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Abstract: Soft objects squeezing through small apertures are crucial for many in vivo and in vitro
processes. Red blood cell transit time through splenic inter-endothelial slits (IESs) plays a crucial
role in blood filtration and disease progression, while droplet velocity through constrictions in
microfluidic devices is important for effective manipulation and separation processes. As these
transit phenomena are not well understood, we sought to establish analytical and numerical solutions
of viscous droplet transit through a rectangular slit. This study extends from our former theory of
a circular pore because a rectangular slit is more realistic in many physiological and engineering
applications. Here, we derived the ordinary differential equations (ODEs) of a droplet passing
through a slit by combining planar Poiseuille flow, the Young–Laplace equations, and modifying
them to consider the lubrication layer between the droplet and the slit wall. Compared to the pore
case, we used the Roscoe solution instead of the Sampson one to account for the flow entering
and exiting a rectangular slit. When the surface tension and lubrication layer were negligible, we
derived the closed-form solutions of transit time. When the surface tension and lubrication layer
were finite, the ODEs were solved numerically to study the impact of various parameters on the
transit time. With our solutions, we identified the impact of prescribed pressure drop, slit dimensions,
and droplet parameters such as surface tension, viscosity, and volume on transit time. In addition,
we also considered the effect of pressure drop and surface tension near critical values. For this study,
critical surface tension for a given pressure drop describes the threshold droplet surface tension that
prevents transit, and critical pressure for a given surface tension describes the threshold pressure
drop that prevents transit. Our solutions demonstrate that there is a linear relationship between
pressure and the reciprocal of the transit time (referred to as inverse transit time), as well as a linear
relationship between viscosity and transit time. Additionally, when the droplet size increases with
respect to the slit dimensions, there is a corresponding increase in transit time. Most notably, we
emphasize the initial antagonistic effect of surface tension which resists droplet passage but at the
same time decreases the lubrication layer, thus facilitating passage. Our results provide quantitative
calculations for understanding cells passing through slit-like constrictions and designing droplet
microfluidic experiments.

Keywords: microfluidics; creeping flow; two-phase flows; closed-form solutions

1. Introduction

Studies of droplets squeezing through small or narrow constrictions have been exten-
sively performed for various applications, such as microfluidics or biomedical engineer-
ing [1]. Furthermore, extensive research has delved into the movement of biological cells
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navigating narrow passages within the human body, encompassing phenomena such as our
previous modeling work on the filtration of red blood cells within the spleen [2], the process
of white blood cell diapedesis [3], and the intricate journey of cancer cells during metasta-
sis [4]. In our recent work, we conducted extensive microfluidic experiments and combined
them with multiscale simulations to understand the critical conditions for red blood cells’
passage through splenic inter-endothelial slits (IESs) and the physical mechanisms that
control their transit dynamics [2]. Although our computationally predicted transit time
matches well with our experimental measurements, the simulations are expensive and
less insightful than analytical theory. Additionally, in another recent work, we developed
an analytical theory for a droplet passing through a circular pore [5], but the idealized
circular pore is significantly different from the IES geometry we studied experimentally
and computationally [2]. In this study, we extended our analytical theory of a circular pore
to a slit for the transit time of a droplet.

In general cases under both in vivo and in vitro conditions, the speed at which droplets
or cells pass through constrictions is a critical factor, yet its quantitative characterization
remains unclear. For instance, red blood cells’ transient slowdown as they transit through
splenic IESs can lead to capture and subsequent destruction by macrophages of the immune
system. An in vitro example is that of droplets flowing through microfluidic devices, where
droplet velocity is also important for effective manipulation and separation processes.
Another instance where flow velocity is important is in the flow of ferrofluids into ducts
of circular or rectangular cross-sections, where additional parameters like pressure drop,
constriction cross-section size, and curvature can significantly impact the efficiency of heat
exchangers and mixers [6].

Numerous experimental studies have been conducted to understand the dynamics
of droplets, vesicles, and cells as they transit through constrictions. In 1967, Gregersen
et al. investigated the passage of red blood cells through small pores created in paper [7].
The development of versatile microfluidic technology 20 years or so has vastly expanded
the opportunities to explore the behavior of soft objects squeezing through constrictions
of various size and geometry under controlled flows. Examples of microfluidic-based
experiment are Ma et al., who studied the flow patterns within droplets navigating through
rectangular microchannels [8], and Wang et al., who discussed the dynamic behavior
of viscoelastic droplets in Y-shaped capillary channels [9]. Gambhire et al., followed by
Moreau et al., examined red blood cells as they pass through submicron-wide slits designed
to mimic the splenic IESs, highlighting the crucial role of red blood cells’ mechanical
properties for efficient transit [2,10]. Ren et al. created a microfluidic device to study
the biophysical characteristics and transit times of cells navigating cyclically through
constrictions [11]. Finally, to relate transit time and object viscosity, Khan et al. studied
cancer cells and viscous droplets flowing in confining microchannels [12]. Still, not all
experiments are performed at the micrometer scale. For example, Chen et al. sought
to discover the effects of droplet size (in the millimeter range), constriction dimensions,
and applied pressure drop on the trajectory of droplets in irrigation and agricultural
applications [13]. Nevertheless, despite all this extensive work, how the transit dynamics
of these soft objects precisely relate to the setup parameters (applied pressure drop or
constriction geometry) and object intrinsic properties remains unclear.

Apart from the above experimental approaches, the transit of soft objects through
small apertures has been studied both from a theoretical and a computational point of
view. First, theoretically, Zhang et al. developed analytical models for investigating the
pressure and minimum impulse associated with a droplet’s passage through a circular pore
under a constant flow rate [14–16]. However, in many applications, pressure control takes
precedence over flow rate regulation. In addition, Jensen et al. employed an energy-based
approach to examine the behavior of a bubble as it squeezes through a short constriction [17],
while Marmur conducted an analysis of droplet penetration through a capillary under the
influence of gravity [18]. In the case of vesicles, Gompper and Kroll developed an analytical
solution to model the mobility of vesicles as they squeeze through a cylindrical pore past
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a threshold driving field strength [19]. When considering red blood cells, Waugh et al.
formulated an analytical model to estimate transit times during egress in bone marrow [20].
When studying Stoke’s flow, Dassios and Vafeas developed a 3D concentric sphere model
for particles in creeping flows and derived analytical expressions for the velocity, the total
pressure, the angular velocity, and the stress tensor fields [21]. In addition, we recently
developed an analytical study of droplet transit through a circular pore [5].

