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Abstract: Gallium nitride (GaN) possesses remarkable characteristics such as a wide bandgap,
high critical electric field, robust antiradiation properties, and a high saturation velocity for high-
power devices. These attributes position GaN as a pivotal material for the development of power
devices. Among the various GaN-based devices, vertical GaN MOSFETs stand out for their numerous
advantages over their silicon MOSFET counterparts. These advantages encompass high-power
device applications. This review provides a concise overview of their significance and explores their
distinctive architectures. Additionally, it delves into the advantages of vertical GaN MOSFETs and
highlights their recent advancements. In conclusion, the review addresses methods to enhance the
breakdown voltage of vertical GaN devices. This comprehensive perspective underscores the pivotal
role of vertical GaN MOSFETs in the realm of power electronics and their continual progress.
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1. Introduction

Power semiconductor devices serve as the fundamental building blocks within a
power conversion system, exerting significant influence over factors such as system losses
and switching speed. The performance of these power devices is primarily characterized
by two key parameters: breakdown voltage (VBD) and on-resistance (RON). These charac-
teristics largely depend on the inherent material properties of semiconductors, including
carrier mobility and critical electric field. Traditionally, silicon (Si) has been a cornerstone
in the realm of power semiconductor devices. However, Si’s material limitations have
constrained its further advancement. Consequently, there is an increasing demand for
wide bandgap (WBG) semiconductors with bandgaps exceeding 3 eV and even ultra-wide
bandgap semiconductors with bandgaps exceeding 4.5 eV [1]. Among the suite of wide
bandgap materials, gallium nitride (GaN) has emerged as a pivotal material for crafting
power devices owing to its exceptional material properties, including a wide bandgap
of 3.4 eV, high critical electric field of 3.3 MV/cm, robust resistance to radiation, and im-
pressive saturation velocity [2,3]. In addition to their high voltage handling capabilities,
GaN-based power devices offer low RON and minimal conduction losses due to GaN’s
electron saturation rate, which is 2.8 times that of silicon [4,5]. Furthermore, GaN devices,
especially GaN HEMTs, exhibit high-speed switching performance attributable to their
small junction capacitance.

At present, GaN devices are categorized into three voltage ranges [6]. (a) Low (mid)-
voltage devices: These devices have a maximum drain-to-source voltage (VDS, max) of less
than 200 V. They find utility in various fields and are used in applications such as DC–DC
power converters, motor drives, class D audio amplifiers, solar microinverters, synchronous
rectifications, and LiDAR systems, among others. Depending on specific application
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requirements, these devices can exhibit RON values ranging from approximately 2 mΩ to
200 mΩ [7–10]. (b) High-voltage devices: The VDS, max for these devices goes up to 650 V.
They are used in applications such as industrial converters, telecommunication servers,
servo motor control, power adapters, consumer electronics adapters, class D amplifiers,
and data centers [11,12]. (c) Ultra-high-voltage devices: These devices have a VDS, max
greater than 1 kV. Currently, there are few commercially available GaN power devices in
the kV range. The highest voltage rating among commercially available GaN devices is
approximately 900 V [13], which is used in applications like industrial applications, EV
chargers, photovoltaic inverters, and more.

Leading companies such as Transphorm Inc., Infineon Technologies AG, GaN Systems Inc.,
Panasonic Corporation, Texas Instruments Inc., and others are actively working on introducing
GaN devices with voltage ratings exceeding 1 kV. The distribution of WBG power devices
based on voltage range is illustrated in Figure 1. Currently, several research articles demonstrate
the feasibility of GaN power devices rated at 1 kV and above [14–16]. GaN power devices
in the kV range will compete with other WBG power devices, including those based on SiC
and Ga2O3, in various applications, such as automotive, industrial, and photovoltaic sectors
However, though some groups have reported achieving high blocking voltage GaN devices,
the specific on-resistance (RON-SP) of the GaN device is still much higher than that of the SiC
counterpart [17,18].
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2. GaN Power Devices

GaN-based power devices are primarily categorized into two fundamental structures:
planar (lateral) structure devices and vertical structure devices, as depicted in Figure 2.
Planar devices are typically manufactured on Si or SiC substrates, while vertical devices
are homoepitaxially grown on GaN substrates. GaN HEMTs are the most commonly
employed among GaN power devices. Si substrates are favored in their production to
optimize cost-effectiveness and yield. However, epitaxially growing GaN on Si presents
considerable challenges due to significant lattice mismatch and a substantial thermal
expansion coefficient disparity between the two materials. The lattice mismatch can lead
to dislocation propagation and defect generation throughout the GaN epitaxial layers,
while thermal mismatch may cause cracking in the GaN layer during cooling after epitaxial
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growth [20–22]. To mitigate defect propagation and attain high-quality, defect-free GaN on
Si, a meticulous optimization of the buffer region is imperative. Additionally, it is essential
to limit tensile stress during both the growth and cooling phases of the process [23,24].
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In addition to challenges related to epitaxial layer mismatch, the quality of the top
surface becomes a critical concern for achieving optimal performance in lateral GaN devices.
The presence of surface states on the AlGaN layer significantly influences the formation
of the two-dimensional electron gas (2DEG) [25]. These states can have adverse effects on
device performance by unintentionally depleting the 2DEG. This depletion can create a
virtual gate between the gate and drain regions, leading to degradation in device perfor-
mance and reliability. To counteract the depletion of the 2DEG, a well-optimized silicon
nitride (SiN) passivation layer is typically employed.

