0903 0.0739 0.0282 0.0641
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Figure 9. Positions measured using Kinect, IMU, ELM/FIR, and ELM/KF in the right-arm wrist.
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Figure 10. CDF of the position errors measured using ELM/FIR and ELM/KF in the right-arm wrist.
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Figure 11. CDF measured using ELM + FIR and ELM + KF in the left-arm elbow.

The positions measured using Kinect, IMU, ELM/FIR, and ELM/KF in the left-arm
wrist are given in Figure 12. Similar to the case of the right-arm elbow, the proposed
method is more effective in reducing the localization error when Kinect data are unavailable.
Figure 13 displays the CDF of the position errors measured using ELM/FIR and ELM/KF
in the left-arm wrist. The proposed method thus improved the localization error by
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approximately 56.71%. Moreover, the RMSEs measured using the ELM/FIR filter and
ELM/KF filter in the left-arm wrist are presented in Table 4. According to this table, the
ELM/FIR method improved the localization error from 0.1493 to 0.0607 m compared with
the ELM/KF method.

Table 4. RMSEs measured using the ELM/FIR filter and ELM/KF filter in the left-arm wrist.

Methods X (m) Y (m) Z (m) Mean (m)

ELM/KF filter 0.2023 0.2103 0.0352 0.1493
ELM/FIR filter 0.0617 0.0873 0.0333 0.0607
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Figure 12. Positions measured using Kinect, IMU, ELM/FIR, and ELM/KF in the left-arm wrist.
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Figure 13. CDF measured using ELM + FIR and ELM + KF in the left-arm wrist.
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The positions measured using Kinect, IMU, ELM/FIR, and ELM/KF in the right knee
are shown in Figure 14. Similar to the case of the right-arm elbow, the proposed method is
more effective in reducing the localization error when Kinect data are unavailable. Figure 15
displays the CDF of the position errors measured using ELM/FIR and ELM/KF in the
right knee. The proposed method improved the localization error by approximately 48.32%.
Moreover, the RMSEs measured using the ELM/FIR and ELM/KF filters in the right knee
are given in Table 5. The table shows that the ELM/FIR method improved the localization
error from 0.1128 to 0.0566 m compared with the ELM/KF method.
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Figure 14. Positions measured using Kinect, IMU, ELM/FIR, and ELM/KF in the right knee.
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Figure 15. CDF measured using the ELM/FIR and ELM/KF filters in the right knee.
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Table 5. RMSEs measured using the ELM/FIR and ELM/KF filters in the right knee.

Methods X (m) Y (m) Z (m) Mean (m)

ELM/KF filter 0.1133 0.2025 0.0226 0.1128
ELM/FIR filter 0.0771 0.0880 0.0047 0.0566

The position error CDFs measured using ELM/FIR and ELM/KF in the right ankle
are presented in Figure 16. This figure shows that the proposed method’s solution is
closer to the reference value. Meanwhile, the CDF results show that the proposed method
substantially improved the positioning accuracy.
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Figure 16. CDF measured using the ELM/FIR and ELM/KF filters in the right ankle.

The RMSEs measured using the ELM/FIR and ELM/KF filters in the left knee are
shown in Figure 17. Herein, the RMSEs of the two filters in the x and y directions are
similar. However, the proposed method shows its effectiveness in the z direction.
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Figure 17. RMSEs measured using the ELM/FIR and ELM/KF filters in the left knee.
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From the analysis of the positioning accuracies of the different joints mentioned above,
we can conclude that the proposed method is effective in reducing localization error,
especially in Kinect outage areas.

5. Conclusions

To obtain accurate position information, a one-assistant method fusing the ELM/FIR
filter and vision data was proposed herein for INS-based human motion capture. In the
proposed method, when vision is available, the vision-based human position inputs to
an FIR filter that accurately outputs the human position. Meanwhile, another FIR filter
outputs the human position using INS data. Moreover, ELM was used to build mapping
between the output of FIR and the corresponding error. When vision data were unavailable,
FIR was used to provide the human posture and ELM was used to provide the estimation
error built in the previously mentioned stage. In order to show the effectiveness of the
proposed ELM/FIR filter, eight joint points are considered in this work. Test results show
that the localization errors of the eight joint points measured using the proposed ELM/FIR
filter are smaller than the values of the ELM/KF filter, especially when a Kinect data outage
occurs, which demonstrates the effectiveness of the proposed method.