In addition to analytical models, a wide array of numerical methods has been har-
nessed to study the passage of droplets, vesicles, and cells through microfluidic pores,
as reviewed by Zhang et al. in 2014 [22]. For instance, Barthes-Biesel made pioneering
contributions by employing boundary integral simulations to investigate the passage of
vesicles and capsules through constrictions in an axisymmetric configuration [23]. Similarly,
Zinchenko and Davis applied a similar approach to explore the three-dimensional scenario
of a droplet passing through constrictions formed between spheres [24].

Despite extensive prior research, understanding how the transit time of an object
through a constriction changes with the constriction dimensions or the applied pressure
drop and with the object intrinsic properties such as viscosity or surface tension remains
unclear. Existing studies, such as those by Zhang et al. [14–16], often assume constant flow
rates, while real-world applications frequently involve constant pressure drops. Addition-
ally, microscale applications primarily exhibit creeping flows instead of finite Reynolds
number flows [14–16]. Moreover, real-world constrictions often have rectangular cross sec-
tions rather than circular ones. In this study, we developed analytical models for droplets
passing through slit-like constrictions under constant pressure conditions in order to derive
the exact solution of transit time. Our work has two novelties: first, it is an analytical
study, rather than a computational study, where it is rather trivial to change the constriction
geometry; second, from the application perspective, the slit configuration is much more
closely related to real in vivo situation like that of IESs, and our analytical approach gives a
much more precise relationship between transit time and slit dimensions than a circular
pore theory. Altogether, our results give much more insight into explaining the dynam-
ics of cells passing through slits, which we previously observed in our experiments and
simulations [2].

2. Theory of a Droplet Squeezing through an Infinitely Wide Slit

Our model seeks to mathematically describe the forces acting on the droplet in each
stage and at different locations. Figure 1a describes the position of the droplet at the
boundaries of different stages and Figure 1b labels pressures P1 to P7 at different locations
of the system during stage II. We take into account the lubrication layer between the droplet
and the slit walls, and we consider the droplet and lubrication layer flows inside the slit
to be planar Poiseuille flow and Couette flow, respectively. Forces due to surface tension
are calculated at the spherical and/or elliptical ends of the droplet. The flow entering
and exiting the slit is estimated with Roscoe’s solution with modifications to address the
presence of multiple phases. The parameters that are used in the equations include the
dimensions of an infinitely wide slit of thickness T and length L, the viscosity of the droplet
ηd and external fluid η0, the surface tension σ and volume Vd of the droplet, and the
pressure drop ∆Ptot = P1− P7 that drives flow through the slit.
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Figure 1. Sketch of the problem: a droplet of volume Vd passes through a narrow slit of infinite width, 
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line. 𝑣ூூூ is defined as the volume that has exited the slit (𝑙 = 𝐿) indicated by the purple dashed line. 
(a) Stages of the droplet passing through the slit. Stage I corresponds to the short process of developing 
a curved half-ellipsoidal shaped droplet head entering the slit. Stage II ends when 𝑣ூூ = 𝐿𝑊𝑇 ൅𝑊𝑇ଶ𝜋/12. Stage III ends when 𝑣ூூ = 𝑉ௗ −𝑊𝑇ଶ𝜋/12. Stage IV ends when 𝑣ூூூ = 𝑉ௗ −𝑊𝑇ଶ𝜋/12. Stage 
V is the short process of the elliptical droplet head retracting to the radius of the spherical droplet. (b) 
Dimensions of the studied system (slit and droplet dimensions), viscosities of the droplet and external 
fluid, respectively, and pressures outside and along the droplet/slit (P1–P7). (c) Cross-section of the 
droplet in the slit. The slit is infinitely wide, but we assume that the droplet inside maintains a constant 
finite width W. (d) Three-dimensional view of the droplet in the slit. 
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pressure drops across the droplet membrane on both sides of the droplet. The second and 
third terms are the Poiseuille-related pressure drops, and the last term is the Roscoe flow 
term of a flow passing through an infinitely thin slit [25]. 

We assume that the width of the droplet inside the slit is constant, the same as the 
initial diameter of the droplet, given by 𝑊 = 2ሺ3𝑉ௗ/4𝜋ሻభయ. The flow rate Q due to pressure 
differential ∆Pηi and viscosity η inside the slit is represented by: 𝑄 = ∆𝑃ఎ௜12 𝐿𝜂  𝑇ଷ𝑊 (2)

Figure 1. Sketch of the problem: a droplet of volume Vd passes through a narrow slit of infinite
width, thickness T, and length L. l is defined as the position along the length axis of the slit. vI I

is defined as the volume of the droplet that has passed the entrance of the slit (l = 0) indicated
by the green dashed line. vI I I is defined as the volume that has exited the slit (l = L) indicated
by the purple dashed line. (a) Stages of the droplet passing through the slit. Stage I corresponds
to the short process of developing a curved half-ellipsoidal shaped droplet head entering the slit.
Stage II ends when vI I = LWT + WT2π/12. Stage III ends when vI I = Vd −WT2π/12. Stage
IV ends when vI I I = Vd −WT2π/12. Stage V is the short process of the elliptical droplet head
retracting to the radius of the spherical droplet. (b) Dimensions of the studied system (slit and droplet
dimensions), viscosities of the droplet and external fluid, respectively, and pressures outside and
along the droplet/slit (P1–P7). (c) Cross-section of the droplet in the slit. The slit is infinitely wide,
but we assume that the droplet inside maintains a constant finite width W. (d) Three-dimensional
view of the droplet in the slit.

2.1. Contributions to Pressure Drop

We aimed to calculate the total transit time when the prescribed total pressure drop
∆Ptot is constant during the transit process. The total pressure drop ∆Ptot between the
two sides along the dashed red path in Figure 1b can be grouped into four terms as:

∆Ptot = P1− P7 = ∆Pmem + ∆Ppoise,ηd + ∆Ppoise,η0 + ∆Proscoe (1)

where the first term ∆Pmem = P1− P2 + P4− P5 is the pressure term corresponding to
pressure drops across the droplet membrane on both sides of the droplet. The second and
third terms are the Poiseuille-related pressure drops, and the last term is the Roscoe flow
term of a flow passing through an infinitely thin slit [25].

We assume that the width of the droplet inside the slit is constant, the same as the

initial diameter of the droplet, given by W = 2(3Vd/4π)
1
3 . The flow rate Q due to pressure

differential ∆Pηi and viscosity η inside the slit is represented by:

Q =
∆Pηi

12 Lη
T3W (2)
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which is the flow created between two infinitely long parallel plates, or planar Poiseuille
flow. The equation can be rearranged to express the pressure drop due to viscous friction
inside the slit:

∆Ppoise =
12 LηQ

T3W
(3)

The pressure drop due to the viscous friction in the spherical part outside the slit can
be found using Roscoe’s solution for the flow through a slit (Roscoe’s extension of Sampson
flow [25]).

