
Citation: Lu, R.; Guo, Z. An

FPGA-Based High-Performance

Stateful Packet Processing Method.

Micromachines 2023, 14, 2074.

https://doi.org/10.3390/

mi14112074

Academic Editor: José de Jesús

Rangel Magdaleno

Received: 30 September 2023

Revised: 1 November 2023

Accepted: 4 November 2023

Published: 8 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

An FPGA-Based High-Performance Stateful Packet
Processing Method
Rui Lu 1,2 and Zhichuan Guo 1,2,3,*

1 National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy of
Sciences, No. 21, North Fourth Ring Road, Haidian District, Beijing 100190, China; lur@dsp.ac.cn

2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences,
No. 19(A), Yuquan Road, Shijingshan District, Beijing 100049, China

3 Suzhou Haiwang Network Technologies Co., Ltd., Suzhou 215163, China
* Correspondence: guozc@dsp.ac.cn

Abstract: Compared to a stateless data plane, a stateful data plane offloads part of state informa-
tion and control logic from a controller to a data plane to reduce communication overhead and
improve packet processing efficiency. However, existing methods for implementing stateful data
planes face challenges, particularly maintaining state consistency during packet processing and
improving throughput performance. This paper presents a high-performance, FPGA (Field Pro-
grammable Gate Array)-based stateful packet processing approach, which addresses these challenges
utilizing the PHV (Packet Header Vector) dynamic scheduling technique to ensure flow state con-
sistency. Our experiments demonstrate that the proposed method could operate at 200 MHz while
adding 3–12 microseconds latency. The method we proposed also provides a considerable degree
of programmability.

Keywords: FPGA; stateful data plane; configurable; PHV dynamic scheduling

1. Introduction
1.1. Motivations

To face the emerging demands of network applications such as load balancing, TCP
link tracing and stateful firewall [1,2], the control and management of network devices have
become more complex. SDN (Software Defined Network) was proposed to address these
issues by decoupling the control plane and the data plane, enabling centralized control of
the network state. Furthermore, it provided excellent programmability and network control
capabilities. OpenFlow [3] was the first implementation of the SDN protocol. Moreover, it
offered program language and introduced the concept of flow tables, the “match-action”
paradigm, which were used in the data plane of SDN architecture. The data forwarding
plane only determined the forwarding behavior of packets based on the flow tables. The
controller managed the corresponding flow tables on the data plane through the OpenFlow
interface to control the forwarding behavior. This programming model supports stateful
network functionality by executing stateful portions of the program on the controller and
adjusting the packet processing rules accordingly. However, implementing simple stateful
network applications such as TCP tracking and Round Trip Time estimation becomes
impractical due to the requirement of back-and-forth packet transmission latency and
overhead between the controller and the data plane.

The emergence of the stateful data plane has addressed these issues. It adopted the
“match-state-action” paradigm, which offloaded a portion of the controller’s logic and state
information to the data plane. This reduced the communications overhead between the
controller and the data plane and improved the packet processing speed. The data plane
chose appropriate packet forwarding strategies based on the state information. However,

Micromachines 2023, 14, 2074. https://doi.org/10.3390/mi14112074 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi14112074
https://doi.org/10.3390/mi14112074
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://doi.org/10.3390/mi14112074
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi14112074?type=check_update&version=1

Micromachines 2023, 14, 2074 2 of 16

the stateful data plane increased the hardware complexity of network devices and led to
many new challenges in the designing and management of the stateful data plane.

1.2. Limitations of Prior Art

Significant progress has been made in the implementation methods of stateful data
planes, such as P4 [4–6], OpenState [7], Domino [8] and FlowBlaze [9,10]. However, cur-
rent data plane methods face challenges in maintaining flow state consistency during
high-speed packet processing. In this article, packets match the same flow table entry
belonging to the same flow, and the flow state is shared among these packets. Therefore,
the current hardware implementation of the stateful data plane involves frequent and
continuous read, update, and write-back operations above the flow state memory. Hence,
the consistency of the flow state is essential to ensure the correct behavior of the data plane.
It was considered that PHV access to the same flow entry may have data dependency, and
there is a certain clock cycle interval between the flow state read and write-back opera-
tion when implemented in hardware. The read operation may not obtain the latest flow
state from the memory, which results in a RAW (Read After Write) hazard (true depen-
dency). There is a need for a hardware-based method to schedule the packets processing
sequence, allowing real-time detection of RAW hazards and utilizing hardware mechanisms
to avoid RAW hazards while minimizing hardware pipeline stalls. However, the current
methods [9,11–15] can not meet these requirements simultaneously. OPP proposed a hard-
ware implementable state data plane architecture, but it did not consider the consistency of
the flow state, which has potential risks. FlowBlaze introduced a simple round-robin PHV
scheduler on the basis of OPP to ensure the consistency of flow state, but there is still room
for performance improvement.

1.3. Proposed Approach

In response to the mentioned challenges, we proposed an improved hardware design
that can be implemented on FPGA to support programmability in the data plane. Our
proposed approach could dynamically schedule the processing sequence of PHV based on
the data dependency of flow states, enabling the data plane to achieve flow state consistency
while minimizing hardware pipeline stalls. We also propose an optional reorder buffer
that could ensure the output order of PHV is the same as the input order. Consequently,
subsequent modules will not be affected by out-of-order executions. Additionally, a series of
RISC-like instruction sets and corresponding hardware structures are designed to enhance
programmability and provide support for out-of-order executions. The main contributions
of this paper include:

1. A match-action table that supports both stateful and stateless packet processing and
can process 200 M PHV per second.

2. A series of RISC-like instruction sets and corresponding hardware structure designed
based on basic packet processing requirements.

3. A hardware implementation method for PHV dynamic scheduling that is capable of
achieving high-performance packet processing, flow state consistency, and maintain-
ing the sequence of PHV input and output.