Author Contributions: Conceptualization, Y.X., A.Y. and T.S.; methodology, Y.X. and M.S.; software,
R.G.; validation, R.G. and K.L.; formal analysis, Z.S.; investigation, Y.X.; resources, R.G.; data curation,
Y.X.; writing—original draft preparation, Y.X.; writing—review and editing, Y.X.; visualization, Y.X.;
supervision, Y.X.; project administration, Y.X.; funding acquisition, Y.X. and T.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Shandong Natural Science Foundation under Grants
ZR2023MF121 and ZR2020MF067 and the 2022 Shandong Province Science and Technology Small
and Medium Enterprises Innovation Ability Enhancement Project under Grant 2022TSGC2037.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Desmarais, Y.; Mottet, D.; Slangen, P.; Montesinos, P. A review of 3D human pose estimation algorithms for markerless motion

capture. Comput. Vis. Image Underst. 2021, 212, 103275. [CrossRef]
2. Wang, Z.; Gao, F.; Wu, Z.; Wang, D.; Guo, X.; Yu, S. A method for calculating lower extremity anatomical landmark trajectories

based on inertial motion capture data. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 2734–2746. [CrossRef] [PubMed]
3. Wei, Y. Deep-learning-based motion capture technology in film and television animation production. Secur. Commun. Netw. 2022,

2022, 6040371. [CrossRef]
4. Barak-Ventura, R.; Ruiz-Marín, M.; Nov, O.; Raghavan, P.; Porfiri, M. A low-cost telerehabilitation paradigm for bimanual

training. IEEE/ASME Trans. Mechatron. 2022, 27, 395–406. [CrossRef]
5. Skurowski, P.; Pawlyta, M. Detection and classification of artifact distortions in optical motion capture sequences. Sensors 2022,

22, 4076. [CrossRef]
6. Lei, Y.; Deng, Y.; Dong, L.; Li, X.; Li, X.; Su, Z. A novel sensor fusion approach for precise hand tracking in virtual reality-based

human—Computer interaction. Biomimetics 2023, 8, 326. [CrossRef]
7. Han, Y. 2D-to-3D visual human motion converting system for home optical motion capture tool and 3-D smart TV. IEEE Syst. J.

2015, 9, 131–140.
8. Chang, C.C.; Tsai, W.H. Vision-based tracking and interpretation of human leg movement for virtual reality applications. IEEE

Trans. Circuits Syst. Video Technol. 2001, 11, 9–24. [CrossRef]
9. Yu, T.; Zhao, J.; Li, Y.; Li, Y.; Liu, Y. Towards robust and accurate single-view fast human motion capture. IEEE Access 2019,

7, 85548–85559. [CrossRef]
10. Li, M.; Wei, F.; Li, Y.; Zhang, S.; Xu, G. Three-dimensional pose estimation of infants lying supine using data from a Kinect sensor

with low training cost. IEEE Sens. J. 2021, 21, 6904–6913. [CrossRef]
11. Zhao, G.; Zan, H.; Chen, J. Research on skeleton data compensation of gymnastics based on dynamic and static two-dimensional

regression using Kinect. Meas. Sci. Rev. 2022, 22, 283–292. [CrossRef]
12. Naeemabadi, M.; Dinesen, B.; Andersen, O.K.; Hansen, J. Influence of a marker-based motion capture system on the performance

of microsoft Kinect v2 skeleton algorithm. IEEE Sens. J. 2019, 19, 171–179. [CrossRef]

http://doi.org/10.1016/j.cviu.2021.103275
http://dx.doi.org/10.1109/TNSRE.2023.3285924
http://www.ncbi.nlm.nih.gov/pubmed/37314897
http://dx.doi.org/10.1155/2022/6040371
http://dx.doi.org/10.1109/TMECH.2021.3064930
http://dx.doi.org/10.3390/s22114076
http://dx.doi.org/10.3390/biomimetics8030326
http://dx.doi.org/10.1109/76.894279
http://dx.doi.org/10.1109/ACCESS.2019.2920633
http://dx.doi.org/10.1109/JSEN.2020.3037121
http://dx.doi.org/10.2478/msr-2022-0036
http://dx.doi.org/10.1109/JSEN.2018.2876624


Micromachines 2023, 14, 2088 20 of 21

13. Sohn, J.H.; Oh, S.; Lee, C.H.; Kim, S.S. Recursive inverse kinematics analysis for teaching human motion to a humanoid social
robot using a depth camera. In Proceedings of the 2020 20th International Conference on Control, Automation and Systems,
Busan, Korea, 13–16 October 2020; pp. 1151–1154.

