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Abstract: Accurate quantification of immunoglobulin G (IgG) levels is vital for understanding im-
mune status and diagnosing various medical conditions. Lateral flow assays (LFAs) offer rapid
and convenient diagnostic tools, but their sensitivity has been a limitation. Our research introduces
a refined method incorporating europium nanoparticles, enhancing both sensitivity and accuracy
of LFAs in human IgG measurement. Utilizing a unique sandwich format, carboxylate-modified
polystyrene Eu (III) chelate microparticles (CM-EUs) acted as the primary reporters. The concen-
trations of both detection and capture antibodies on the strip were optimized to bolster the LFA’s
quantitative performance. The subsequent calibration curve between the IgG concentration and the
measured intensity ratio (VR) established the linearity and analytical sensitivity of our method with a
high correlation coefficient (r = 0.99) and an impressively low limit of detection (LoD = 0.04 ng/mL).
Our precision assessment, segmented into intra-assay and inter-assay evaluations, showcases the
method’s consistency and reproducibility. The LFA assay’s stability was established by demonstrat-
ing its resistance to degradation and affirming its potential for extended storage without a dip in
performance. The study’s findings underscore the potential of this method to contribute to diagnostic
medicine and improve patient care.

Keywords: lateral flow assay; immunoglobulin G; europium nanoparticles; sensitivity; accuracy;
clinical diagnostics

1. Introduction

In the realm of modern diagnostics and biomedical research, accurate measurement
of specific biomolecules within biological samples stands as a fundamental pillar. Among
these biomolecules, immunoglobulins (commonly known as antibodies) are vital as they are
generated in response to foreign antigens (such as pathogens or toxins) and help mediate
the immune system’s reactions to infections and physiological events. Immunoglobulin G
(IgG) is the predominant antibody class in human serum, contributing to approximately
75% of total serum immunoglobulins and serving key roles in pathogen neutralization
and immune regulation [1–4]. It is part of a broader family of immunoglobulins that play
essential roles in both humoral and cellular immunity [5,6].

The quantification of IgG-subclass proteins and antibodies finds its most suitable
technique in immunoassays. These assays come in various formats, including solid-phase,
liquid-phase, competitive, and noncompetitive binding immunoassays [7]. Among these,
the noncompetitive two-site immunometric assay, using monoclonal antibodies specific to
human IgG subclasses, has gained prominence for its robustness and precision in quantify-
ing IgG subclass proteins [8–10]. This methodology is significant in diagnosing selective
and total IgG-subclass deficiencies, often resulting from inherited structural or regula-
tory gene abnormalities [11]. Traditionally, methods like enzyme-linked immunosorbent
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assay (ELISA) [12] and Western blotting [13] for the detection and quantification of IgG
are typically conducted in a laboratory setting. Recently, lateral flow assays (LFAs) have
emerged as an alternative, offering rapid results. They do not require specialized equip-
ment or extensive training, making them more suitable for point-of-care testing [14–16].
Lateral flow assays (LFAs) are paper-based tests utilizing capillary action to move a sample
along a paper membrane. The mechanism involves the sample migrating through a pad
containing labelled antibodies or antigens. If the target molecule (e.g., a specific IgG) is
present, it binds to the labelled component pre-dried on paper, forming a complex that
further migrates to a detection zone where it is captured, producing a visible line. LFAs are
commonly used for screenings due to their speed and ease of use, often producing rapid
results with minimal equipment needs. However, limitations encompass lower sensitivity
and specificity compared to lab-based methods, and detection is typically qualitative or,
at best, semi-quantitative. The integration of fluorescent reporters in LFAs provides more
quantitative results but faces challenges such as low emission levels, colloidal instability,
and chemical reactivity of complex colloids. These issues can compromise sensitivity and
assay stability [17]. Concurrently, introducing dual or multiple detection zones, which tar-
get several antigens or antibodies simultaneously, has enhanced specificity. However, these
strategies also present additional complexities in assay development and increase costs.
Multiple detection zones, while increasing specificity, may complicate result interpretation
and potentially increase the chances of non-specific binding. To overcome these challenges
and further enhance the effectiveness of LFAs, utilizing europium chelate (Eu [III]) nanopar-
ticles represents a significant advancement. Eu[III] nanoparticles offer enhanced sensitivity,
quantitative capabilities, and a longer fluorescence lifetime than traditional fluorophores,
thus reducing background noise and improving measurement accuracy [18].