∆PRoscoe =
32 ηQ
πT2W

(4)

Thus, the total pressure drop of a droplet in an infinitely wide slit is represented as:

∆Ptot = ∆Pmem + ∆Ppoise,ηd + ∆Ppoise,η0 + ∆PRoscoe (5)

2.2. Relationships between Pressure Drop and Lubrication Layer, Velocity Profile, and Flow Rate

As the droplet progresses through the slit, it does not touch the slit walls. Instead,
the external fluid forms a lubrication layer between the droplet and each wall as shown in
Figure 2, where h is the thickness of each layer. For a 2D droplet in a Hele–Shaw flow in a
channel, it was shown that h is related to the channel height T and to the capillary number
Ca as:

h(Vint)= (2.1217/2) T (Ca)2/3 (6)
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V=0

V=Vint
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h

r

Lubrication layer

Poiseuille flow
T/2

Figure 2. Velocity profile inside the slit with a lubrication layer between the droplet and the slit walls.
The flow is a 2D Poiseuille flow inside the blue region.

Let Vint be the velocity of the droplet at the droplet–lubrication layer interface and
Vmax be the maximum velocity of the droplet. The shear stress is continuous across the
interface, so that:

η0Vint
h

=
2ηd(Vmax −Vint)

r− h
(7)

Note that this is exactly the same as the circular pore case (see Equation (7) in [5]).
To prepare to derive an analytical solution later, we define:

α =
Vmax −Vint

Vmax
(8)

where α = 1 for ideal Poiseuille flow and α = 0 for ideal plug flow.
Let Q1 represent the flow rate of the droplet and Q2 represent the flow rate of a single

lubrication layer. We calculate the flow rates as:

Q = Q1 + 2Q2 =
∫ r−h

h−r
Vave1 dA + 2

∫ r

r−h

r− ρ

h
Vint dA (9)



Micromachines 2023, 14, 2040 6 of 17

Because in a planar Poiseuille flow, the average velocity is 2/3 of the maximum
velocity, we have:

Vave1 = 2(Vmax −Vint)/3 + Vint =
2Vmax + Vint

3
(10)

Q1 =
2(r− h) (2Vmax + Vint)W

3
(11)

Q2 =
∫ r

r−h

r− ρ

h
Vint dρW =

hVint
2

W (12)

The total flow rate is:

Q = Q1 + 2Q2 =
2(r− h) (2Vmax + Vint)W

3
+ hVintW (13)

This leads to our final equation, giving the total pressure drop ∆Ptot as function of the
droplet velocities and flow rates:

∆Ptot = 2σ(1/RR − 1/RL ) +
(Vmax −Vint)·2ηdl

(r− h)2 +
Q·3η0(L− l)

2r3W
+

Q1·8 ηd
2

π(r− h)2W
+

Q·8 η0
2

πr2W
(14)

where 1/RR and 1/RL are the mean curvatures of the right and left ends of the droplet,
respectively. Like the Sampson term shown in our previous work [5], the Roscoe term
can be split into two terms of two half problems (the last two terms in Equation (14)).
Equations (7) and (14) can be solved for Vint and Vmax.

2.3. Transit Times

Here, we determine the durations of the droplet transit stages and of its total transit
through the slit, based on the pressure drops calculated above. To do so, we adapted the
procedures used in the circular pore case [5]. For stages I and V, the time needed for the
droplet to form or retract a curved half-ellipsoidal shaped droplet head is very small, and
so they are considered negligible for this study.
Stage II:

During stage II, the constant total pressure ∆Ptot is:

∆Ptot = 2σ(1/RR − 1/RL ) +
(Vmax −Vint)·2ηdl

(r− h)2 +
Q·3η0(L− l)

2r3W
+

Q1·8 ηd
2

π(r− h)2W
+

Q·8 η0
2

πr2W
(15)

where 1/RR = 1/W + 1/T when RR is approximated in a rectangular slit with dimensions
W and T [26] and RL =

[(
Vd − lWT − T2Wπ/12

)
/(4π/3)

]1/3. After solving Equation (15)
with Equation (7) together, we obtain:

dl
dt

= Vint(l) (16)

This nonlinear ODE can be solved by integrating from the initial condition l(t = 0) = 0 to
l(t2) = L. The unknown time t2 then can be solved numerically.
Stage III:

The flow rate during stage III can be found using the pressure drop:

∆Ptot = 2σ(1/RR − 1/RL ) +
(Vmax −Vint)·2ηdL

(r− h)2 +
Q1·8ηd

π(r− h)2W
(17)
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where RR = [vI I I/(4π/3)]
1
3 and RL = [Vd − LWT − vI I I)]

1
3 , and vI I I is the volume of the

droplet exiting the slit.

Q(v) =
dvI I I

dt
(18)

The ODE of v(t) can be solved with initial condition vI I I(0) = 2π
(
T2W/8

)
/3 =[

T2Wπ
]
/12. By numerically integrating from t = 0 to an unknown time t3 where vI I I(t3) =

Vd − LWT − [T 2Wπ
]
/12, we can then numerically solve for t3.

Stage IV:
Since stage II and stage IV are similar, ∆Ptot is found the same as in stage II except

each appearance of l is replaced with l − L.

∆Ptot = 2σ(1/RR − 1/RL ) +
(Vmax −Vint)·2ηd(L− l)

(r− h)2 +
Q·3η0l
2r3W

+
Q1·8 ηd

2

π(r− h)2W
+

Q·8 η0
2

πr2W
(19)

where RR =
[(

Vd − (L− l)WT − T2Wπ/12
)
/(4π/3)

]1/3 and 1/RL = 1/W + 1/T. If we
denote l = L− l′, we have:

∆Ptot = 2σ(1/RR − 1/RL ) +
(Vmax −Vint)·2ηdl′

(r− h)2 +
Q·3η0(L− l′)

2r3W
+

Q1·8 ηd
2

π(r− h)2W
+

Q·8 η0
2

πr2W
(20)

and
dl′

dt
= Vint(l′) (21)

with RR =
[(

Vd − (L− l)WT − T2Wπ/12
)
/(4π/3)

]1/3. This is a nonlinear ODE l′(t)
which can be solved by integrating from the initial condition of l′(t = 0) = 0 to l′(t 4) = L.
This unknown time t4 can then be solved numerically.

