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Abstract: MEMS gyroscopes are widely applied in consumer electronics, aerospace, missile guidance,
and other fields. Reliable packaging is the foundation for ensuring the survivability and performance
of the sensor in harsh environments, but gas leakage models of wafer-level MEMS gyroscopes are
rarely reported. This paper proposes a gas leakage model for evaluating the packaging reliability of
wafer-level MEMS gyroscopes. Based on thermodynamics and hydromechanics, the relationships
between the quality factor, gas molecule number, and a quality factor degradation model are derived.
The mechanism of the effect of gas leakage on the quality factor is explored at wafer-level packaging.
The experimental results show that the reciprocal of the quality factor is exponentially related to gas
leakage time, which is in accordance with the theoretical analysis. The coefficients of determination
(R2) are all greater than 0.95 by fitting the curves in Matlab R2022b. The stable values of the quality
factor for drive mode and sense mode are predicted to be 6609.4 and 1205.1, respectively, and the
average degradation characteristic time is 435.84 h. The gas leakage time is at least eight times the
average characteristic time, namely 3486.72 h, before a stable condition is achieved in the packaging
chamber of the MEMS gyroscopes.

Keywords: MEMS gyroscope; quality factor; packaging reliability; wafer-level vacuum sealing;
degradation model

1. Introduction

The microelectromechanical system (MEMS) represents a sophisticated microintel-
ligent system that leverages microelectronics, micromechanics, and related technologies
to integrate sensors, actuators, and signal transmission components [1]. MEMS sensors
exhibit key attributes such as compact size, lightweight design, and cost-effectiveness, and
they are on the brink of achieving passive operation, miniaturization, and immunity to
interference [2]. With the relentless progression of technology, MEMS sensors have found
widespread utility across various domains, including consumer electronics, aerospace,
military equipment, biomedicine, and more [3]. Notably, MEMS sensors usually rely on
movable resonant structures, such as gyroscopes and accelerometers.

To optimize the performance of these devices, it is important to reduce the air damping
of their moving structures. High-vacuum packaging serves to achieve this point, thereby
obtaining a high Q-value, particularly in the case of gyroscopes [4]. Nowadays, the Q-value
of high-performance gyroscopes can exceed 100,000 or even 1,000,000, underscoring the
increasing importance of packaging reliability [5]. However, it is imperative to acknowledge
that the vacuum within the MEMS chamber is subject to gradual degradation over time,
exerting a direct impact on the performance of vacuum-packaged MEMS sensors and
posing a significant threat to their long-term reliability [6]. Consequently, the issues of
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vacuum degradation and subsequent failure represent recurrent challenges encountered in
the context of vacuum-packaged MEMS sensors [7].

Wafer-level packaging encapsulates MEMS structures on silicon chips between bonded
wafers through surface micromachining and electrical interconnections [8,9]. It has the
advantages of low cost, mass production, and high reliability. In 2019, Faisal Iqbal et al.
fabricated a multiaxis gyroscope at 100 mTorr using wafer-level packaging, which has a
high sensitivity of 12.56 µV/dps, 17.13 µV/dps, and 25.79 µV/dps in the roll, pitch, and
yaw modes, respectively [10]. In 2021, Mustafa Mert Torunbalci et al. proposed a simple
all-silicon wafer-level packaging method that achieves good hermeticity after temperature
cycling (25–85 ◦C) and harsh temperature shocks (5 min @ 300 ◦C) [11]. A MEMS disk
resonant gyroscope based on wafer-level packaging was reported by Hao Wang et al.,
achieving an angular random walk (ARW) of 0.05◦/

√
h and a bias instability of 0.42◦/h

within a full scale of ±300◦/s [12].
While previous studies have established the relationship between the quality factor

and temperature [13–16], research on the relationship between the quality factor and air
pressure has rarely been reported. It is noteworthy that the impact of temperature on
sensors can be mitigated through circuit compensation [17,18], but the effect of variations
in gas pressure is generally difficult to compensate by circuitry, which leads to significant
degradation of gyroscope performance [19,20]. Therefore, this paper focuses on elucidating
the effects of pressure changes on the Q-value of MEMS gyroscopes.