Incorporating nanoparticles, especially gold nanoparticles [19,20] and quantum dots [21],
as labels has been instrumental in augmenting visibility and sensitivity. Nanoparticles
enhance the sensitivity and accuracy of lateral flow assays (LFAs) through multiple mecha-
nisms. Their high surface-area-to-volume ratio allows for more effective immobilization of
bio-recognition elements, leading to improved capture efficiency. Additionally, their unique
optical properties, such as localized surface plasmon resonance, amplify colorimetric sig-
nals for easier detection of low-abundance analytes. Uniform size and shape contribute to
assay reproducibility, thereby increasing accuracy. Furthermore, nanoparticles permit the
incorporation of advanced detection techniques like magnetic- or fluorescence-based meth-
ods, offering additional routes for performance optimization. Europium chelates (Eu[III])
nanoparticles have revolutionized immunoassay development by offering significantly
enhanced sensitivity and quantitative capabilities when compared to traditional particles,
such as colloidal gold. This improvement can be attributed to the unique properties of
europium chelate complexes, including their longer fluorescence lifetime (in microseconds,
µs) as opposed to traditional fluorophores (which typically have nanoseconds, ns). This
longer fluorescence lifetime allows for the collection of signals beyond the background
fluorescence’s lifetime [22]. Furthermore, europium chelates possess a long Stokes shift,
meaning that incident light from the excitation source (typically at a wavelength of around
330–340 nm) does not interfere with the detection of emitted light (typically at a wave-
length around 610–620 nm) [18]. These distinctive characteristics, in combination with the
availability of compact and portable time-resolved fluorescence (TRF) readers, open up
new opportunities in the advancement of rapid diagnostic assays.

In this study, we demonstrate an anti-human IgG kit that utilizes carboxylate-modified
polystyrene Eu (III) chelate microparticles (CM-EUs) as reporters to enhance the signal
generated from LFAs. These reporters are pivotal in developing a cutting-edge LFIA system
for precisely detecting anti-human IgG in human serum. To quantify results effectively, we
adopt intensity volume ratio (VR)—a key parameter to quantify the target concentration
that involves the fluorescence volume of both the test and control lines. Our comprehensive
evaluation of the proposed LFA system based on polystyrene Eu (III) chelate microparticles
includes establishing the linearity in signal response, analytical sensitivity, reproducibility,
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accuracy, and cross-reactivity. Our experimental findings unequivocally demonstrate the
potential of this methodology for quantitative analysis of anti-human IgG levels.

2. Materials and Methods
2.1. Reagents

Human IgG (I2511), anti-human IgG (I1886), anti-human IgG chain-γ-specific
(A6029), chicken IgY (CIgY), bovine serum albumin (BSA), and goat anti-chicken IgY
(anti-CIgY) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Additionally,
4-morpholineethanesulfonic acid (MES), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
hydrochloride (EDC), a centrifugal filter unit with an Ultracel-50 membrane, and N-
hydroxysulfosuccinimide (sulfo-NHS) were obtained from the same source. CM-EUs
(200 nm) were procured from Thermo Fisher Scientific Inc. (Waltham, MA, USA). Sample
pads, conjugate pads, nitrocellulose membranes, and absorbent pads sourced from Milli-
pore (Bedford, MA, USA). Trehalose was obtained from SRL Chemicals (Chennai, India).
The Automated Lateral Flow Reagent Dispenser (ALFRD) was purchased from Claremont
BioSolutions (Upland, CA, USA).