The transit time t1 and t5 of stages I and V are negligible as these are very short
processes. Thus, the total transit time is:

tT = t2 + t3 + t4 (22)

2.4. Relationship between Critical Pressure and Surface Tension

For given values of surface tension, droplet viscosity, and slit dimensions, the critical
pressure ∆Pc is the minimum total pressure drop for which the droplet is able to transit
completely through the slit, which is determined by the slit thickness T, the droplet volume
Vd, width W, and its surface tension σ as:

∆Pc(W, T, Vd, σ) ≈ 2σ

{
1

W
+

1
T
−
[
(V d −

(
W2Tπ

)
/12)/(4π/3)

]− 1
3
}

(23)

For given values of pressure drop, droplet viscosity, and slit dimensions, the critical
surface tension σc is the maximum surface tension for which the droplet is able to transit
completely through the slit, which can be solved in Equation (23) by setting ∆Pc as the
given pressure drop value.

2.5. Procedure to Obtain Numerical Solutions for Finite Surface Tension Cases

While an analytical solution can be found when the surface tension term ∆Pmem is
absent, the differential equations in the above sections cannot be integrated manually when
the surface tensions of both the right and left parts of the droplet are considered. In order to
find the transit time when the surface tension is non-zero, we used the ODE solver ode45.
In cases where ode45 failed to integrate an equation, the ode23 solver was used to perform
the calculations needed to generate the figures in our study. We also applied the event
function to calculate the transit times when certain conditions are met, such as l(t2) = L in
Equation (16).
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3. Results

With a mathematical explanation found to describe the system, analytical and numeri-
cal approaches were used to find transit times under various conditions. Emphasis was
placed on the effects of adjusting individual parameters and on relationships that were
found to be linearly related.

3.1. Analytical Solution for a Slit without Surface Tension but Constant α

In the specific condition where the surface tension is zero, we can derive the analytical
solution of the transit times. We begin by analyzing the transit time equation for stage
III, because the equations for stage II and IV are similar and will be discussed together
immediately after stage III. α describes the extent to which droplet flow follows Poiseuille
flow (α = 1) or plug flow (α = 0).
Stage III:

The volume of the droplet exiting the slit is:

v =
∆Ptot·t

α· 12 Lηd
T3W + 32 ηd

πT2W

+ v0 (24)

With initial conditions v(0) = v0 =
[
T2Wπ

]
/12, and v(t3) = Vd − LWT−

[
T2Wπ

]
/12,

at the end of stage III, we obtain:

∆Ptot·t3

α· 12 Lηd
T3W + 32ηd

πT2W

+ [T2Wπ]/12 = Vd − LWT − [T2Wπ]/12 (25)

Thus

∆Ptot·t3 =

(
α·12 Lηd

T3W
+

32ηd
πT2W

)
(Vd − LWT − [T2Wπ]/6) (26)

Finally, t3 is found to be:

t3 =

(
α· 12 Lηd

T3W + 32 ηd
πT2W

)(
Vd − LWT − T2Wπ

6

)
∆Ptot

(27)

If Vd = 4/3·π R3 >> LWT + T2Wπ
6 , i.e., the droplet volume is much larger than the

slit volume:

t3 =

(
α· 12 R3Lηd

T3W + 32R3 ηd
πT2W

)
(4/3·π)

∆Ptot
(28)

Stages II and IV:
As stated earlier, stages II and IV are similar; thus, the velocity of the droplet front

(stage II) or rear (stage IV) in the slit is:

U(l) =
dl
dt

=
∆Ptot

12L η0
T2 + 12l(α·ηd−η0)

T2 +
32

(η d+η0)
2

πT

(29)

Assuming that a = 12(α·ηd−η0)
T2 and b = 12L η0

T2 +
32

(η d+η0)
2

πT , we obtain:

dl
dt

=
∆Ptot

a·l + b
(30)

Using the separation of variables as before we find that:∫
(a·l + b)dl =

∫
∆Ptot dt (31)
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1
2

al2 + b·l = ∆Ptot·t + c (32)

and that the limit conditions are:

l = 0 at t = 0 c = 0

l = L at t2//4
1
2

aL2 + b·L = ∆Ptot·t2//4

We obtain:

t2//4 =
1
2 aL2 + bL

∆Ptot
(33)

t2//4 =

6(α·ηd−η0)
T2 L2 +

(
12L η0

T2 +
32

(η d+η0)
2

πT

)
L

∆Ptot
(34)

To conclude, for the case of zero surface tension, σ = 0, the total transit time is:

tT ∼= t2 + t3+t4 (35)

tT = t2 + t3+t4 =

12(α·ηd−η0)
T2 L2 + 2

(
12L η0

T2 +
32

(η d+η0)
2

πT

)
L

∆Ptot
+

(
α· 12 R3Lηd

T3W + 32R3 ηd
πT2W

)
(4/3·π)

∆Ptot
(36)

In the case of an ideal plug flow (α = 0) and i f t3 >> t2//4 and Vd >> LWT

ηd
∆Ptot t

=
T2W

32R3(4/3)
(37)

3.2. Effects of Pressure Drop, Slit Dimensions, and Droplet Properties on Transit Times

We next analyzed the dependence of the total transit time on the various parameters
of our system and dissected the transit time from different stages. To analyze the transit
time of a droplet squeezing through a slit, we studied the effect of the total pressure drop
∆Ptot, slit dimensions (length L and thickness T), and droplet parameters (surface tension
σ, volume Vd, and viscosity ηd). We investigated the effects of each of these variables on
the total transit time tT or on the reciprocal of the transit time 1/tT (referred to as inverse
transit time). We also investigated the effects of these variables on the transit and inverse
transit time of each stage (t2, t3, t4 and 1/t2, 1/t3, 1/t4). In our study, we used a standard
case with a pressure drop of 300 Pa, a slit length of 4 µm, a droplet volume of 73.6 µm3,
a droplet viscosity of 0.01 Pa s, and a solution viscosity of 0.0012 Pa s. These values for
droplet properties were obtained from a typical red blood cell [2]. In addition, we used a
slit thickness of 0.5 µm and a droplet width of 5 µm inside the slit. We studied the surface
tension in the order of 20 pN/µm, in the range of the membrane surface tension of red
blood cells passing through splenic slits estimated in our recent work [2]. Using these
values as a baseline, the effect of each variable on transit time was investigated.