14. Zhao, T.; Li, S.; Ngan, K.N.; Wu, F. 3-D reconstruction of human body shape from a single commodity depth camera. IEEE Trans.
Multimed. 2019, 21, 114–123. [CrossRef]

15. Pires, I.M.; Hussain, F.; Marques, G.; Garcia, N.M. Comparison of machine learning techniques for the identification of human
activities from inertial sensors available in a mobile device after the application of data imputation techniques. Comput. Biol. Med.
2021, 135, 104638. [CrossRef]

16. Beshara, P.; Chen, J.F.; Read, A.C.; Lagadec, P.; Wang, T.; Walsh, W.R. The reliability and validity of wearable inertial sensors
coupled with the microsoft kinect to measure shoulder range-of-motion. Sensors 2020, 20, 7238. [CrossRef] [PubMed]

17. Yu, W.; Zhu, M.; Wang, S. Research on the recognition algorithm of body posture ELM registration model based on Kinect. In
Proceedings of the 2021 40th Chinese Control Conference, Shanghai, China, 26–28 July 2021; pp. 7318–7324.

18. Liu, W.; Li, M.; Liu, F.; Xu, Y. Dual predictive quaternion Kalman filter and its application in seamless wireless mobile human
lower limb posture tracking. Mob. Netw. Appl. 2023. [CrossRef]

19. Huang, Y.; Zhang, Y.; Xu, B.; Wu, Z.; Chambers, J.A. A new adaptive extended Kalman filter for cooperative localization. IEEE
Trans. Aerosp. Electron. Syst. 2018, 68, 8671–8682. [CrossRef]

20. Cui, B.; Wei, X.; Chen, X.; Li, J.; Li, L. On sigma-point update of cubature Kalman filter for GNSS/INS under GNSS-challenged
environment. IEEE Trans. Veh. Technol. 2019, 68, 8671–8682. [CrossRef]

21. Zhao, S.; Huang, B. Trial-and-error or avoiding a guess? Initialization of the Kalman filter. Automatica 2020, 121, 109184.
[CrossRef]

22. Shen, C.; Zhang, Y.; Guo, X.; Chen, X.; Liu, J. Seamless GPS/inertial navigation system based on self-learning square-root cubature
Kalman filter. IEEE Trans. Ind. Electron. 2021, 68, 499–508. [CrossRef]

23. Abbasi, J.; Salarieh, H.; Alasty, A. A motion capture algorithm based on inertia-Kinect sensors for lower body elements and step
length estimation. Biomed. Signal Process. Control. 2021, 64, 102290. [CrossRef]

24. Kim, S.; Nozaki, T.; Murakami, T. An approach to categorization analysis for human motion by Kinect and IMU. In Proceedings
of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016;
pp. 6158–6162.

25. Bi, S.; Ma, L.; Shen, T.; Xu, Y.; Li, F. Neural network assisted Kalman filter for INS/UWB integrated seamless quadrotor
localization. PeerJ Comput. Sci. 2021, 7, e630. [CrossRef]

26. Chen, M.; Li, Y.; Luo, X.; Wang, W.; Wang, L.; Zhao, W. A novel human activity recognition scheme for smart health using
multilayer extreme learning machine. IEEE Internet Things J. 2018, 6, 1410–1418. [CrossRef]

27. Seenath, S.; Dharmaraj, M. Conformer-based human activity recognition using inertial measurement units. Sensors 2023, 23, 7357.
[CrossRef]

28. Choi, H.; Jeon, H.; Noh, D.; Kim, T.; Lee, D. Hand-guiding gesture-based telemanipulation with the gesture mode classification
and state estimation using wearable IMU sensors. Mathematics 2023, 11, 3514. [CrossRef]

29. Dahl, K.D.; Dunford, K.M.; Wilson, S.A.; Turnbull, T.L.; Tashman, S. Wearable sensor validation of sports-related movements for
the lower extremity and trunk. Med. Eng. Phys. 2020, 84, 144–150. [CrossRef] [PubMed]

30. Bijalwan, V.; Semwal, V.B.; Mandal, T.K. Fusion of multi-sensor-based biomechanical gait analysis using vision and wearable
sensor. IEEE Sens. J. 2021, 21, 14213–14220. [CrossRef]

31. Yi, C.; Wei, B.; Ding, Z.; Yang, C.; Chen, Z.; Jiang, F. A self-aligned method of IMU-based 3-DoF lower-limb joint angle estimation.
IEEE Trans. Instrum. Meas. 2022, 71, 1–10. [CrossRef]

32. Zhang, J.; Li, P.; Zhu, T.; Zhang, W.A.; Liu, S. Human motion capture based on kinect and imus and its application to human-robot
collaboration. In Proceedings of the 2020 5th International Conference on Advanced Robotics and Mechatronics, Shenzhen,
China, 18–21 December 2020; pp. 392–397.