Buffer solutions, including sample pre-treatment buffer (1 × PBS, 0.5% BSA, 0.1%
T-20), conjugate pad pre-treatment buffer (1 × PBS, 0.5% BSA, 10% Sucrose, 0.1% T-20),
activating buffer (25 mm MES, pH 6.1), binding buffer (25 mm PB), wash buffer (1 × PBS,
0.5% BSA, 0.1% T-20), and blocking buffer (25 mm PB, 2% BSA), were freshly prepared
before use.

2.2. Preparation of CM-EUs Conjugation with Anti-Human IgG

To prepare CM-EUs conjugated with anti-human IgG, 2 mg of CM-EUs was suspended
in an activating buffer containing 10 mm sulfo-NHS and 1.25 mm EDC for one hour. The
mixture was then centrifuged at 15,000× g for 20 min at 8 ◦C to remove the supernatant. The
activated CM-EUs were washed twice and resuspended in a binding buffer. Subsequently,
50 µg of anti-human IgG was added to the activated CM-EUs, and the mixture was vibrated
for 2 h. Uncoupled conjugates were removed by centrifugation at 10,000× g for 15 min at
8 ◦C. After two washes, blocking buffer was added and shaken for 1 h. The supernatant
was discarded, and the conjugates were centrifuged at 10,000× g for 15 min at 8 ◦C. This
washing process was repeated thrice. Finally, the conjugates were resuspended in 0.2 mL
of labelling antibody dilution buffer, resulting in a CM-EUs concentration of 10 g/L. The
conjugates of CIgY and CM-EUs were prepared using the same method.

The CM-EU test strip construction encompassed a well-structured assembly of com-
ponents, including a sample pad, conjugate pad, NC membrane, and absorbent pad. For
this purpose, the conjugates of CM-EUs linked with anti-human IgG and those tethered
with CIgY were meticulously diluted to concentrations of 0.4 ng/mL and 0.025 ng/mL,
respectively. These judiciously formulated conjugates were then precisely dispensed onto
the conjugate pad at a rate of 5 µL/cm, employing a Claremount dispenser. Subsequently,
the laden pad was subjected to a gentle drying process at 37 ◦C for 2 h to ensure optimal
conjugate immobilization.

The crucial next step involved the strategic application of anti-human IgG and anti-
CIgY. Specifically, anti-human IgG, meticulously prepared at a concentration of 1 mg/mL,
was strategically dispersed onto an NC membrane at a controlled rate of 1 µL/cm. In
parallel, anti-CIgY, also thoughtfully prepared at a concentration of 1 mg/mL, was similarly
applied on the NC membrane. These distinct entities were destined to become the test and
control lines. The membrane was dried at 37 ◦C for 3 h to ensure their stability and integrity.

Precision was exercised in cutting the strip into 3 mm widths using a specialized
strip cutter to finalize the creation of the test strip. The resulting strips were then carefully
housed within strip cassettes, maintaining their structural integrity. It is worth noting
that the prepared test strips were stored in a controlled drying oven until they were ready
for use.
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This comprehensive procedure ensured the meticulous construction and preservation
of the CM-EUs-based test strip, setting the stage for accurate and reliable assay outcomes.

2.3. Calibration

Measurements were conducted in ng/mL units to establish accurate anti-human IgG
levels. These measurements were meticulously correlated with the First International Stan-
dard (2013) [23] for human IgG, assigned a standardized unit of 50 ng/mL, as established
by the National Institute for Biological Standards and Control (NIBSC), under the code
95/522. This internationally recognized anti-human IgG standard material, regarded as
the gold standard within our laboratory, served as the reference against which our LFIA
based on polystyrene Eu (III) chelate microparticles was calibrated. The calibration process
involved serial dilution of this certified standard material, ensuring a calibration range
characterized by a theoretical value-to-measured value ratio falling within the range of 0.9
to 1.1, signifying precision and accuracy.