We investigated the effects of the aforementioned variables by writing functions in
Matlab, using the equations for the total transit time and stage transit times that we derived
above. These Matlab functions calculate the transit time when given values for the studied
parameters. To obtain the relationships between transit time and various parameters, we
isolated the individual parameters and calculated transit time across a reasonable range for
that isolated parameter.
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3.2.1. Effects of Pressure Drop and Droplet Viscosity

For constant surface tensions σ of 10, 25, and 40 pN/µm, the inverse transit time 1/tT
was obtained for pressure drops ∆Ptot from 1100 down to 300 Pa, which is the physiological
range of pressure drop in the spleen for RBC filtration [2], as shown in Figure 3a. The
inverse time vs. pressure drop (1/tT vs. ∆Ptot) curves for surface tensions of 25 and
40 pN/µm are approximately linear for all pressure drops, but for σ = 10 pN/µm the 1/tT
vs. ∆Ptot curve is approximately linear only above 650 Pa. Below that pressure drop, there
appears to be a downwards curvature until the critical pressure is reached. The dependence
of 1/tT with increasing ∆Ptot also changes with σ. For example, the 10 pN/µm droplet
has the highest relative inverse transit time at lower pressure drops, before dropping to
having the lowest inverse transit time compared to the two other values of σ after ∆Ptot
increases beyond 650 Pa. Conceptually, surface tension resists the droplet’s progression
through stage II, but a decreased capillary number is associated with a thinned lubrication
layer. It is possible that a surface tension of 10 pN/µm at low pressure drop means that the
droplet does not resist entry into the slit and is slow enough to not have a high capillary
number, but increasing the pressure drop increases velocity, and therefore capillary number
and lubrication layer thickness. Regardless, inverse transit time is shown to increase with
pressure drop.

We also investigated the dependence of the inverse transit time 1/tT on total pressure
drop ∆Ptot when the droplet surface tension σ is not constant but is a percentage of the
critical surface tension σc. When given values of pressure drop, droplet viscosity, and slit
dimensions, the critical surface tension σc is the maximum surface tension for which the
droplet is able to transit completely through the slit. If σ ≥ σc, then the drop will not pass
through the slit. The 1/tT vs. ηd curves were obtained for surface tensions set to 20% and
60% σc (Figure 3b). A higher percentage of σc resulted in a longer transit time compared
to the lower percentage. However, in both cases, there was a strong linear relationship
between ∆Ptot and 1/tT for all pressure drops in the range studied. An 11-fold increase in
∆Ptot, from 100 Pa to 1100 Pa, corresponded to an approximately 11-fold increase in 1/tT
for both situations, with 1/tT going from 5.71 s−1 to 62.73 s−1 at 20% σc, and from 1.72 s−1

to 18.93 s−1 at 60% σc. While both cases start with similar 1/tT values at low ∆Ptot, 1/tT
increases at a higher rate for 20% σc, with a slope of about 0.057 Pa−1 s−1, compared to a
slope of about 0.017 Pa−1 s−1 at 60% σc.

The effects of total pressure drop ∆Ptot on the inverse transit times 1/ti for stages II,
III, and IV at a surface tension of 25 pN/µm can be observed in Figure 3c. For all stages,
their inverse transit time appears to have a linear relationship with ∆Ptot for all pressure
drops in the range studied. Stage III is the dominant phase of the droplet passing through
a slit when the surface tension is not near critical, with the lowest inverse transit time (and
thus the highest transit time), while stage IV has the lowest relative transit time.

For droplet viscosities ηd ranging from around 0.002 to 0.015 Pa s, transit time tT
was obtained at constant surface tensions σ of 10 and 25 pN/µm (Figure 3d) and at 20%
and 60% σc (Figure 3e). The transit times for droplets with surface tensions of 10 and
25 pN/µm appear to converge at lower ηd, reaching values of 37.8 and 44.3 ms at 0.002 Pa s,
respectively (Figure 3d). However, as ηd increases, the transit time of the droplet with
10 pN/µm surface tension increases at a faster rate than the one at 25 pN/µm. There
also appears to be a linear relationship in both cases when ηd increases beyond 0.006 Pa s.
Similar results were observed when tT was plotted against ηd at 20% and 60% σc (Figure 3e).
Both Figure 3d,e were produced at the standard total pressure drop of 300 Pa. Figure 3f
illustrates the relationship between ηd and transit times ti for stages II, III, and IV at
σ = 25 pN/µm. Once again, the total transit time was most greatly influenced by stage III,
while stages II and IV made a significantly smaller contribution, with negligible change in
their transit times as viscosity was increased.
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3.2.2. Effects of Slit and Droplet Dimensions

We utilized the expression (T2 ×W)1/3 to represent the size of the rectangular slit. The
relationship between transit time tT, in the form of the dimensionless variable (∆PtottT)/ηd,
and the ratio between the slit length L and size was obtained for (T2 ×W)1/3 values from
7 to 10.5, both at constant surface tensions σ and at percentages of σc (Figure 4). When
comparing (∆PtottT)/ηd to (T2 ×W)1/3 at constant σ, as shown in Figure 4a, there is an ap-
proximately linear relationship, potentially with a slight upward concavity. For all assessed
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values of (T2 ×W)1/3, tT is higher for σ = 25 pN/µm than for σ = 10 pN/µm. Additionally,
tT increases at a significantly higher rate when the surface tension is 25 pN/µm.
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Figure 4. Effects of slit dimensions (ratio of length L and size (T2 ×W)1/3) on transit time tT with
finite values of surface tension σ. (a) Effect of slit dimension ratio with constant σ values. (b) Effect of
slit dimension ratio with σ as a fixed percentage of critical surface tension σc. (c) Effect of slit width W
and thickness T with constant σ values. (d) Effect of W and T with σ as a fixed percentage of σc value.

In Figure 4b, we see the effect of L/(T2 ×W)1/3 on (∆PtottT)/ηd with surface tensions
set at 20% and 60% σc. Similar to conditions at constant σ, there is an approximately linear
relationship, with (∆PtottT)/ηd increasing at a higher rate when the surface tension is at a
higher percentage of σc.

The effect of slit size on transit time tT with constant surface tension σ values is shown
in Figure 4c, plotted in the dimensionless variables (∆PtottT)/ηd vs. R3/(T2 × W), with
R3/(T2 ×W) values ranging from 2.70 to 15.17. At lower σ values of 10 and 25 pN/µm,
the droplet appears to behave similarly in terms of transit time, with tT increasing at a
slightly faster rate at σ = 25 pN/µm and both having an approximately linear relationship.
At σ = 40 pN/µm, the droplet behavior is similar to that calculated at lower σ cases up to
R3/(T2 ×W) = 10, but as the droplet volume increases further, the (∆PtottT)/ηd dependence
on R3/(T2 ×W) becomes more nonlinear and displays irregularities.