Apart from temperature, gas leakage will cause pressure fluctuations in MEMS gy-
roscopes [21,22]. The internal pressure and leakage rate of the wafer-level packaged
gyroscopes can be monitored by FIB and capacitance [23,24]. In 2019, Hengmao Liang
et al. proposed a low-cost, 3D wafer-level packaging technology based on a coplanar Au-Si
bonding structure [25]. The leak rate of the packaged chips (the cavity volume is ~0.0015 cc)
is 5× 10−8 atm·cc s−1 according to the MIL-STD-883F standard [26]. A wafer-level vacuum
encapsulation method for sealing cavities by Au-Al thermocompression bonding at 250 ◦C
has been proposed with a leak rate smaller than 2.8 × 10−14 mbarL/s [27]. In 2021, a novel
solid–liquid interdiffusion (SLID) bonding process was reported, which yielded a leak
value lower than 0.1 × 10−9 atm·cm3/s [28]. Nevertheless, there is a lack of theoretical
studies on the model of gas leakage within wafer-level packaged gyroscopes. As a result,
analyzing the pressure variation caused by gas leakage at wafer-level packaging is the
focus of this work.

To eliminate the effect of temperature on pressure, it is essential to develop a degrada-
tion model at room temperature [29]. In our previous work, we developed a quality factor
degradation model for device-level packaged gyros based on internal material outgassing,
ignoring the effect of air leakage [30]. Considering that wafer-level packaging is an in-
evitable trend for high-performance gyroscopes, we performed long-term degradation tests
for the two-mode quality factors of vacuum-sealed gyroscopes stored at room temperature,
aiming to investigate packaging reliability and the degradation model for quality factors in
wafer-level packaged gyroscopes.

2. Theoretical Analyses

The wafer-level vacuum-packaged gyroscope is shown in Figure 1. The movable
structure of the gyroscope is enclosed within a vacuum chamber, utilizing a “sandwich”
structure by anodic bonding between the glass substrate and the glass cover. The glass
base below contains the electrodes and isolation layers. However, gas leakage within
the encapsulation leads to an increase in the number of free gas molecules, resulting in
variations in internal pressure and quality factors in the cavity.

Figure 2 illustrates a simplified gas leakage process in the vacuum chamber. As the
length and width of the vacuum-encapsulated cavity are significantly larger than the height,
the gas diffusion region is seen as a two-dimensional plane. Assuming that initially there
is a vacuum in the cavity, the outside gas diffuses from the boundary to the center of the
cavity. The gas molecules are uniformly distributed along the x-z cross-section and the y-z
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cross-section, with diffusion along the x and y axes. Eventually, the gas within the cavity
will reach dynamic equilibrium with the external gas at room temperature. Therefore,
based on the principles of thermodynamics and fluid mechanics, the relationships between
the quality factors of dive mode and sense mode (Qd and Qs), pressure (p), gas molecule
number (N), and their degradation models can be derived in detail.
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Figure 2. The simplified process of gas leakage, model derivation of quality factors (Qd and Qs), 
and number of gas molecules (N). 

2.1. The Effect Mechanism of Gas Leakage 
The relationship between the quality factor, air pressure, and gas number can be de-

duced as follows: 
According to the principle of thermodynamics, the gas viscosity coefficient µ0 can be 

obtained as [31]: 
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wafer-level vacuum-packaged gyroscopes.
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Figure 2. The simplified process of gas leakage, model derivation of quality factors (Qd and Qs), and
number of gas molecules (N).

2.1. The Effect Mechanism of Gas Leakage

The relationship between the quality factor, air pressure, and gas number can be
deduced as follows:

According to the principle of thermodynamics, the gas viscosity coefficient µ0 can be
obtained as [31]:

µ0 =
1
3

ρvλ =
Nvτ

3V

√
8kbTm0

π
(1)

where v is mean velocity, λ is mean free path, and ρ is gas density, which equations can
be expressed from Maxwell’s velocity distribution law; kb, m0, and τ are the Boltzmann
constant, the mass of a molecule, and the mean free time, respectively; T is the temperature;
V is the volume of the sealed cavity; and N is the number of gas molecules.