2. Related Works

OpenFlow [3] was the first meaningful implementation of the SDN paradigm. Open-
Flow greatly enhanced the programmability of network forwarding, but its simple “match-
action” abstraction does not support the management and utilization of stateful information
in the data plane. Therefore, OpenFlow did not support stateful network applications, such
as stateful firewalls.

OpenState [7] added a state management module to support the state management
function on the basis of OpenFlow. OpenState offloaded a portion of the centralized
controller logic to the data plane, and the forwarding behavior could be determined based
on the local state information of the data plane. OpenState introduces the Extend Finite State

Micromachines 2023, 14, 2074 3 of 16

Machine (EFSM) model to support programmability. The EFSM model uses the 4-tuple:
state, input event, output and state transition to determine packet processing and state
update behavior. However, the limitations of OpenState lie in that the programmability
flexibility and expression of the basic EFSM model are relatively limited.

OPP (Open Packet Processor) [16] proposed a hardware-implementable eXtended
Finite State Machine (XFSM) model, which introduced a condition evaluation process
abstract that significantly reduced the size of a match table. OPP stored state information in
the form of registers and used parallel processing modules composed of multiple ALUs to
perform PHV actions and state updates, providing enhanced programmability. However,
OPP did not consider the state’s inconsistent problem.

FlowBlaze [10] was an improvement on OPP. It introduced a round-robin PHV sched-
uler to avoid a state inconsistent problem. It also leveraged flow-level parallelism to
improve packet processing speed. This approach explored the issue of consistency in the
stateful data plane, but it still failed to meet the performance loss caused by flow state RAW
hazards that need to stall the pipeline.

SDPA [17] proposed a different structure compared to the EFSM model. SDPA utilized
the forwarding processor unit, which consists of the state table, state transition table and
action table. This approach supported the simultaneous processing of multiple applications
on the data plane. However, a drawback of SDPA was its implementation complexity and
large match table size.

P4 [4] and Domino [18] are stateful data plane programming frameworks that use high-
level abstraction languages to compile and implement stateful data planes. Both approaches
used the directed acyclic graph to express the state machine. P4 utilized special registers to
store the per-flow or global state information. Moreover, Domino transformed the packet
process into a series of code blocks composed of simple operations and restricted the
state-sharing mechanism between different processing units to guarantee data consistency.

In summary, many related works have been proposed and implemented in a wide
range of stateful network applications using hardware structures or high-level abstraction
languages as platforms. Representative examples of stateful data plane applications include
port knocking, stateful firewalls and TCP link tracing. These applications leverage the
characteristics of the stateful data plane to reduce communication with the controller and
improve data plane processing speed [19]. They also utilized the programmability and
flexibility of the stateful data plane to implement meaningful network functions. However,
there are still challenges in flow state consistency when processing packets at full rate
in the data plane. In comparison to OPP [16], our hardware architecture ensures flow
state consistency. Compared to FlowBlaze [10], our approach demonstrated higher packet
processing capabilities.

3. System Design

We propose an improved stateful data plane based on FPGA. Figure 1 shows its
architecture, consisting of a series of stateful or stateless match-action tables. After the
pre-processing of the parser module, the packets will enter the data plane pipeline in the
form of PHV. The above-mentioned multi-level match-action tables will be configured
with the corresponding instructions and flow entries. To achieve complex data plane
functionalities, the fundamental function of each stage’s match-action table is storing and
managing state information. By leveraging state information and the PHV, the modules
perform match operations. Then, the operations of state updates and PHV modifications
will be determined based on the match results.

Micromachines 2023, 14, 2074 4 of 16

Key

Extractor

Flow

Match

Table

P
H

V
,k

ey

update

Table State

Mem

update

re
a
d

Process

Block

Flow State

Mem

Addr

PHV

Issue

Queue

R
ea

d

PHV

input

PHV

Reorder

Buffer

PHV,state

S
ta

te

PHV

PHV

Stateful

MAT

stage2

Stateful

MAT

stage3

Stateless

MAT

stageN

……

update

Stateless

MAT

stage2

Match

Table

Action

Block

PHV

input PHV,Instr

Global State

Mem

Figure 1. System architecture.

3.1. System Overview

The overall architecture consists of hardware modules for storing and managing state
information. The aforementioned storage module needs to solve the RAW hazard caused
by frequent read/write operations and data dependency. Additionally, the consistency
of flow states is the most important, as it determines the forwarding behavior of the data
plane. The indiscriminate strong consistency guarantees for all state information will lead
to a significant performance decrease in the packet process and lead to complex logic.
Inspired by the article [20], we classified the states and adopted an abstract structure of
hierarchical state domains. The hierarchical state domains consist of four levels: global,
table, flow, and per-packet states. In our proposed architecture, the data plane contains
global state memory, table state memory, and flow state memory. PHV contains packet
states that pass information between different match-action tables. The definitions of the
four levels of states are as follows:

• The global state is shared by all packets entering the switch.
• The table state is shared by packets entering the same match-action table.
• The flow state is shared by packets matching the same table entry.
• The per-packet state is used by an individual data packet to pass information between

different match-action tables.

Micromachines 2023, 14, 2074 5 of 16

In our implementation, the state information is associated with the address as a unique
identifier. This facilitates management and improves lookup speed. Considering the trade-
off between performance and complexity of the design, the consistency of flow states is
implemented by hardware, and the management of global and table states is handled by
the controller.