When the effect of slit size on transit time was plotted with σ set at a fixed percentage of
the critical surface tension σc, an approximately linear relationship with a slight downwards
concavity was observed, as seen in Figure 4d. When σ = 60% σc, tT increases at a slightly
higher rate, with a slope of around 227, compared to a slope of around 74 when σ = 20% σc.
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3.2.3. Effect of Surface Tension

Surface tension σ in the droplet serves as a source of nonlinearity in the progression
of the droplet’s volume through the slit. Visualization of the progress of each stage at a
pressure drop ∆Ptot of 300 Pa for various σ can be seen in Figure 5. The volumes of the
droplet that have crossed the slit entrance and exit defined in Figure 1a are schematized in
Figure 5a: vI I represents the volume of the droplet that has passed the left opening, i.e., the
entrance (dashed green line), and vI I I represents the volume of the droplet that has passed
the right boundary, i.e., the exit (purple dashed line). The time evolution of vI I and vI I I is
shown in Figure 5b–d for surface tensions of 10, 40, and 55 pN/µm. Vertical lines delineate
the time boundaries between stages II, III, and IV at t2 and t2 + t3 in Figure 5b–d. Note that
when the volume remains constant, such as for vI I during stage IV and vI I I during stage
II, this indicates that the droplet has not yet or has already crossed the corresponding slit
boundary. In Figure 5b, a surface tension of 10 pN/µm leads to the majority of the transit
time being spent in stage III, as this stage involves the largest droplet volume transfer. As σ
is increased from 10 to 55 pN/µm (Figure 5b–d), all stage transit times increase, but stage
II transit time t2 increases and eventually exceeds stage III transit time t3. Conceptually,
the net force due to the droplet surface tension opposes that of the droplet flow in the slit
during all of stage II, but only half of stage III. As σ increases, this effect becomes more
pronounced, and the volume flow rate becomes more nonlinear since the droplet curvature
changes nonlinearly. With regards to the concavity of vI I in stage II, surface tension on
one hand would cause positive concavity due to decreasing curvature of the left droplet
head. As volume leaves the left droplet head and enters the slit, its curvature gradually
decreases and becomes more similar to that of the right droplet head, reducing the surface
tension force that resists the droplet’s flow. On the other hand, a higher capillary number
means thicker lubrication layers that resist droplet flow. In addition, as the droplet enters
the slit, the average viscosity in the slit increases which means more resistance to flow.
Figure 5c,d show visible negative concavity of vI I in stage II, indicating that even though
surface tension would otherwise cause positive concavity, lubrication layer thickness and
viscous effects serve as negative feedback to droplet flow.

The effect of surface tension σ as an increasing percentage of critical surface tension
σc, ranging from 20% to 90% σc, on total transit time tT is shown in Figure 6a. The transit
time increases exponentially as σ approaches σc and it can be assumed that the droplet will
not pass through the slit when σ reaches the critical value. Figure 6b shows in more detail
how the stage II, III, and IV transit times, t2 to t4, contribute to tT across the same 20–90%
range of σc. As σ increases as a percentage of σc, the stage IV transit time does not change
significantly, stage III transit time increases approximately linearly, and the stage II transit
time increases exponentially and exceeds t3 at σ beyond 60% σc. As a result, between 20%
and 60% σc, stage III controls most of the total transit time behavior, while above 60% σc,
stage II drives the exponential increase in the total transit time.

The non-monotonic behavior observed in Figure 6 can be explained as follows. The
surface tension has two effects on the transit time. Firstly, in stage III (Equation (17)), the
surface tension term (the first term on the right-hand side of Equation (17)) resists the
passage of the droplet due to the size difference between the two spheres on the two ends
of the droplet in the first half of stage III and facilitates the passage in the second half of
stage III. On the other hand, σ also changes the lubrication layer thickness h (Equation (6)).
For the first half of stage III until the two spheres become equal, increased σ increases
the resistance, therefore increasing the transit time. But the increased σ also decreases
h (Equation (6)). With a decreased h, the flow rate increases, therefore decreasing the
transit time in the second half of stage III. These two effects of surface tension can create a
non-monotonic dependence of transit time on surface tension.
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Figure 5. Volumes of the droplet that have passed the left and right openings of the slit (a) over time
for droplet surface tension σ values of (b) 10, (c) 40, (d) and 55 pN/µm. Vertical lines delineate the
time boundaries between stages II, III, and IV. Volume vI I remains constant at stage IV due to full
crossing of the slit’s left opening, and volume vI I I remains constant during stage II since the droplet
does not cross the slit’s right opening until stage III.
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time tT (a) and stage transit times ti (b) under a total pressure drop ∆Ptot of 300 Pa. The transit times
have been normalized as (∆Ptot t)/ηd. This normalization process allows us to isolate the effect of
increasing surface tension.

3.3. Comparison between the Current Slit Model and the Previous Circular Pore Model

There does not exist any other published paper that derives analytical equations for
droplet transit time through rectangular slits to compare our results with. However, we
conducted a comparison with the model developed by Tang et al. which analyzes droplet
motion through a pore with a circular cross-section [5]. We conducted this comparison
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by utilizing a rectangular slit constriction as well as a circular pore constriction with the
same cross-sectional area of 2.5 pm2, while keeping all other parameters such as surface
tension and viscosity constant (Figure 7). We believe that the differences in the observed
relationship are because of the changed constriction geometry.
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current slit model as well as the previous circular pore model.

4. Conclusions and Discussion

This paper presents analytical approaches to understand the passage of a droplet
through a narrow slit. These approaches can have many applications in fields ranging from
understanding the flow of biofuel and ethanol droplets [27] to improving the properties
of agricultural pesticides in emulsion form [28]. Additionally, this model of droplet flow
can be more broadly applied to liquid flows in general, with applications in improving
insulation systems [29] and enhancing the understanding of co-flowing gas-liquid flows [30].
Compared to our previous work [5], there are several novelties. First, we found the available
analytical solutions to different terms in our current theory of the slit. Notably, we used the
analytical theory by Roscoe in 1949 [25] on flow passing a slit, which was the counterpart of
the Sampson theory of a circular pore [31]. This is very significant in terms of fundamental
transport theory in fluid mechanics. Second, from the application perspective, the current
work is much more closely related to our recent work on the study of red blood cells passing
through IESs in the spleen [2]. The new result in our current study, such as Equation (28),
gives more precise relationships between transit times (total and for each stage) and slit
dimensions than a circular pore theory. This will give more insights into explaining the
dynamics of cells passing through slits observed in our experiments and simulations,
because it explicitly gives relationships which cannot be obtained in numerical simulations.
Third, for the surface tension terms, we incorporated the recent result from Darvishzadeh
et al. [26] for applying the Young–Laplace equation to a rectangular opening, which is quite
different from applying the Young–Laplace equation to a circular pore. Fourth, for the
lubrication thickness, we utilized the result for a droplet inside a Hele–Shaw flow, which is
different from a droplet in a circular tube. Finally, besides the parametric studies of transit
times, we also showed detailed temporal evolution of the droplet of volumes in Figure 5,
which was not carried out in the previous work.