The quality factor is strongly related to the air damping of the gyroscope, which mainly
includes slide-film damping and squeeze-film damping. Slide-film damping is caused
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by the parallel motion of two flat plates while maintaining a constant gap. Squeeze-film
damping is caused by the relative vertical movement of the two flat plates. Based on
thermodynamic theory, the damping coefficient of slip-film combs cslide and squeeze-film
combs csqueeze can be expressed as [32]:{

cslide =
µ0S

d

csqueeze =
σµ0w3l

d3

(2)

where S is the overlapped area of the plate capacitor, d is the gap between the combs, w
and l are the width and length of the plate capacitor, respectively, and σ is a parameter
determined by w/l. If w/l = 1, then σ = 0.427. If w/l → 0 , then σ = 1. Then, we can
obtain [33]:

csqueeze

cslide
=

σw3l
d2S

=
σw2

d2 (3)

Based on the definition of the quality factor, the quality factors of the two modes can
be derived as [33]:

Qs =
msωs

csqueeze
=

d3msωs

σµ0w3l
, Qd =

mdωd
cslide

=
dmdωd

µ0S
(4)

where ms, cs, ωs, and Qs represent the mass, damping coefficient, resonant frequency,
and quality factor of the sense mode, respectively. md, cd, ωd, and Qd represent the mass,
damping coefficient, resonant frequency, and quality factor of the drive mode, respectively.

According to the ideal gas state equation, there is [31]:

pV = NkbT (5)

where p is the internal pressure. Thus, utilizing the previous equation, we can deduce [30]:

Qs =
3πd3msωs

8σw3lτp
, Qd =

3πdmdωd
8Sτp

(6)

The relationships between the quality factor, air pressure, and gas number can be
simplified to

p(t) ∝ N(t) ∝ Q−1(t) (7)

It can be seen that the internal pressure is directly proportional to the number of gas
molecules and inversely proportional to the quality factor. Therefore, gas leakage due to the
failure of the wafer package will increase the internal air pressure, resulting in a decrease
in the quality factor.

2.2. Degradation Models Based on Gas Leakage

Simplify the enclosed cavity into a rectangle with length and width of 2lx and 2ly,
respectively. By assuming that the cavity is initially under vacuum, it is inferred that
external gas molecules will gradually diffuse from the boundary toward the center. Taking
the center of the cavity as the origin, establish a rectangular coordinate system, as shown in
the figure. Due to the symmetry of gas diffusion, only the first quadrant is analyzed here.
The maximum diffusion lengths along the x and y directions are lx and ly, respectively. The
gas diffusion equation and boundary conditions are as follows:

∂u
∂t = D

(
∂2u
∂x2 +

∂2u
∂y2

)
, (0 < x ≤ lx, 0 < y ≤ ly)

∂u
∂x |x=0 = ∂u

∂y

∣∣y=0 = 0, ∂u
∂x

∣∣x=lx = ∂u
∂y

∣∣∣y=ly = − b
k (u− u0)

u(x, y, 0) = 0

(8)
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where u(x, y, t) is the instantaneous gas density, x and y are the distances from the center of
the cavity, respectively, t is the gas diffusion time, u0 represents the external gas density,
which affects the rate of gas leakage, D is the gas diffusion coefficient, and b and k represent
the heat transfer coefficient and thermal conductivity, respectively.

If θ = u− u0, the equation for the definite solution is:
∂θ
∂t = D

(
∂2θ
∂x2 +

∂2θ
∂y2

)
, (0 < x ≤ lx, 0 < y ≤ ly)

∂θ
∂x |x=0 = ∂θ

∂y

∣∣y=0 = 0, ∂θ
∂x

∣∣x=lx = ∂θ
∂y

∣∣∣y=ly = − b
k θ

θ(x, y, 0) = −u0 = θ0

(9)

First, we assume that θ(x, y, t) = X(x)Y(y)T(t) by using the method of separation of
variables, and we can obtain:

X(x)Y(y)
dT
dt

= D(Y(y)T(t)
∂2X
∂x2 + X(x)T(t)

∂2Y
∂y2 ) (10)

Equation (10) can be expressed as:

1
DT(t)

dT
dt

=
1

X(x)
∂2X
∂x2 +

1
Y(y)

∂2Y
∂y2 = −λ (11)

If both sides of Equation (11) are equal to the constant −λ, we can obtain:

T′(t) + λDT(t) = 0 (12)

1
X(x)

∂2X
∂x2 = −

(
λ +

1
Y(y)

∂2Y
∂y2

)
= −µ (13)

Similarly, if both sides of Equation (13) are equal to a constant −µ, the equation for
X(x) can be isolated as follows:{

X′′ (x) + µX(x) = 0
X′(0) = 0, X′(lx) = − b

k X
(14)

First, we discuss the solution to Equation (14).
1© If µ < 0, assuming that µ = −β2 and β > 0, then the general solution of