The stateful match-action tables served as the fundamental building blocks of the
stateful data plane. It has the following procedural sequence: by taking into consideration
the input PHV, global state, table state and packet state, a unique key is generated. This
key will be used in the match table and obtain the address of the PHV’s corresponding
flow state. The flow state information is then attached by the address and fed into the issue
queue. The issue queue schedules the PHV based on the dependency of the flow states,
allowing out-of-order execution in the process block pipeline. The process block determines
the behavior of state updates and PHV actions based on the configuration of the EFSM
model abstract. The executed PHV will be stored in the reorder buffer and committed in
order. The key differences between our work and previous research will be explained in
the following subsection:

1. In Section 3.2, we describe the hardware implementation of PHV dynamic scheduling.
2. In Section 3.3, we describe the PHV process block that supports VLIW (Very Long

Instruction Word) and its corresponding hardware structure.

3.2. PHV Out-of-Order Scheduling

The workflow of the stateful data plane can be summarized as read, update and write-
back operations of the flow state. Therefore, the consistency of read after write operations
is essential in ensuring behavior correctness. However, read and write operations occur
nearly every clock cycle due to high-speed packet processing. Flow state read operation
may not obtain the latest data from the flow state memory, resulting in the RAW hazards
(true dependencies). This can occur because even though a PHV action is executed after
a prior PHV action, the prior PHV action has been processed only partly through the
pipeline. Figure 2 provides an example of PHV out-of-order scheduling. PHV1 and PHV2
are two PHVs of the same flow, and the flow state read operation of PHV2 happened before
the updated flow state of PHV1 write-back, resulting in the RAW hazard. Additionally,
speculation techniques are infeasible; PHV2 needs to be blocked until the update flow state
of PHV1 is already written back. However, stalling the pipeline will significantly decrease
performance. Considering the potential parallelism that can be utilized from the PHV of
distinct flows, we proposed a dynamic scheduling method. This method will detect the
data dependency and dispatch the PHV and its corresponding state to the process block
pipeline out-of-order, thereby enhancing the speed of packet processing.

PHV1

Pipeline

RAW
Hazard

PHV2

State
Rd

EFSM
State
Update

State
WB

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8 9Cycle

State
Rd

EFSM
State
Update

State
WB

10

Figure 2. RAW hazard example.

However, the out-of-order executions may affect subsequent modules. To address
this problem, an optional hardware-based solution has been proposed to ensure flow state
consistency in high-speed packet processing, which includes the PHV issue queue and
PHV reorder buffer modules. As shown in Figure 3, the PHV issue queue together with
the reorder buffer consists of our dynamic scheduling method. PHV would obtain its
corresponding flow state from the memory module or process block’s broadcast. Our PHV

Micromachines 2023, 14, 2074 6 of 16

issue queue module allows real-time detection of RAW hazards and accordingly dispatches
the PHV out-of-order. Moreover, it utilizes hardware mechanisms to avoid errors while
minimizing hardware pipeline stalls. On the other hand, the PHV reorder buffer module
will reorder the executed PHV to avoid the effects of out-of-order executions.

Flow_addrFlow_addr ValidValid

Selecet
Module

PHV&State�Mem
PHV&StatePHV&State

Flow_addrFlow_addr used bitused bit

Scoreboard

Process
Block

 Update flow state

Broadcast update

PHV

PHV
State

Read flow state

Broadcast update

Read Wake up
Module

Wake-up Entry

Reorder
Buffer PHV

PH
V
�Is

su
e�

Q
ue

ue
Flow State

Mem

State

Allocation
Module

Flow_addrFlow_addr rdyrdy ROB IDROB ID PHV AddrPHV Addr

Select rdy Entry

PHV�Addr�Buffer

Figure 3. Implementation of PHV dynamic scheduling.

3.2.1. PHV Issue Queue

In our proposed PHV issue queue, PHV and the corresponding state information
can be considered as a combination of instructions and data. They will be dispatched
to the process block pipeline for subsequent “match-action” execution. The issue queue
will detect real-time RAW hazards between the input PHV and change the execution
sequence of PHV to avoid hazards and reduce pipeline stalls. Similarly, the function of
the aforementioned module is similar to the instruction issue queue in modern processor
architecture [21,22]. As mentioned in Section 3.1, the hierarchical state storage mechanism
utilizes an address as an identifier for state information. The above addresses can be used
for reading and writing back the latest flow state. Therefore, the issue queue can detect the
PHV’s corresponding flow state dependencies based on their unique address. Moreover,
the issue queue scheduling range is defined as the out-of-order window, where the window
size is equal to the depth of reorder buffer. Our proposed PHV issue queue is composed of
the following four modules (recall Figure 3):

• Allocation Module: This module finds the free entry with the lowest address in the
PHV Address Buffer and the free entry of PHV&State Mem. If no free entry is left, it
will block the input data stream.

• Scoreboard: This module is a memory of flip flops that stores the status of the per-flow
state and keeps track of per-flow state read and write operations. So, the number
of flip flops is equal to the number of the flows. The scoreboard will be updated by
the broadcast buses at every positive edge of the clock. So, this module is capable of
detecting RAW hazards between the PHV’s corresponding flow states. The fields of
used bits in the scoreboard indicate the validity of the input PHV’s flow state. Every
time a new PHV enters, the system will check if the used bit is busy or not and read in
the corresponding flow state. This module also checks the broadcast buses if there is a
conflict in broadcast line and reads the line of the same flow address.

• PHV&State Mem: This module stores input PHV and its corresponding state informa-
tion in the address of the memory given by the Allocation Module.

• PHV Addr Buffer: This module stores the address of the input PHV and its correspond-
ing state in the lowest address free entry of the buffer given by the Allocation Module.

Micromachines 2023, 14, 2074 7 of 16

Every entry includes the following fields: PHV&flow addr together with its ready
bit (used to indicate whether the PHV has a dependency relationship), ROB (Reorder
Buffer) ID. To maintain the old-first order in this buffer, bubble entry resulting from
out-of-order dispatch needs to be considered. By shifting down the entries above
the bubble entry, the issue queue could maintain the old-first rule. Additionally, this
module associates an increasing ROB ID to each input PHV within the out-of-order
window (size equal to the reorder buffer), which is used for PHV reordering.