Although we considered more realistic geometry in this study, there remain some
limitations. While our expression evaluates v as a sphere, v0 in the beginning of stage III
is actually a hemispherical cap on the right side. As a result, the expression for ∆Pmem
appears larger and our analytical model does not perform as well when the pressure drop
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approaches ∆Pc. This effect can be seen as otherwise inexplicable sudden flow rate changes
in Figure 5 not associated with the droplet initially or fully crossing a boundary. The sudden
change in curvature calculation between stages appears to be a sharp change in flow rate
between stages II and III for VII and between stages III and IV for VIII. In addition, the
calculation for critical pressure, although it would theoretically be found with the initial
conditions of stage II, it is ultimately determined by the initial conditions in stage III due to
assuming a spherically shaped droplet end. It will be more accurate to consider a spherical
cup to evaluate the left and right spheres in this study; however, this will significantly
increase the complexity of the analytical expressions. Because this study focused on total
transit time, and the fact that the time where the right and left caps are not approximately
spherical is relatively short, our model was sufficiently accurate.

Author Contributions: Conceptualization, A.V., E.H. and Z.P.; Investigation, S.W.B., K.S. and C.J.;
Writing—original draft, S.W.B., K.S. and C.J.; Writing—review & editing, S.W.B., K.S., A.V., E.H.
and Z.P.; Supervision, Z.P.; Project administration, Z.P.; Funding acquisition, A.V., E.H. and Z.P. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by an REU supplement from the National Science Foundation to
the Center for Advanced Design and Manufacturing of Integrated Microfluidics to S.W.B. and Z.P.
(NSF I-UCRC award number IIP-1841473), by National Science Foundation grants to Z.P. (NSF/DMS
Award No. 1951526 and NSF/CBET 1706436/1948347), and by a joint NSF-ANR grant from the
National Science Foundation and the French National Research Agency to E.H, A.V. and Z.P. (NSF
PHY 2210366 and ANR-22-CE95-0004-01).

Data Availability Statement: All data are included in the article.

Acknowledgments: E.H. belongs to the French Consortium Approches Quantitatives du Vivant/
Quantitative approaches to living systems.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cerdeira, A.T.S.; Campos, J.B.L.M.; Miranda, J.M.; Araújo, J.D.P. Review on Microbubbles and Microdroplets Flowing through

Microfluidic Geometrical Elements. Micromachines 2020, 11, 201. [CrossRef] [PubMed]
2. Moreau, A.; Yaya, F.; Lu, H.L.; Surendranath, A.; Charrier, A.; Dehapiot, B.; Helfer, E.; Viallat, A.; Peng, Z. Physical mechanisms of

red blood cell splenic filtration. Proc. Natl. Acad. Sci. USA 2023, 120, e2300095120. [CrossRef] [PubMed]
3. Yeh, Y.-T.; Serrano, R.; François, J.; Chiu, J.-J.; Li, Y.-S.J.; del Álamo, J.C.; Chien, S.; Lasheras, J.C. Three-dimensional forces exerted

by leukocytes and vascular endothelial cells dynamically facilitate diapedesis. Proc. Natl. Acad. Sci. USA 2017, 115, 133–138.
[CrossRef] [PubMed]

4. Pfeifer, C.R.; Irianto, J.; Bennett, R.R.; Xia, Y.; Ivanovska, I.L.; Liu, A.J.; Greenberg, R.A.; Discher, D.E. Nuclear Constriction
Segregates Mobile Nuclear Proteins Away from Chromatin. Biophys. J. 2017, 112, 337a. [CrossRef]

5. Tang, Z.; Yaya, F.; Sun, E.; Shah, L.; Xu, J.; Viallat, A.; Helfer, E.; Peng, Z. Analytical theory for a droplet squeezing through a
circular pore in creeping flows under constant pressures. Phys. Fluids 2023, 35, 082016. [CrossRef]

6. Vafeas, P.; Bakalis, P.; Papadopoulos, P.K. Effect of the magnetic field on the ferrofluid flow in a curved cylindrical annular duct.
Phys. Fluids 2019, 31, 117105. [CrossRef]

7. Gregersen, M.I.; Bryant, C.A.; Hammerle, W.E.; Usami, S.; Chien, S. Flow Characteristics of Human Erythrocytes through
Polycarbonate Sieves. Science 1967, 157, 825–827. [CrossRef]

8. Ma, S.; Sherwood, J.M.; Huck, W.T.S.; Balabani, S. On the flow topology inside droplets moving in rectangular microchannels. Lab
Chip 2014, 14, 3611–3620. [CrossRef]

9. Wang, Y.; Do-Quang, M.; Amberg, G. Viscoelastic droplet dynamics in a Y-shaped capillary channel. Phys. Fluids 2016, 28, 033103.
[CrossRef]

10. Gambhire, P.; Atwell, S.; Iss, C.; Bedu, F.; Ozerov, I.; Badens, C.; Helfer, E.; Viallat, A.; Charrier, A. High Aspect Ratio Sub-
Micrometer Channels Using Wet Etching: Application to the Dynamics of Red Blood Cell Transiting through Biomimetic Splenic
Slits. Small 2017, 13, 1700967. [CrossRef]

11. Ren, X.; Ghassemi, P.; Strobl, J.S.; Agah, M. Biophysical phenotyping of cells via impedance spectroscopy in parallel cyclic
deformability channels. Biomicrofluidics 2019, 13, 044103. [CrossRef] [PubMed]

12. Khan, Z.S.; Kamyabi, N.; Hussain, F.; Vanapalli, S.A. Passage times and friction due to flow of confined cancer cells, drops, and
deformable particles in a microfluidic channel. Converg. Sci. Phys. Oncol. 2017, 3, 024001. [CrossRef]