2.4. Equation to Calculate the Volume Ratio

To calculate the volume ratio, we determine the pixel volume by summing all the
pixels within a designated region defined by both test and control lines. In the case of
the NC membrane, the test area is established, and the control lines maintain a consistent
size. We mark the measurements of rows and columns for these lines, effectively creating
rectangular boundaries for our region of interest (ROI).

The volumes of both the control and test lines are determined based on the values
obtained from 2D pixel intensity quantification within their respective boundaries. Below
are the equations for calculating the test volume (VT) and control volume (Vc).

VC = ∑Control line I(x, y)

VT = ∑Test line I(x, y) (1)

The volume ratio (VR) is the ratio of the test line volume (VT) to the control line
(VC) volume:

VR = VT/VC (2)

The result of the human IgG concentration is calculated by applying an assay-specific
calibration function, such as a polynomial curve, linear line curve, 4-parameter logistic
regression, or a power equation. The coefficient of variation (CoV) was calculated using
the equation

CoV = SD/mean × 100 (3)

2.5. Statistical Analysis

The human IgG standard curve was constructed by plotting the logit-log against the
logarithm of the corresponding human IgG concentrations (X). This involved defining the
VR (volume ratio) ratios between the human IgG standard as Bo (baseline) and Bx (sample).
To ensure the reliability of the results, signal linearity and correlations were scrutinized
using Pearson’s linear regression equation.

McNemar’s test and Pearson’s correlation were executed for comprehensive data
analysis using SPSS 13.0 (Chicago, IL, USA). A statistical significance threshold of p < 0.05
was applied. Furthermore, sample means and standard deviations (SD) were calculated
precisely using Microsoft Excel (version 2.12; Analyse-it Ltd., Leeds, UK). This meticulous
statistical approach ensured rigorous analysis, accuracy, and the generation of meaningful
correlations, supporting the results’ robustness.
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3. Results
3.1. Principle of the Assay Method

In lateral flow assays (LFAs), the primary working principle is capillary action that
draws the sample along the strip, facilitating interactions between the analyte and the
bio-recognition elements. The proposed LFA for quantifying human IgG levels follows
the principles of a sandwich lateral flow format, as shown in Figure 1. To initiate the
assay, a sample buffer containing human IgG is added to the sample pad. Utilizing the
capillarity of the absorbent pad, the carboxylate-modified polystyrene Eu (III) chelate mi-
croparticles (CM-EUs) conjugated with anti-human γ IgG migrate across the nitrocellulose
(NC) membrane and interact with the anti-human IgG on the test line. Simultaneously,
CM-EUs conjugated with chicken IgY are captured by anti-chicken IgY on the control line,
resulting in the appearance of a fluorescent band on both the test and control lines. This
results in distinct fluorescent bands at both the test and control lines. Upon completion
of the assay, the resultant test strip is assessed using a time-resolved fluorometry (TRF)
immunoanalyzer (Figure 2) [24], which accurately measures the volume ratio (VR) between
the test line and the control line (Figure 1). In the crux of this sandwich assay system, the
CM-EUs conjugated with anti-human IgG create a ‘sandwich’ formation with the human
IgG molecules present in the sample.
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Figure 1. The schematic diagram of the quantitative lateral flow assay utilizing the europium
nanoparticle. The blue drop represents the serum sample containing human IgG.

Notably, the fluorescence intensity exhibited on the test line is directly proportional to
the concentration of human IgG within the sample. This correlation ensures that higher
levels of human IgG yield more pronounced fluorescence signals. In stark contrast, the
fluorescence intensity observed at the control line remains almost constant across varying
human IgG concentrations. This steadfastness serves as an internal control mechanism,
affirming the accurate migration of the components throughout the assay and the functional
integrity of the overall process.
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Figure 2. Exploded view of the developed immunoanalyzer and its parts, such as optical components,
LED, and camera, were placed in a 3D-printed enclosure.