• Select Module: In each clock cycle, the Select module will choose the lowest-address
valid entry in the PHV Addr buffer, which is marked as ready to be dispatched. Then,
this module dispatches the selected entry to the subsequent process block pipeline.

• Wake-up Module: This module continuously monitors the broadcast buses. Whenever
the executed flow state address broadcasted matches the PHV Addr buffer’s entry, the
corresponding flow state will be updated and marked as ready. If multiple entries
match the broadcasted address, only the oldest one will be chosen as ready.

The core workflow of the PHV issue queue can be summarized as following two parts:
First, based on the Scoreboard, potential RAW hazards between PHVs are detected. PHV
that are not ready will be blocked, while allowing the irrelevant PHV to execute ahead.
The wake-up module monitors the broadcast and activates the oldest PHV entries that
have data dependencies. So, this nodule ensures that PHV of the same flow are dispatched
in order and avoid RAW hazards, while allowing out-of-order launch for different flow
PHVs. Second, the issue queue stores the input PHV and their corresponding states. Each
cycle, ready PHV will be selected for dispatch into the pipeline, and the empty bubbles are
eliminated by shifting operations. Below, there will be detailed explanations and figures
about the mentioned workflow provided.

In Figure 4, the arrow indicates the data dependency of the packets. In the beginning,
only the packets at the bottom of the buffer are ready to be dispatched. There are seven
packets of three different flows in the issue queue waiting to be dispatched. Currently,
only packets A0, B0 and C0 are ready, with no data dependencies. Other packets need to
wait until the latest results of the flow states they require are already written back. For
example, packet A1 must wait until packet A0 is executed and broadcasted to the wake-up
module, and then, its flow state becomes ready. Similarly, packet A2 needs to wait for
the execution result of packet A1 to be written back. In this example, packet A0 is the
first to be dispatched into the pipeline, but its flow state updated result needs to wait for
several cycles before it is broadcasted. During this waiting period, pkt B0 and pkt C0 will
be dispatched in turn.

In Figure 5, for each clock cycle, a PHV in the buffer will be dispatched if it is ready,
and a new input PHV will be inserted into the buffer if valid. We illustrate the typical
workflow of the PHV issue queue: to ensure in-order execution of the same flow, the PHV
Addr buffer’s entries must strictly follow the old-first order rule. Therefore, issue queue
has to collapse the entry in the PHV Addr buffer when there is out-of-order dispatching
(e.g., PHV1 dispatched). However, if the buffer stores both the PHV and state information
with large bit widths, collapsing the entries in hardware implementation means significant
resource and energy consumption. Therefore, we improved our method by using second-
level address mapping. So, the PHV ADDR buffer’s entries only store the address of the
PHV and state. The collapse operation is performed on the addresses rather than the
PHV data. The actual data information is stored in an additional RAM module named
PHV&State Mem.

Micromachines 2023, 14, 2074 8 of 16

Pkt_A1

Pkt_A2

Pkt_C0 Pkt_B0

Pkt_B1

Pkt_A0
Selecet
Logic

Process
Block

Update state of Flow AWake up
logic

wake up
Pkt_ A1

Pkt_C1

Flow�A

Flow�BFlow�C

Select
Pkt_ A0

Pkt_ A0

Allocation logic

Find empty entry
In the Issue queue

Figure 4. Out-of-order scheduling workflow.

PHV6

PHV5

PHV4

PHV3

PHV2

PHV1

PHV0

PHV6

PHV5

PHV4

PHV3

PHV2

PHV1

PHV0

ol
de

st

PHV input

PHV1
Select out

PHV6

PHV5

PHV4

PHV3

PHV2

PHV0

PHV6

PHV5

PHV4

PHV3

PHV2

PHV0

PHV input

PHV7

PHV6

PHV5

PHV4

PHV3

PHV2

PHV0

PHV7

PHV6

PHV5

PHV4

PHV3

PHV2

PHV0

PHV input

collapse

PHV2
Select out

 PHV6 Insert PHV7 Insert

Figure 5. PHV issue queue example.

3.2.2. Reorder Buffer

The function of the Reorder Buffer is to store out-of-order executed PHVs and commit
them in order. In our implementation, shown in Figure 6, the ROB structure is realized
as a circular buffer and this module is optional on demand. When a PHV finishes its
execution in the pipeline, it will be written into the corresponding entry of the circular
buffer according to its ROB ID allocated by the issue queue. Simultaneously, the commit
pointer starts from the base address and waits for the pointed entry’s PHV to be written
back or currently ready, then commits this entry’s PHV. Once the PHV is committed, the
pointer’s address is incremented and these operations are continued. The width of buffer
equals the length of PHV, and the depth of FIFO equals the out-of-order window size. The
out-of-order window was the maximum out-of-order scheduling range allowed by the
issue queue. This out-of-order window ensures that the PHV’s write addresses do not
conflict in ROB. We choose the exponent of 2 as an optional parameter, for example, 16,
32, 64. In addition, the size of the out-of-order window needs to be greater than the issue
queue depth. However, ROB at 64 depth takes up too much hardware resources and does
not improve performance. In summary, the size of out-of-order window could be 16 or 32,

Micromachines 2023, 14, 2074 9 of 16

depending on the parameters of the issue queue. The reorder buffer ensures that the PHVs
are committed in the sequence as their arrival sequence.

PHV1

PHV6

PHV

PHV1

PHV6

PHV

ROB ID_1

ROB ID_6

Entry

ROB ID_1

ROB ID_6

Entry……

Output PHV
when completed

Insert PHV
with ROB ID

Current
Commit
pointer

Figure 6. Reorder buffer.