Equation (14) is:
X(x) = C1eβx + C2e−βx (15)

From boundary condition X′(0) = 0, we can obtain X′(0) = (C1 − C2)β = 0. Since
β > 0, C1 = C2. From boundary condition X′(lx) = − b

k X, we can yield:

C1β(eβlx − e−βlx ) = − b
k
(eβlx + e−βlx )C1 (16)

If C1 6= 0, then Equation (16) can be shown as:

− k
blx

βlx =
eβlx + e−βlx

eβlx − e−βlx
= coth(βlx) (17)

Now, assuming that Z1 = − k
blx

βlx and Z2 = coth(βlx), we found that Z1 and Z2 have
no intersection from Figure 3. Equation (17) has solutions only if C1 = 0. We can obtain
C1 = C2 = 0 and X(x) ≡ 0, which is a trivial solution. Therefore, µ < 0 is not valid.



Micromachines 2023, 14, 1956 6 of 12

Micromachines 2023, 14, x FOR PEER REVIEW 6 of 13 
 

 

( ) ( ) 0

(0) 0, ( )x

X x X x
bX X l X
k

μ′′ + =

 ′ ′= = −

 (14) 

First, we discuss the solution to Equation (14). ① If 𝜇 < 0, assuming that 𝜇 = −𝛽  and 𝛽 > 0, then the general solution of Equa-
tion (14) is: 

1 2( ) x xX x C e C eβ β−= +  (15) 

From boundary condition 𝑋′(0) = 0 , we can obtain 𝑋′(0) = (𝐶 − 𝐶 )𝛽 = 0 . Since 𝛽 > 0, 𝐶 = 𝐶 . From boundary condition 𝑋′(𝑙 ) = − 𝑋, we can yield: 

1 1( ) ( )x x x xl l l lbC e e e e C
k

β β β ββ − −− = − +  (16) 

If 𝐶 0, then Equation (16) can be shown as: 

( )
x x

x x

l l

x xl l
x

k e el coth l
bl e e

β β

β ββ β
−

−

+− = =
−

 (17) 

Now, assuming that 𝑍 = − 𝛽𝑙   and 𝑍 = 𝑐𝑜𝑡ℎ(𝛽𝑙 ) , we found that 𝑍   and 𝑍  
have no intersection from Figure 3. Equation (17) has solutions only if 𝐶 = 0. We can 
obtain 𝐶 = 𝐶 = 0  and 𝑋(𝑥) ≡ 0 , which is a trivial solution. Therefore, 𝜇 < 0  is not 
valid. 

 
Figure 3. Diagram of the solution to Equation (17). ② If 𝜇 = 0, then the solution of Equation (14) is 

1 2( )X x C x C= +  (18) 

Substituting 𝑋′(0) = 0  into Equation (18), we can yield 𝐶 = 0 . Substituting 𝑋 (𝑙 ) = − 𝑋  into Equation (18), we can obtain 𝐶 = − (𝐶 𝑙 + 𝐶 ) . Thus, 𝐶 = 0 , 𝑋(𝑥) ≡ 0, and 𝜇 = 0 are not valid. ③ If 𝜇 > 0, assuming that 𝜇 = 𝛽  and   𝛽 > 0, then the general solution of Equation 
(14) is 

1 2( ) sin cosX x C x C xβ β= +  (19) 

Figure 3. Diagram of the solution to Equation (17).

2© If µ = 0, then the solution of Equation (14) is

X(x) = C1x + C2 (18)

Substituting X′(0) = 0 into Equation (18), we can yield C1 = 0. Substituting
X′(lx) = − b

k X into Equation (18), we can obtain C1 = − b
k (C 1lx + C2

)
. Thus, C2 = 0,

X(x) ≡ 0, and µ = 0 are not valid.
3© If µ > 0, assuming that µ = β2 and β > 0, then the general solution of

Equation (14) is
X(x) = C1 sin βx + C2 cos βx (19)

We can obtain C1 = 0 by substituting X′(0) = 0 into Equation (19). Equation (14) is
derived as

X(x) = C2 cos βx (20)

Equation (13) can be deduced as

1
Y(y)

∂2Y
∂y2 = −λ + µ (21)

If λ = µ + η, then the equation for Y(y) is obtained as{
Y′′ (y) + ηY(y) = 0

Y′(0) = 0, Y′(ly) = − b
k Y

(22)