The precision of the method is primarily attributed to the use of the volume ratio
(VR) for measurement of intensities of the test and control lines, which enhances accuracy
and underscores its suitability for clinical applications. Our europium-nanoparticle-based
immunoanalyzer adopts an optical setup comprising an excitation source, a camera, and
fluorescence filters (Figure 2). When the strip is inserted into the TRF, a 365 nm ultraviolet-
light-emitting diode (LED) illuminates the strip. The camera positioned directly above the
test strip captures the emitted fluorescence signals. The incorporation of a wavelength-
selective dichroic mirror and an emission-side filter ensures only the wavelength-shifted
re-emitted fluorescence light reaches the camera, effectively filtering out the intense source
light. This design permits high gain and prolonged exposure durations, enabling the
detection of fluorescence from dilute concentrations. All optical elements, including the
LED and camera, are housed within a 3D-printed enclosure.

3.2. Optimization of Europium Chelate LFA

To enhance the efficiency and sensitivity of our fluorescent lateral flow immunoassay,
we systematically optimized various critical factors affecting assay performance. These
factors included the quantity of CM-EUs (carboxylate-modified polystyrene europium
chelate) conjugated with the detection antibody (goat anti-human IgG (γ-chain-specific))
on the conjugation pad and the concentration of the capture antibody (antibody–human
IgG) on the test line. Our optimization process involved adjusting one parameter while
keeping the others constant, as detailed in Table 1 and illustrated in Figures 3 and 4.

Table 1. Optimization of LFA concentration parameters.

Type of Parameters Parameters Tested Selected Parameter

Concentration of detection
antibody in the conjugation pad 0.2, 0.4, 0.6, 0.8 ng/mL 0.4 ng/mL

Concentration of capture antibody
in the test line 0.5, 1.0, 1.5 mg/mL 1 mg/mL
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comparing volume ratio (VR) with varying amounts of the capture antibody coated on the test line
against the three concentrations of the human IgG (1.5, 1.0, and 0.5 mg/mL). (n = 3).

3.3. Effect of Detection Antibody (DAB) Concentration on the Conjugation Pad

Determining the optimal concentration for antibody labeling can lead to improved sen-
sitivity and specificity of the assay. If the signal intensity does not increase proportionally
with the antibody amount, then an excess of antibodies could potentially lead to wastage or
even reduce the accuracy of the assay. This study focused on the evaluation of four distinct
concentrations of the detection antibody (DAB)–anti-human IgG (γ-chain-specific), labelled
with CM-EUs: 0.2, 0.4, 0.6, and 0.8 ng/mL. To optimize the parameter, we consistently
employed Human IgG concentrations of 2.5, 10, and 20 ng/mL throughout our experimen-
tal runs. A notable observation was the increasing volume ratio (VR) in tandem with the
concentration of antibodies labelled with CM-EUs, peaking at 0.4 ng/mL, and subsequently
showing a decline (Figure 3). This non-linear relationship between signal intensity and
the antibody amount per CM-EUs suggests that there might be an optimal concentration
range for antibody labelling, beyond which saturation or other inhibitory effects could be
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influencing the results. One potential explanation could be steric hindrance or competitive
binding, where increasing concentrations of antibodies might prevent effective labelling or
interaction with CM-EUs. Additionally, it’s possible that at higher concentrations, there
might be aggregation of antibodies or CM-EUs, leading to decreased signal detection. This
observation underscores the importance of meticulous calibration and optimization in
assay development to ensure reliability and reproducibility. Consequently, we selected
anti-human IgG (γ-chain-specific), labelled with CM-EUs at a concentration of 0.4 ng/mL
as the optimal amount for each strip.

3.4. Impact of Capture Antibody (CAB) Quantity on the Test Line

We also examined the impact of the concentrations of the capture antibody (CAB)
on the test line corresponding to CAB = 0.5, 1.0, and 1.5 mg/mL. In Figure 4, we present
the outcomes from detecting varied human IgG concentrations (1, 10, 100 ng/mL) under
specific CAB conditions. The data indicate that a CAB concentration of 1 mg/mL is optimal,
offering the highest sensitivity and detection range. This can be attributed to a balance
between antibody availability and potential steric or competitive effects. At lower CAB
concentrations, there might be insufficient antibody to effectively capture and form com-
plexes with the target human IgG. Conversely, at higher concentrations, there could be
instances of antibody aggregation, reduced mobility, or even competitive binding, thereby
compromising the assay’s sensitivity. Considering factors such as the volume ratio and
cost-effectiveness, we determined that the optimum amount of capture antibody on the
test line should be 1 mg/mL, used in subsequent assays.