3.2.3. Necessity of Old-First Rule

Our approach chose to collapse the bubble entry in the issue queue and restrict the
PHV in old-first order. This brought advantages that simplify the Select Module, as the
PHV are arranged from top to bottom in descending order of their existing time, making it
easy to use a priority encoder to select the oldest PHV that is ready to be executed. The
Allocation module is also simplified by keeping the free entries in the upper region of the
buffer. Additionally, the depth of the issue queue together with the size of the out-of-order
window will determine the capabilities of dynamic scheduling. However, the issue queue’s
depth bottleneck lies in the Wake-up module and the Select module’s hardware structure.
The latency of the mentioned module exhibits a linear correlation with the depth of the
issue queue, which means the larger the number of entries the issue queue contains, the
higher the latency is. Therefore, it is necessary to decide on the issue queue parameters
based on actual deployment requirements and the execution cycle of the process block
needed. In Section 4.1, we discuss the trade-off between the resources and performances of
the issue queue based on practical experience.

3.3. PHV Process Block

This section will introduce the design of the process block, which is the core of PHV
modification and state update. The ready PHV and corresponding state information are
dispatched into the process block via the issue queue, and the pipeline uses the EFSM
(Extend Finite State Machine) abstraction to decide the forwarding strategies, as shown in
Figure 7. In our implementation of the process block, when the PHV is dispatched into the
pipeline, 8 cycles are required for the completed state update, and 10 cycles are required
for the completed PHV action. Moreover, the execution clock cycles are also affected by the
size of the TCAM (Ternary Content Addressable Memory) match table in the EFSM model.
The processing steps of this pipeline are briefly described as follows:

1. EFSM Model: Based on the configured VLIW, the EFSM model calculates the vector-
form condition evaluation results. The condition results and state information are used
as input for the EFSM table, which could determine the address of the corresponding

Micromachines 2023, 14, 2074 10 of 16

instructions for the processing strategy. The instructions will be fetched from the
instruction RAM.

2. State Update Block: Based on the input VLIW, the state update block performs the
necessary operations to update the state.

3. PHV Action Block: Based on the input VLIW, the PHV action block performs the
necessary operations to modify the PHV.

Condition
Evaluation
Block

Condition
Match
Table

Instruction
Mem

U
p
d
ate

F
u
nction
B
lock

P
H
V

A
ction
B
lock

Figure 7. Overview of the process block.

The PHV action and state update instruction are determined based on the match
results of the EFSM model. Algorithm 1 shows a simple application running on a stateful
data plane. It will count the number of TCP retransmission packets per flow, based on
the size relationship between per flow sequence and packet sequence. Figure 8 explains
how the EFSM model works, how to determine the packet forwarding strategy using PHV
and state information and shows the hardware implementation abstraction. The condition
evaluation block calculates the comparison result (pkt.seq < flow.seq). The condition match
table uses comparison results as a match key to decide the state update instruction based
on the match results (address of instruction). Moreover, in the state update block, the flow
state (flow.seq, flow.num) would be updated according to the instruction obtained in the
instruction memory module.

Algorithm 1: Calculate the Number of TCP Retransmission Packets

INPUT : TCP packet pkt
OUTPUT : TCP packet pkt′

if pkt.seq < f low.seq then
f low.num = f low.num + 1

end if
f low.seq = pkt.seq

 Condition Match Table

Key Instruction

Condition Evaluation (pkt.seq<flow.seq) Action&Update

𝑝𝑝𝑝𝑝𝑝𝑝. 𝑠𝑠𝑠𝑠𝑠𝑠 < 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. 𝑠𝑠𝑠𝑠𝑠𝑠 1 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓.𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓.𝑁𝑁𝑁𝑁𝑁𝑁 + 1;
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. 𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑝𝑝𝑝𝑝𝑝𝑝. 𝑠𝑠𝑠𝑠𝑠𝑠;

𝑝𝑝𝑝𝑝𝑝𝑝. 𝑠𝑠𝑠𝑠𝑠𝑠 >= 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. 𝑠𝑠𝑠𝑠𝑠𝑠 0 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. 𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑝𝑝𝑝𝑝𝑝𝑝. 𝑠𝑠𝑠𝑠𝑠𝑠;

Figure 8. EFSM Module.

3.3.1. Structure

To enhance programmability and flexibility, the data plane supports extracting arbi-
trary fields from the PHV and state registers according to the instructions, as shown in
Figure 9. The ALU block consists of two modules: state update block and PHV action block.

Micromachines 2023, 14, 2074 11 of 16

The structure of these two modules is similar but are responsible for different things. Each
module is fully pipelined and needs two cycles to complete its task. In the first cycle, the
crossbar module could obtain the input register according to the instructions’ rs information.
In the second cycle, the calculation process is completed by several parallel ALUs, and the
number of ALUs is equal to the width of the PHV or state. Each ALU supports arithmetic
operations, comparisons and bit manipulation with 32/16/8-bit register operand or imme-
diate operand. The results are written back to the corresponding container for each simple
ALU. In the ALU block, the PHV and state information are divided into containers, with
each container holding 32-bit data. Since the maximum number of registers in a RISC-like
instruction set is 32, Action Block supports PHV and state information with a maximum
width of 1024 bits. The number of ALU in the state update block and PHV modification
block is directly related to the required data width for processing. To reduce the crossbar
resource usage, the crossbar module does not support arbitrary writing back data paths
specified by the instructions. Instead, the results are written back to the corresponding
container for each ALU. To reduce the state update clock cycles, the state update block is
placed before the PHV action block.