Similarly, Equation (22) has a nontrivial solution only if η > 0. Supposing η = γ2, the
general solution of Equation (15) is Y(y) = D1sin(γy) + D2cos(γy). We can yield D1 = 0
by substituting the boundary condition into the above formula. Consequently, the solution
to Equation (22) is:

Y(y) = D2 cos γy (23)

For the differential Equation (12), the categorical variables are used. Integrating both
sides and taking the logarithm, it is obtained as:

T(t) = A exp(−λDt) (24)

where A is the integration constant, and θ(x, y, t) can be written as

θ = A exp(−λDt)C2 cos(βx)D2 cos(γy) (25)
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Substituting Equations (20) and (23) into the boundary conditions X′(lx) = − b
k X and

Y′
(
ly
)
= − b

k Y, respectively, we can yield:

cot(βlx) =
βk
b

(26)

cot(γly) =
γk
b

(27)

The transcendental Equation (26) can be solved by the graphical method. Supposing
that Z3 = cot(βlx) and Z4 = k

blx
βlx, the curves for Z3 and Z4 are shown in Figure 4,

respectively. The intersections of the curves are the solutions of Equation (26).
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Figure 4. Diagram of the solution to the transcendental Equation (26).

According to the above graph, there are infinite values of β (noted as β1, β2 . . . . . . βm).
Each β corresponds to one form of Equation (25). Similarly, we found numerous γ (noted
as γ1, γ2 . . . . . . γn) based on the graphical method and corresponding Equation (23). By the
superposition principle of solution, Equation (25) can be written as

θ(x, y, t) =
∞

∑
m=1

∞

∑
n=1

exp(−λDt)E1m cos(βmx)G1n cos(γny) (28)

where E1m and G1n are integration constants, and A is combined with E1m. To solve for E1m
and G1n, substituting Equation (28) into the boundary condition θ(x, y, 0) = −u0 = θ0, we
can yield:

θ0 =
∞

∑
m=1

∞

∑
n=1

E1mG1n cos(βmx) cos(γny) (29)

Equation (30) multiplied by cos
(

βpx
)
dx, cos

(
γqy
)
dy and integrated from −lx to lx for

x and from −ly to ly for y, respectively. It can be deduced as:

θ0

∫ lx

−lx

∫ ly

−ly
cos βpx cos γqydxdy =

∫ lx

−lx

∫ ly

−ly

∞

∑
m=1

∞

∑
n=1

E1mG1n cos βmx cos γny cos βpx cos γqydxdy (30)

Since the above integrals are orthogonal, Equation (30) can be written as:

θ0

∫ lx

−lx
cos βpxdx

∫ ly

−ly
cos γqydy = E1mG1n

∫ lx

−lx
cos2(βmx)dx

∫ ly

−ly
cos2(γny)dy (31)
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Therefore, the solution of E1mG1n is deduced as:

E1mG1n =
θ04 sin(βmlx) sin

(
γnly

)
[βmlx + sin(βmlx) cos(βmlx)]

[
γnly + sin

(
γnly

)
cos
(
γnly

)] (32)

Substitute Equation (32) into Equation (28). From Equation (9), we know that θ0 = −u0.
Equation (28) can then be written as:

θ = −
∞

∑
m=1

∞

∑
n=1

u04 sin(βmlx) sin
(
γnly

)
cos βmx cos γny exp(−λmnDt)

[βmlx + sin(βmlx) cos(βmlx)]
[
γnly + sin

(
γnly

)
cos
(
γnly

)] (33)

The higher-order terms are ignored in the above equations, only the first-order compo-
nent is considered (m = 1, n = 1), and θ = u− u0. The gas density can be deduced as:

u = u0 −
u04 sin(βlx) sin

(
γly
)

cos βx cos γy exp(−λDt)
[βlx + sin(βlx) cos(βlx)]

[
γnly + sin

(
γly
)

cos
(
γly
)] (34)

Integrating θ(x, y, t) over −lx to lx and −ly to ly, the number of gas molecules N(t) in
the cavity can be calculated as:

N(t) = 4lxlyu0 −
16u0 sin2(βlx) sin2(γly

)
exp(−λDt)

βγ[βlx + sin(βlx) cos(βlx)]
[
γly + sin

(
γly
)

cos
(
γly
)] (35)

Consequently, the degradation model can be obtained as

Q−1(t) ∝ N(t) = a− b exp(−ct) (36)

where a, b, and c are constants, which can be yielded by comparing Equations (35) and (36).