13. Chen, R.; Li, H.; Wang, J.; Guo, X. Effects of Pressure and Nozzle Size on the Spray Characteristics of Low-Pressure Rotating
Sprinklers. Water 2020, 12, 2904. [CrossRef]

https://doi.org/10.3390/mi11020201
https://www.ncbi.nlm.nih.gov/pubmed/32075302
https://doi.org/10.1073/pnas.2300095120
https://www.ncbi.nlm.nih.gov/pubmed/37874856
https://doi.org/10.1073/pnas.1717489115
https://www.ncbi.nlm.nih.gov/pubmed/29255056
https://doi.org/10.1016/j.bpj.2016.11.1826
https://doi.org/10.1063/5.0156349
https://doi.org/10.1063/1.5122708
https://doi.org/10.1126/science.157.3790.825
https://doi.org/10.1039/C4LC00671B
https://doi.org/10.1063/1.4943110
https://doi.org/10.1002/smll.201700967
https://doi.org/10.1063/1.5099269
https://www.ncbi.nlm.nih.gov/pubmed/31341524
https://doi.org/10.1088/2057-1739/aa5f60
https://doi.org/10.3390/w12102904


Micromachines 2023, 14, 2040 17 of 17

14. Zhang, Z.; Xu, J.; Drapaca, C. Particle squeezing in narrow confinements. Microfluid. Nanofluid. 2018, 22, 120. [CrossRef]
15. Zhang, Z.; Drapaca, C.; Chen, X.; Xu, J. Droplet squeezing through a narrow constriction: Minimum impulse and critical velocity.

Phys. Fluids 2017, 29, 072102. [CrossRef]
16. Zhang, Z.; Drapaca, C.; Gritsenko, D.; Xu, J. Pressure of a viscous droplet squeezing through a short circular constriction:

An analytical model. Phys. Fluids 2018, 30, 102004. [CrossRef]
17. Jensen, M.J.; Goranovi, G.; Bruus, H. The clogging pressure of bubbles in hydrophilic microchannel contractions. J. Micromech.

Microeng. 2004, 14, 876–883. [CrossRef]
18. Marmur, A. Penetration of a small drop into a capillary. J. Colloid Interface Sci. 1988, 122, 209–219. [CrossRef]
19. Gompper, G.; Kroll, D.M. Driven transport of fluid vesicles through narrow pores. Phys. Rev. E 1995, 52, 4198–4208. [CrossRef]
20. Waugh, R.E.; Sassi, M. An in vitro model of erythroid egress in bone marrow. Blood 1986, 68, 250–257. [CrossRef]
21. Dassios, G.; Vafeas, P. The 3D Happel model for complete isotropic Stokes flow. Int. J. Math. Math. Sci. 2004, 46, 2429–2441.

[CrossRef]
22. Zhang, Z.; Xu, J.; Hong, B.; Chen, X. The effects of 3D channel geometry on CTC passing pressure—Towards deformability-based

cancer cell separation. Lab Chip 2014, 14, 2576. [CrossRef] [PubMed]
23. Barthes-Biesel, D. Microhydrodynamics and Complex Fluids; CRC Press: Boca Raton, FL, USA, 2012.
24. Zinchenko, A.Z.; Robert, H.D. Large–scale simulations of concentrated emulsion flows. Philosophical Transactions of the Royal

Society of London. Ser. A Math. Phys. Eng. Sci. 2003, 361, 813–845. [CrossRef] [PubMed]
25. Roscoe, R. XXXI. The flow of viscous fluids round plane obstacles. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1949, 40, 338–351.

[CrossRef]
26. Darvishzadeh, T.; Priezjev, N.V. Effects of crossflow velocity and transmembrane pressure on microfiltration of oil-in-water

emulsions. J. Membr. Sci. 2012, 423–424, 468–476. [CrossRef]
27. Zuo, L.; Wang, J.; Mei, D.; Wang, D.; Zhang, W.; Xu, H.; Yao, J.; Zhao, T. Atomization and combustion characteristics of a

biodiesel–ethanol fuel droplet in a uniform DC electric field. Phys. Fluids 2023, 35, 013303. [CrossRef]
28. Yang, W.; Zhong, W.; Jia, W.; Ou, M.; Dong, X.; Zhang, T.; Ding, S.; Jiang, L.; Wang, X. Study on atomization mechanisms and

spray fragmentation characteristics of water and emulsion butachlor. Front. Plant Sci. 2023, 14, 1265013. [CrossRef]
29. Khan, N.; Ullah, Z.; Wang, Z.; Gamaoun, F.; Eldin, S.M.; Ahmad, H. Analysis of fluctuating heat and current density of mixed

convection flow with viscosity and thermal conductivity effects along horizontal nonconducting cylinder. Case Stud. Therm. Eng.
2023, 46, 103023. [CrossRef]

30. Soltani, D.; Shafaee, M. Disintegration co-flowing gas-liquid jet coupled with forced perturbation. Exp. Comput. Multiph. Flow
2022, 4, 83–89. [CrossRef]

31. Sampson, G. XII. On Stokes’s current function. Philos. Trans. R. Soc. Lond. (A) 1891, 182, 449–518.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10404-018-2129-2
https://doi.org/10.1063/1.4990777
https://doi.org/10.1063/1.5045495
https://doi.org/10.1088/0960-1317/14/7/006
https://doi.org/10.1016/0021-9797(88)90304-9
https://doi.org/10.1103/PhysRevE.52.4198
https://doi.org/10.1182/blood.V68.1.250.250
https://doi.org/10.1155/S0161171204312445
https://doi.org/10.1039/C4LC00301B
https://www.ncbi.nlm.nih.gov/pubmed/24895079
https://doi.org/10.1098/rsta.2003.1178
https://www.ncbi.nlm.nih.gov/pubmed/12804217
https://doi.org/10.1080/14786444908561255
https://doi.org/10.1016/j.memsci.2012.08.043
https://doi.org/10.1063/5.0124791
https://doi.org/10.3389/fpls.2023.1265013
https://doi.org/10.1016/j.csite.2023.103023
https://doi.org/10.1007/s42757-020-0079-x

	Introduction 
	Theory of a Droplet Squeezing through an Infinitely Wide Slit 
	Contributions to Pressure Drop 
	Relationships between Pressure Drop and Lubrication Layer, Velocity Profile, and Flow Rate 
	Transit Times 
	Relationship between Critical Pressure and Surface Tension 
	Procedure to Obtain Numerical Solutions for Finite Surface Tension Cases 

	Results 
	Analytical Solution for a Slit without Surface Tension but Constant  
	Effects of Pressure Drop, Slit Dimensions, and Droplet Properties on Transit Times 
	Effects of Pressure Drop and Droplet Viscosity 
	Effects of Slit and Droplet Dimensions 
	Effect of Surface Tension 

	Comparison between the Current Slit Model and the Previous Circular Pore Model 

	Conclusions and Discussion 
	References