C
rossb

ar

C
rossb

ar

PHV
container

Pass through

PHV_0
(32b)

PHV_M
(32b)

…

PHV_0
(32b)

PHV_M
(32b)

…

PHV_0
(32b)

PHV_M
(32b)

…

PHV_0
(32b)

PHV_M
(32b)

…

…

State_reg_0
(32b)

State_reg_N
(32b)

…

State_reg_0
(32b)

State_reg_N
(32b)

…

Modified
State_reg_0
(32b)

Modified
State_reg_N
(32b)

…

Modified
State_reg_0
(32b)

Modified
State_reg_N
(32b)

A
L
U
_
0

(
3
2
b
)

Modified
State_reg_0
(32b)

A
L
U
_
N

(
3
2
b
)

Modified
State_reg_N
(32b)

…

A
L
U
_
0

(
3
2
b
)

Modified
State_reg_0
(32b)

A
L
U
_
N

(
3
2
b
)

Modified
State_reg_N
(32b)

…

A
L
U
_
0

(
3
2
b
)

Modified
PHV_0
(32b)

A
L
U
_
M

(
3
2
b
)

Modified
PHV_M
(32b)

…

A
L
U
_
0

(
3
2
b
)

Modified
PHV_0
(32b)

A
L
U
_
M

(
3
2
b
)

Modified
PHV_M
(32b)

…

Figure 9. ALU block.

3.3.2. VLIW

In Figure 9, for the purpose of providing better data plane programmability, condition
evaluation block, state update block and PHV action block support VLIW as the input
instructions. Those modules consist of multiple parallel ALUs, using an instruction set
similar to RISC-V. Additionally, they support the encapsulation of multiple independent
instructions into a single long instruction, which is then submitted to multiple vector-
ized ALUs for parallel processing and outputs the results. Each ALU supports arithmetic
operations, comparisons and bit manipulation with 32/16/8-bit register operand or im-
mediate operand. It also supports selecting relative input and output data addresses
(e.g., result.B3 = oprand0.B0 + oprand1.B2, where the instruction can specify the input data
addresses and the output data position). Furthermore, to meet the basic requirements of
packet processing algorithms, a set of 32-bit RISC-like fundamental instructions have been
designed to enhance programmability.

4. Hardware Implementation

Based on the proposed high-throughput data plane architecture above, we imple-
mented a multi-stage stateful match-action table pipeline deployed on the Xilinx Zynq
UltraScale+ FPGA chip on a Dell R740 server. Furthermore, we downloaded the generated
bit file to the FPGA device. To generate test data streams, we utilized the IXIA high-speed
network traffic generation tool and configured the stateful data plane as a simple Multi-

Micromachines 2023, 14, 2074 12 of 16

Path network application. Limited by data bus width and the parser module, the PHV
processing speed of the pipeline has redundancy, especially when dealing with a packet of
large size. In our deployed multi-path applications, the data plane pipeline will not drop
the packet. The packet loss only occurs in the FIFO used as the interface between different
modules. The pipeline processing speed could not reach 200 Mpps due to bottlenecks in
other modules such as the parser, deparser and data bus width. We verified this 200 Mpps
capability in simulation software.

4.1. Hardware Resources

Our specific parameters for hardware implementation are shown in Table 1. The flow
match table and flow state memory utilize BRAM resources. Each entry above supports
a maximum key size of 256 bits (supporting two combined 128-bit IPv6 addresses) and
128 bits of flow state information (corresponding to four containers). Due to the resources
and time limitations, the size of the EFSM table is relatively small, with each table entry fixed
at 40 bits (8 bits for the condition evaluation results and 32 bits for the state information)
and 16 entries implemented as a TCAM table. Our approach supports a maximum of
704 bits for PHV fields, 64 bits for global state fields, 64 bits for table state fields, 64 bits for
packet state fields, and 128 bits for flow state fields. These total 1024-bit fields correspond
to 32 containers.

Table 1. Implement parameters.

Modules Parameters Description

Global state mem 64 b × 8 width and entry num
Table state mem 64 b × 8 width and entry num
Flow state mem 128 b × 4 K width and entry num

Pkt state reg 64 b width
Condition Block 8 ALU num

Update Block 10 ALU num
Action Block 22 ALU num
Issue Queue 8 entry num

Reorder Buffer 32 depth

With theoretical analysis and experiment, we evaluated the specific resource and
module parameters of the implementation. Table 2 lists the FPGA luts and flip flops
the resource utilization of the hardware implementation. In comparison, the resource
requirements of FlowBlaze’s single-stage match-action element are also included. The
listed resources only include the resource overhead for the stateful data plane and do not
consider the hardware resource overhead of the network interface framework based on
Corundum [23].

Table 2. FPGA resource utilization.

Our Work FlowBlaze [10]

Luts 60,871 (12%) 71,712 (14%)
Flip Flops 35,898 (3%) Unknown

Moreover, we use the same algorithms to compare our work and software implemen-
tation method. Forwarding latency is used as a performance comparison metric between
hardware implementation and software implementation. The application was a simple
stateful forwarding, and the packet’s outport was determined based on the flow state infor-
mation. The stateful data plane dynamically determines whether to send packets to outport
0 or outport 1 by polling its current state. As shown in Table 3, even for simple applications,
hardware forwarding latency still has significant advantages over software implementation.

Micromachines 2023, 14, 2074 13 of 16

Table 3. Simple forwarding latency.

Our Work Software [20]

latency/us 2.9 13.8

4.2. Issue Queue Parameters Analysis

In this section, the issue queue’s depth (number of entries) parameters will be dis-
cussed. This parameter relates to PHV processing speed and the corresponding resource
utilization in typical scenarios. Based on the experiment and analysis, we provide ap-
propriate issue queue deployment parameters. Firstly, we define that the input packets
processed by the current data plane belong to a certain number of equiprobable flows. Our
pipeline design only supports stalling the pipeline and does not drop packets. The average
execution cycle of PHV is used as the performance metric. The pipeline’s input was a
continuous stream of 100 M packets of equiprobable 4, 6, 8, 10, 12, 16, 24 and 32 flows. We
analyzed the relationship between the average PHV processing clock cycles and the depths
of issue queue in different situations, as shown in Figure 10.