a = 4lxlyu0 (37)

b =
16u0 sin2(βlx) sin2(γly

)
βγ[βlx + sin(βlx) cos(βlx)]

[
γly + sin

(
γly
)

cos
(
γly
)] (38)

c = λD (39)

The coefficients a, b, and c depend on factors such as the dimensions of the vac-
uum chamber, external temperature, pressure, etc. The physical meanings of the model
parameters a, b, and c are as follows:

Parameter a denotes the quantity of gas molecules in the sample cavity, determined by
the cavity size and external gas density. It also governs the final quality factor’s magnitude.
Parameter b indicates that chamber size and pressure affect the degradation level. Parameter
c characterizes the quality factor’s degradation rate, which is dependent on the gas diffusion
coefficient and temperature.

Since equation Q(t)−1 ∝ N(t) = a − bexp(−ct) serves as a simplified model,
Equations (37)–(39) can only calculate the parameters a, b, and c in equation N(t) =
a− bexp(−ct), which are used to predict the number of gas molecules N(t). The parameters
a, b, and c fitted from the experimental data are specific to equation Q(t)−1 = a− bexp(−ct),
which is used to predict the quality factor Q(t). In summary, while the parameters in equa-
tion N(t) = a− bexp(−ct) can be computed using Equations (37)–(39), the parameters in
equation Q(t)−1 = a− bexp(−ct) cannot be directly obtained by Equations (37)–(39).

When t = 0, N(t) ≈ 0, which means that the number of gas molecules in the initial
state of the chamber is approximately 0, namely, the vacuum state. The correctness of the
theoretical derivation is confirmed by fitting the experimental data in Matlab to obtain
a ≈ b. When t tends to infinity, limt→∞N(t) = 4lxlyu0, which means that the number of gas
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molecules tends to a constant value 4lxlyu0, reaching the equilibrium state. The number
of gas molecules in the cavity is predicted by experimentally measuring the external gas
density u0. At the same time, the Q-value of both drive and sense modes reach stable
values. We, therefore, define a constant kq to describe the magnitude of the change of the

Q-value. The quality factor can be considered to reach a stable value when kq = |∆Q|
Q < 1%.

3. Experimental Results

To research the degradation of gyroscopes due to gas leakage in a practical situation, a
long-term degradation test of the two-mode quality factor was performed over 8 months.
During this period, the gyroscope was stored in a temperature-controlled chamber at room
temperature (25 ◦C). The two-mode quality factors corresponding to different times were
obtained through several tests. The results indicate a decrease in the quality factors from
several hundred thousand to several thousand. The internal encapsulation leaks slowly
at room temperature, and the air leakage causes a rise in air pressure and a decrease in
quality factors. It takes about 4 months to enter a plateau of natural degradation, but it is
not the end state. The relationship between 1/Qd and air leakage time t is approximately
exponential, as is the relationship between 1/Qs and gas leakage time t, according to the
data fitting analysis using Matlab. It is consistent with the analytical model of Equation (36),
thus validating the correctness of the theoretical analysis.

During a natural degradation time of about 1.5 months, it can be concluded that
parameters a, b, and c of the drive mode are 1.369 ∗ 10−4, 1.052 ∗ 10−4, and 3.35 ∗ 10−3,
respectively. The fitted curve is 1/Qd = 1.369 ∗ 10−4 − 1.052 ∗ 10−4 ∗ exp

(
−3.35 ∗ 10−3 ∗ t

)
.

The coefficient of determination (R2) is 0.98. For the sense mode, parameters a, b, and
c are 7.477 ∗ 10−4, 1.802 ∗ 10−4, and 3.269 ∗ 10−3, respectively. The fitted equation is
1/Qs = 7.477 ∗ 10−4 − 1.802 ∗ 10−4 ∗ exp

(
−3.269 ∗ 10−3 ∗ t

)
. The coefficient of determina-

tion (R2) is 0.96. The test results and fitting curves are shown in Figure 5.
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Over a period of approximately 8 months of natural degradation, the parameters
a, b, and c of the drive mode are 1.513 ∗ 10−4, 1.115 ∗ 10−4, and 2.159 ∗ 10−3, respec-
tively. The fitted equation is 1/Qd = 1.513 ∗ 10−4 − 1.115 ∗ 10−4 ∗ exp

(
−2.159 ∗ 10−3 ∗ t

)
.