The validation of the immunoassay kits developed is a comprehensive procedure to
determine the kit’s appropriateness for its designated use. This validation aims to confirm
the kit’s ability to produce consistent, accurate analytical data. For the human IgG LFIA kit,
the validation involves a set of tests as outlined in the CDER guidance protocol [25]. The
key parameters for method validation encompass linearity, analytical sensitivity, limit of
detection, precision, and stability [26,27].

3.5. Linearity and Analytical Sensitivity

The fundamental objective of this analysis was to discern the linearity and analytical
sensitivity of the assay with respect to human IgG concentrations. To this end, a range of IgG
concentrations (0, 50, 100, 150, 200 ng/mL) was chosen and accurately integrated within the
sample buffer. Upon analysis using the europium-based lateral flow strip reader, the data
reveal a definitive calibration curve (Figure 5). This curve was formulated by rigorously
documenting the fluorescence intensities and juxtaposing the volume ratio (VR) with the
respective human IgG concentrations. The obtained relationship is succinctly represented
by the equation VR = 0.0092 × [IgG] + 0.0981 with a high correlation coefficient of r = 0.9981,
which is indicative of the assay’s pronounced linearity and its ability to precisely quantify
human IgG across the entire concentration range down to a concentration of 0.04 ng/mL.
The high degree of linearity observed suggests minimal interference or anomalies in the
assay, which can be attributed to the preparation of standards and the inherent efficiency of
the europium-based lateral flow system.

In immunoassay test kits, terms like sensitivity, limit of detection (LoD), and limit of
blank (LoB) denote the minimum detectable concentration of an analyte with significant
reliability [28]. In accordance with these guidelines, we determined the LoB and LoD.
The calculated LoB was 0.004 ng/mL, derived from the mean of blank values augmented
by 1.645 times the standard deviation (n = 20). The LoD was set at 0.003 ng/mL, which
is thrice the standard deviation of blank measurements (n = 20). These findings are
summarized in Table 2. The high correlation coefficient combined with an extremely low
LoD underscore the assay’s reliability and its potential utility in diverse applications where
accuracy is paramount.
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Figure 5. A calibration curve was constructed to detect human IgG using LFA cartridges. This
involved utilizing an analytical strip made of nitrocellulose and utilizing Eu-labelled detection. The
central parameter employed in this evaluation was the ratio of pixel volume between the test line
and the control line, denoted as VR (VR = VT/VC). This ratio was plotted against the concentration of
human IgG. The experiments were executed in triplicate, ensuring robustness, and the resultant data
were subjected to fitting via linear regression.

Table 2. Summary of the linear fitting and limit of detection parameters for the europium-based
lateral flow assay.

Parameter Eu-LFA

slope 0.0092

intercept 0.0981

R 0.9981

LOD (ng/mL) 0.004

LoB (ng/mL) 0.003

3.6. Precision

Precision in immunoassays is categorized into intra-assay and inter-assay types. Intra-
assay precision measures the consistency of results within a single experimental run,
indicating short-term reliability. Inter-assay precision assesses variability across multiple
runs, different operators, or reagent batches, providing insight into long-term robustness.
Both types of precision are essential for ensuring the assay’s overall accuracy and reliability
in diverse settings and are typically evaluated by measuring the same sample multiple
times under varying conditions.