33. Fan, B.; Li, Q.; Tan, T.; Kang, P.; Shull, P.B. Effects of IMU sensor-to-segment misalignment and orientation error on 3-D knee joint
angle estimation. IEEE Sens. J. 2021, 22, 2543–2552. [CrossRef]

34. Chen, L.; Yan, X.; Hu, D. A deep learning control strategy of IMU-based joint angle estimation for hip power-assisted swimming
exoskeleton. IEEE Sens. J. 2023, 23, 15058–15070. [CrossRef]

35. Huttner, F.; Kalkkuhl, J.; Reger, J. Offset and misalignment estimation for the online calibration of an MEMS-IMU using FIR-filter
modulating functions. In Proceedings of the 2018 IEEE Conference on Control Technology and Applications, Copenhagen,
Denmark, 21–24 August 2018; pp. 1427–1433.

36. Rasoulzadeh, R.; Shahri, A.M. Accuracy improvement of a multi-MEMS inertial measurement unit by using an iterative UFIR
filter. In Proceedings of the 2017 European Navigation Conference, Lausanne, Switzerland, 9–12 May 2017; pp. 279–286.

37. Sun, M.; Wang, Y.; Joseph, W.; Plets, D. Indoor localization using mind evolutionary algorithm-based geomagnetic positioning
and smartphone IMU sensors. IEEE Sens. J. 2022, 22, 7130–7141. [CrossRef]

38. He, H.; Liu, G.; Zhu, X.; He, L.; Tian, G. Interacting multiple model-based human pose estimation using a distributed 3D camera
network. IEEE Sens. J. 2019, 19, 10584–10590. [CrossRef]

http://dx.doi.org/10.1109/TMM.2018.2844087
http://dx.doi.org/10.1016/j.compbiomed.2021.104638
http://dx.doi.org/10.3390/s20247238
http://www.ncbi.nlm.nih.gov/pubmed/33348775
http://dx.doi.org/10.1007/s11036-023-02139-1
http://dx.doi.org/10.1109/TAES.2017.2756763
http://dx.doi.org/10.1109/TVT.2019.2931923
http://dx.doi.org/10.1016/j.automatica.2020.109184
http://dx.doi.org/10.1109/TIE.2020.2967671
http://dx.doi.org/10.1016/j.bspc.2020.102290
http://dx.doi.org/10.7717/peerj-cs.630
http://dx.doi.org/10.1109/JIOT.2018.2856241
http://dx.doi.org/10.3390/s23177357
http://dx.doi.org/10.3390/math11163514
http://dx.doi.org/10.1016/j.medengphy.2020.08.001
http://www.ncbi.nlm.nih.gov/pubmed/32977911
http://dx.doi.org/10.1109/JSEN.2021.3066473
http://dx.doi.org/10.1109/TIM.2022.3194935
http://dx.doi.org/10.1109/JSEN.2021.3137305
http://dx.doi.org/10.1109/JSEN.2023.3264252
http://dx.doi.org/10.1109/JSEN.2022.3155817
http://dx.doi.org/10.1109/JSEN.2019.2931603


Micromachines 2023, 14, 2088 21 of 21

39. Liu, H.; Stoll, N.; Junginger, S.; Zhang, J.; Ghandour, M.; Thurow, K. Human-mobile robot interaction in laboratories using Kinect
sensor and ELM based face feature recognition. In Proceedings of the 2016 9th International Conference on Human System
Interactions, Portsmouth, UK, 6–8 July 2016; pp. 197–202.

40. Akbari, A.; Thomas, X.; Jafari, R. Automatic noise estimation and context-enhanced data fusion of IMU and Kinect for human
motion measurement. In Proceedings of the 2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor
Networks, Eindhoven, The Netherlands, 9–12 May 2017; pp. 178–182.

41. Cho, H.; Yeon, S.; Choi, H.; Doh, N.L. 3D pose estimation with one plane correspondence using kinect and IMU. In Proceedings
of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg, Germany, 28 September–2 October
2015; pp. 1970–1975.

42. Xu, Y.; Wan, D.; Bi, S.; Guo, H.; Zhuang, Y. Predictive mode-ELM integrated assisted FIR filter for UWB robot localization. Satell.
Navig. 2023, 4, 2. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1186/s43020-022-00091-1

	Introduction
	INS-Based Human Motion Capture System
	ELM/FIR Integrated Filtering
	Scheme of the ELM/FIR-Integrated Filtering
	Data Fusion Model of FIR Filtering
	IMM-FIR Filtering
	ELM Method

	Test
	Experimental Parameters
	Positioning Accuracy

	Conclusions
	References