The coefficient of determination (R2) is 0.95. For the sense mode, parameters a, b, and
c are 8.298 ∗ 10−4, 7.393 ∗ 10−4, and 2.448 ∗ 10−3, respectively. The fitted equation is
1/Qs = 8.298 ∗ 10−4 − 7.393 ∗ 10−4 ∗ exp

(
−2.448 ∗ 10−3 ∗ t

)
. The coefficient of determina-

tion (R2) is 0.97. The test results and fitting curves are shown in Figure 6. Thus, for Qd and
Qs, the final values of 1/a at room temperature are 6609.4 and 1205.1, respectively.
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In addition, the fitted values of 1.369 ∗ 10−4 and 1.513 ∗ 10−4 for the drive mode do
not differ greatly between two different time periods, and this is also the case for the sense
mode. However, due to the differences in parameters such as mass and resonant frequency
between the drive mode and the sense mode, the quality factors of the two modes are not
the same. Consequently, this leads to variations in the fitting values of the two modes. It
is important to note that Q(t)−1 is proportional to N(t) rather than Q(t)−1 being equal to
N(t). According to the definition of characteristic time (i.e., the time corresponding to the
completion of e−1 of the air leakage process), it can be calculated that the characteristic
times 1/c of drive mode and sense mode are 463.18 h and 408.5 h, respectively, and the
average degradation characteristic time is 435.84 h.

The fitted curves in Figure 6 indicate that the curves change from a sharp rise to a slow
rise at approximately 2000 h. After 2000 h, although the Q-value remains in a slow decline
for a long period of time, kq is extremely small, and the Q-value is approximately stable.
Based on the experimental data, the kq values for both the drive and detection modes are
0.007 at t = 3096 h, indicating that the Q-value changes are extremely small and stable.
Hence, to reach a steady state with air leakage inside the gyro package, the gas leakage
time is at least eight times the average characteristic time, namely 3486.72 h. Since the
natural aging time is too long for reliability design, temperature cycling tests for MEMS
gyroscopes can be adopted to accelerate the encapsulation leakage process, thus improving
the efficiency of package reliability research. Continuing this line of investigation will be a
key focus of our future research.

4. Conclusions

This paper presents a novel method for assessing the reliability of wafer-level, pack-
aged MEMS gyroscopes. Based on the principles of thermodynamics and hydrodynamics,
a detailed derivation of the relationships between quality factor, air pressure, and gas
number, as well as their degradation models, are presented. The results of degradation
tests have demonstrated an exponential relationship between the reciprocal of the quality
factor and the air leakage time at room temperature, which is consistent with the theoretical
analysis, and the coefficients of determination (R2) are all greater than 0.95. Based on
the experimental data, an equation describing the variation of quality factors Q(t) with
leakage time t was obtained by Matlab. This equation makes it possible to predict the
steady-state value of the quality factor under this condition, thereby assessing the reliability
of the gyroscope sealing against gas leakage. The limit values of the quality factor for the
two modes are predicted to be 6609.4 and 1205.1, respectively. The proposed model holds
potential for implementation in reliability design and the establishment of standards for
degradation tests.
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By fitting the experimental data to a mathematical model, a quantitative relationship
between the quality factor and time is established to extrapolate the long-term behavior of
the gyroscope’s quality factor. This predictive capability provides valuable insight into the
reliability of the gyroscope’s sealing mechanism, facilitating an evaluation of the stability
and effectiveness of the encapsulation process in preventing gas leakage. However, it is
important to note that gas leakage and natural degradation of the encapsulation at room
temperature exhibit an extremely slow progression, taking more than 4 months to reach
a degradation plateau. To expedite the design cycle for gas leakage package reliability,
our future research will focus on temperature cycling tests of wafer-level gyroscopes to
accelerate the gas leakage process. Additionally, these temperature cycling tests will foster
the expansion of cracks at material interfaces, ultimately allowing leakage to reach a stable
value. By reaching a steady state for gas leaks, the reliability of the gyroscope is expected
to be notably enhanced.

In summary, this study presents a comprehensive approach to assessing the reliability
of wafer-level packaged MEMS gyroscopes. The derived models and experimentally
validated results provide a deeper understanding of the degradation behavior and sealing
effectiveness of gas leakage. The proposed model has significant implications for reliability
design and the establishment of degradation test standards in the field of MEMS gyroscopes.
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