Figure 10. Issue queue performance with different depths.

The relationship between the number of issue queue entries and the FPGA hardware
resources overhead is shown in Figure 11. It can be observed that hardware resource
consumption has a linear relationship with the depth of the issue queue. Additionally, due
to the characteristics of wake-up and select logic in the issue queue, the delay is positively
correlated with the depth. Our practical experience has shown that issue queues with a
depth over 16 will face more significant timing constraint problems when the overall FPGA
hardware resource utilization is high. Recalling Figure 10, the performance of the issue
queue is related to its depth. In typical scenarios with a 32 flow packets input, the issue
queue with relatively larger depths can approach full speed. A larger depth implies stronger
scheduling capabilities and higher performance, but there are diminishing marginal returns
after eight entries. Considering the trade-off between resources and performance, the issue
queue module chooses eight entries as the parameter.

Micromachines 2023, 14, 2074 14 of 16

Figure 11. Issue queue resources.

4.3. Method Comparison

In Figure 12, we compared the average PHV execution cycles of different methods.
The “baseline” represents no out-of-order scheduling and only blocks the pipeline until the
depend flow state is written back. It can be observed that the proposed PHV scheduling
method in our work outperforms the PHV round-robin method in FlowBlaze [10] in typical
scenarios. The reason is that when polling multiple queues, the round-robin method cannot
guarantee that the PHV whose data is ready will be dispatched in time. Another reason is
that our scheduling module was placed after the flow state read operations, which means
less RAW stalling time overhead. Additionally, there is a bottleneck on the PHV average
execution cycles in FlowBlaze, and this bottleneck can only be improved by increasing the
queue capacity.

Figure 12. Performance comparison (FlowBlaze [10]).

Micromachines 2023, 14, 2074 15 of 16

Due to the existence of up to 16 possible branches for updating the flow state, specula-
tion techniques are difficult to implement in the stateful data plane. Therefore, considering
only the delay metrics within the data plane pipeline, emitting in old-first order is the
optimal choice. In our test, we configured the IXIA device to send packets at a rate of more
than 80 Gbps to measure the throughput performance of our work. Table 4 provides a
comparison of the data plane processing performance of various existing methods.

Table 4. Comparison of existing methods [1].

Platform Hardware Storage Throughput

Our Work TCAM, BRAM, Register 80 Gbps
Openstate [7] TCAM, RAM Unkown

FlowBlaze [10] TCAM, BRAM, Register 14.8 Mpps
SNAP [15] CAM, Register Unkown
Opp [16] TCAM, RAM, Register 10–80 Mpps

SDPA [17] TCAM, RAM 0.5–10 Gbps

5. Conclusions

In this article, we propose a novel method for implementing stateful data planes,
achieving a great improvement in data plane processing performance. Our proposed
work could achieve a PHV processing speed of up to 200 M per second while adding
3–12 microseconds of latency. In addition, the PHV process capabilities per clock cycle have
significantly improved compared with FlowBlaze [9]. The PHV issue queue module was
introduced, using the dynamic scheduling technique to detect flow state dependency and
effectively avoid RAW hazards. With the reorder buffer, the PHVs are committed in the
same order as the input, avoiding the effects of out-of-order executions. Furthermore, a
series of 32-bit RISC-like instructions set and corresponding hardware structure is designed
based on the basic requirements of packet processing algorithms to support better pro-
grammability and network function extension. The hardware implementation method in
this article is deployed on Xilinx Ultrascale+ FPGA, which could achieve high-performance
packet processing while maintaining a good balance between resource consumption and
performance. In summary, our method presents a novel and effective way for implement-
ing stateful data planes, addressing the contradiction between high-performance packet
processing and flow state consistency. It achieves better programmability and broader
functionality support while demonstrating excellent performance in terms of hardware
resource consumption and processing speed. The proposed approach also provides strong
support for the deployment of high-performance network applications.

Author Contributions: Conceptualization, Z.G.; methodology, implementation and validation, R.L.;
writing—original draft preparation: R.L.; writing—review and editing, Z.G. and R.L.; supervision,
Z.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China: Software-defined interconnecting chip and supporting software kit development (Project. No.
2022YFB2901004).

Data Availability Statement: All the necessary data are included in the article.

Acknowledgments: The authors would like to thank Lei Liu, Lei Song and Yiwei Chang for insightful
comments. The authors would like to sincerely thank the anonymous reviewers for their feedback on
earlier versions of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Micromachines 2023, 14, 2074 16 of 16

References
1. Zhang, X.; Cui, L.; Wei, K.; Tso, F.P.; Ji, Y.; Jia, W. A survey on stateful data plane in software defined networks. Comput. Netw.

2021, 184, 107597. [CrossRef]
2. Li, J.; Jiang, H.; Jiang, W.; Wu, J.; Du, W. SDN-based stateful firewall for cloud. In Proceedings of the 2020 IEEE 6th

International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance
and Smart Computing (HPSC), and IEEE International Conference on Intelligent Data and Security (IDS), Baltimore, MD, USA,
25–27 May 2020; pp. 157–161.

3. McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J. OpenFlow: Enabling
innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 69–74. [CrossRef]

4. Bosshart, P.; Daly, D.; Gibb, G.; Izzard, M.; McKeown, N.; Rexford, J.; Schlesinger, C.; Talayco, D.; Vahdat, A.; Varghese, G.; et al.
P4: Programming protocol-independent packet processors. ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 87–95. [CrossRef]

5. Ibanez, S.; Brebner, G.; McKeown, N.; Zilberman, N. The p4-> netfpga workflow for line-rate packet processing. In Proceedings
of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Seaside, CA, USA, 24–26 February 2019;
pp. 1–9.