For the intra-assay evaluation, the experiment was executed within a singular day,
encompassing ten replicates at each specified concentration: 0.5, 5, and 500 ng/mL. Con-
trastingly, the inter-assay was spread over three consecutive days, with each day witnessing
three replicates at the aforementioned concentrations. The data generated were scrutinized
by using one-way analysis of variance (ANOVA), and the results were summarized in
Table 3. The inter-assay’s coefficient of variation spanned a range from 4.5% to 5.1%.
Meanwhile, the intra-assay exhibited a more constricted range, from 4.7% to 4.5%. Such
tight ranges in coefficient of variation values are indicative of the assay’s high degree of
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consistency and reproducibility. The statistical significance of the results, residing com-
fortably within the permissible thresholds, further bolsters the validity of the assay. These
data, in conjunction with the observed coefficients of variation, justify the assay’s potential
suitability for clinical analytical applications.

Table 3. Inter-assay and intra-assay variability for the human IgG lateral flow assay.

Inter-Assay

Human IgG (ng/mL) Mean SD cv

0.5 10.8 6.0 4.5

5 35.9 1.7 4.9

500 131.8 0.5 5.1

Intra-Assay

Human IgG (ng/mL) Mean SD cv

0.5 12.7 5.2 4.7

5 37.5 3.2 5.2

500 137.2 0.7 4.5

3.7. Stability of the LFIA Kit

Another pivotal aspect of the LFIA kit’s utility is its stability as this dictates the per-
missible storage duration post-preparation before the kit is subjected to the final analysis.
Establishing this parameter is quintessential to ensure that the analyte’s performance
remains unscathed, leading to consistent and trustworthy outcomes. To determine the
stability of the LFIA strips, an accelerated aging test was employed. For this, the strips
were sequestered at a temperature of 37 ◦C, spanning a time frame of seven days. A note-
worthy observation from this test was the volume ratio (VR) consistency, which showcased
negligible variance throughout the accelerated aging test, even under the elevated temper-
ature condition for the entire week (Figure 6). The consistency in VR values is indicative
of the strip’s high resilience against potential degradation or alteration in performance
due to prolonged storage. In essence, the strips appear to retain their efficacy and are
likely to produce reproducible results even after being stored for extended periods under
specified conditions.
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Figure 6. Evaluation of LFIA storage stability with accelerated ageing tests. The LFIA strips were
stored at 37 ◦C in aluminum pouches with desiccant. Every single day for one week, three strips
were removed from each set and used to analyze samples.
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4. Conclusions

Our research evaluates the quantitative performance of a europium-based lateral flow
assay (LFA) designed for the precise quantification of human IgG levels. This assay com-
bines a distinct architecture with an analytical strip formed of nitrocellulose and Eu-labelled
detection to enable a robust and sensitive platform for accurately determining human IgG
concentrations. The concentrations of both detection and capture antibodies on the strip
were optimized to enhance the LFA strip’s performance. The subsequent calibration curve
between the IgG concentration in the sample and the measured intensity ratio (VR) estab-
lishes the linearity and analytical sensitivity of our method, presenting a high correlation
coefficient (r = 0.99) and an extremely low limit of detection (LoD = 0.04 ng/mL). Our
precision assessment, bifurcated into intra-assay and inter-assay evaluations, underlines
the method’s remarkable consistency and reproducibility. The observed coefficients of
variation, consistently narrow across both types of precision tests, further reinforce the
assay’s potential clinical applicability. The uniformity in i values, despite a week-long
storage at 37 ◦C, attests to the strip’s robustness against degradation, emphasizing its
potential for prolonged storage without compromising on efficacy.

While our findings underscore the potential of the europium-based lateral flow assay
(LFA) method in quantifying human IgG levels, they also highlight several challenges
inherent to the study and the broader field of LFA. Real-world patient samples may
introduce variances due to factors like sample matrix effects, concomitant medications, or
disease states. Future studies should seek to adapt and validate the assay for a diverse
range of analytes and biomarkers beyond human IgG, including real patient samples to
establish its broader clinical applicability. This advancement contributes to the arsenal
of diagnostic tools available to healthcare professionals, with promising implications for
disease monitoring, diagnosis, and patient care.
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