6. Wang, H.; Soulé, R.; Dang, H.T.; Lee, K.S.; Shrivastav, V.; Foster, N.; Weatherspoon, H. P4fpga: A rapid prototyping framework
for p4. In Proceedings of the Symposium on SDN Research, Santa Clara, CA, USA, 3–4 April 2017; pp. 122–135.

7. Bianchi, G.; Bonola, M.; Capone, A.; Cascone, C. Openstate: Programming platform-independent stateful openflow applications
inside the switch. ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 44–51. [CrossRef]

8. Sivaraman, A.; Cheung, A.; Budiu, M.; Kim, C.; Alizadeh, M.; Balakrishnan, H.; Varghese, G.; McKeown, N.; Licking, S.
Packet transactions: High-level programming for line-rate switches. In Proceedings of the 2016 ACM SIGCOMM Conference,
Florianópolis, Brazil, 22–26 August 2016; pp. 15–28.

9. Moro, D.; Sanvito, D.; Capone, A. FlowBlaze. p4: A library for quick prototyping of stateful SDN applications in P4. In
Proceedings of the 2020 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN),
Madrid, Spain, 10–12 November 2020; pp. 95–99.

10. Pontarelli, S.; Bifulco, R.; Bonola, M.; Cascone, C.; Spaziani, M.; Bruschi, V.; Sanvito, D.; Siracusano, G.; Capone, A.; Honda,
M.; et al. FlowBlaze: Stateful Packet Processing in Hardware. In Proceedings of the 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), Boston, MA, USA, 26–28 February 2019; pp. 531–548.

11. Luo, S.; Yu, H.; Vanbever, L. Swing state: Consistent updates for stateful and programmable data planes. In Proceedings of the
Symposium on SDN Research, Santa Clara, CA, USA, 3–4 April 2017; pp. 115–121.

12. Shukla, A.; Fathalli, S.; Zinner, T.; Hecker, A.; Schmid, S. P4consist: Toward consistent p4 sdns. IEEE J. Sel. Areas Commun. 2020,
38, 1293–1307. [CrossRef]

13. Komajwar, S.; Korkmaz, T. Challenges and solutions to consistent data plane update in software defined networks. Comput.
Commun. 2018, 130, 50–59. [CrossRef]

14. Sviridov, G.; Bonola, M.; Tulumello, A.; Giaccone, P.; Bianco, A.; Bianchi, G. LODGE: LOcal Decisions on Global statEs in
programmable data planes. In Proceedings of the 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft),
Montreal, QC, Canada, 25–29 June 2018; pp. 257–261.

15. Arashloo, M.T.; Koral, Y.; Greenberg, M.; Rexford, J.; Walker, D. SNAP: Stateful network-wide abstractions for packet processing.
In Proceedings of the 2016 ACM SIGCOMM Conference, Florianópolis, Brazil, 22–26 August 2016; pp. 29–43.

16. Bianchi, G.; Bonola, M.; Pontarelli, S.; Sanvito, D.; Capone, A.; Cascone, C. Open Packet Processor: A programmable architecture
for wire speed platform-independent stateful in-network processing. arXiv 2016, arXiv:1605.01977.

17. Zhu, S.; Bi, J.; Sun, C.; Wu, C.; Hu, H. Sdpa: Enhancing stateful forwarding for software-defined networking. In Proceedings
of the 2015 IEEE 23rd International Conference on Network Protocols (ICNP), San Francisco, CA, USA, 10–13 November 2015;
pp. 323–333.

18. Michel, O.; Bifulco, R.; Retvari, G.; Schmid, S. The programmable data plane: Abstractions, architectures, algorithms, and
applications. ACM Comput. Surv. (CSUR) 2021, 54, 1–36. [CrossRef]

19. Sha, M.; Guo, Z.; Song, M. A Review of FPGA’s Application in High-speed Network Processing. J. Netw. New Media 2021,
10, 1–11.

20. Jing, L.; Wang, J.; Chen, X. Research on Key Technologies of SDN Switch Supporting State Programmability; The Institute of Acoustics
of the Chinese Academy of Sciences: Beijing, China, 2022; CSTR:35001.37.01.33142.20220037.

21. Abella Ferrer, J.; Canal Corretger, R.; González Colás, A.M. Power-and complexity-aware issue queue designs. IEEE Micro 2003,
23, 50–58. [CrossRef]

22. Smith, J.E.; Sohi, G.S. The microarchitecture of superscalar processors. Proc. IEEE 1995, 83, 1609–1624. [CrossRef]
23. Forencich, A.; Snoeren, A.C.; Porter, G.; Papen, G. Corundum: An open-source 100-gbps nic. In Proceedings of the 2020 IEEE

28th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), Fayetteville, AR, USA,
3–6 May 2020; pp. 38–46.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.comnet.2020.107597
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/2656877.2656890
http://dx.doi.org/10.1145/2602204.2602211
http://dx.doi.org/10.1109/JSAC.2020.2999653
http://dx.doi.org/10.1016/j.comcom.2018.08.008
http://dx.doi.org/10.1145/3447868
http://dx.doi.org/10.1109/MM.2003.1240212
http://dx.doi.org/10.1109/5.476078

	Introduction
	Motivations
	Limitations of Prior Art
	Proposed Approach

	Related Works
	System Design
	System Overview
	PHV Out-of-Order Scheduling
	PHV Issue Queue
	Reorder Buffer
	Necessity of Old-First Rule

	PHV Process Block
	Structure
	VLIW

	Hardware Implementation
	Hardware Resources
	Issue Queue Parameters Analysis
	Method Comparison

	Conclusions
	References