Currently, commercially available GaN HEMTs offer a VBD of approximately 650/900 V,
coupled with a maximum output DC rating of 150 A [26]. These devices find applications
across various fields, including onboard battery chargers, high-efficiency power converters,
and dense solar panel inverters. However, lateral GaN devices face specific limitations
when it comes to scaling VBD and ensuring reliability. These limitations are primarily
associated with lateral carrier flow from the source to the drain, with the electron density in
the channel being highly sensitive to surface traps and buffer defects. Furthermore, these
imperfections in the device can lead to phenomena such as current collapse and dynamic
degradation of RON [26–28]. The severity of these adverse effects increases as VBD ratings
rise. Moreover, the lateral electron transport nature results in a nonuniform distribution
of the electric field within the device, leading to a higher electric field concentration in
specific regions such as the gate, field plate, or drain edges. This nonuniform electric
field distribution may result in premature semiconductor and dielectric breakdown, along
with increased electron trapping at the surface. These factors contribute to performance
degradation and limit the device’s voltage-blocking potential [28,29].

Furthermore, the VBD of lateral devices is directly proportional to the distance between
the gate and drain, which increases both the device size and cost. Another significant
concern with lateral GaN HEMT devices is that they are typically normally-ON devices.
While various methods exist to create normally-OFF devices, such as using fluorine ion
implantation [30–32], recess gates [33], p-GaN gates [34], trigate structures [35,36], cascode
configurations [37,38], etc., the threshold voltage (VTH) achieved is typically around 1–2 V
in many cases, including commercial devices. This characteristic makes the device less
than ideal for failsafe operation. Lastly, the absence of avalanche capability in lateral GaN
devices, possibly due to the lack of a p–n junction between the drain and source regions,
which aids in hole extraction during impact ionization, poses challenges in preventing the
device from short-term overvoltage failure [39].

To address the limitations of lateral GaN devices, there has been a growing exploration
and investigation of vertical GaN devices. The primary distinction between vertical and
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lateral devices lies in the direction of current flow, as illustrated in Figure 2 with a red
arrow for both types. In a vertical device, current flows vertically from the bottom to the
top surface (with electrons carrying the current from top to bottom) or in parallel with the
direction of the GaN epitaxial layers. Consequently, current conduction occurs through
the surface channel and then through a bulk drain drift region formed by a homoepitaxial
GaN layer on a GaN substrate. Unlike lateral devices, vertical devices do not have a
2DEG drain drift region near the surface or a defect-rich buffer layer, as found in GaN
HEMTs. As a result, there is less degradation in dynamic RON, which often occurs due to
trapped impurity charges or bulk traps resulting from lattice mismatch [40]. One of the
most significant advantages of vertical devices over lateral ones is their VBD. The VBD of a
vertical device can be increased by augmenting the thickness of the N-drift layer, which is
typically a low-doped or unintentionally doped GaN epitaxial layer (also known as the
GaN N-drift layer). Consequently, this makes the VBD independent of the lateral size of the
device. Moreover, a vertical GaN device can achieve a VTH ranging from around 5 to 15 V,
making it well suited for high-power applications [41].

Another advantage of vertical GaN devices is their ability to exhibit avalanche break-
down, enhancing device reliability and potentially eliminating the need for overdesigning
the device [42–44]. During transients, avalanche breakdown serves as a failsafe operation,
allowing the device to operate closer to its material limits [45]. The VBD of a vertical GaN
device can be significantly higher because the drain is located at the bottom of the device.
When a high voltage is applied at the terminal, the electric field is evenly distributed
throughout the device in a vertical direction, unlike lateral devices that experience electric
field spikes at the gate edge [46]. This even distribution of the electric field within the
device, away from the surface, can mitigate the effects of current collapse by countering the
influence of surface states and thus slowing down the occurrence of current collapse [47,48].
Vertical GaN devices also offer the advantage of easily increasing power density. Since there
are no electric field spikes, unlike lateral devices, there is no need for the field plate struc-
ture, which typically increases gate leakage spacing, to enhance breakdown performance.
This makes it simpler to improve wafer utilization and boost power density [49].

The nFET operation of the vertical device is controlled by two primary p–n junctions,
forming gate–source and gate–drain diodes. Avalanche breakdown occurs when the drain–
source voltage of the device exceeds its VBD. Initially, avalanche breakdown occurs through
the reverse-biased drain–gate diode region, leading to an increase in the gate–source
voltage and the opening of the channel region. Unlike lateral GaN devices, avalanche
breakdown in vertical devices remains within the short-term power dissipation limits.
Furthermore, energy dissipation occurs within the drift region of the device rather than on
the surface (a sensitive region). This feature helps protect the device from transient spikes
and other abnormal operating conditions. In a vertical GaN device, the epitaxial layer is
grown homoepitaxially on the native GaN substrate, eliminating issues related to lattice
or thermal expansion coefficient mismatches. The performance of the vertical GaN device
remains unaffected by defect densities and manufacturing challenges such as wafer bow,
warp, cracking, etc. Consequently, vertical GaN devices offer high reliability, yield, and,
ultimately, reduced costs compared to lateral devices. Despite the significant potential of
vertical GaN in dominating power devices, the current landscape still heavily relies on
lateral device structures due to the complexities involved in preparing vertical devices and
the high cost of GaN substrates [50].

A notable breakthrough in GaN devices is the introduction of GaN on SiC. GaN on
SiC is a device that combines the advantages of both materials. The remarkable thermal
conductivity of SiC, outperforming GaN alone, facilitates efficient heat dissipation, fostering
enhanced device performance and durability. These devices are characterized by high
power density and high-frequency response, attributes that lend themselves perfectly to
applications in high-frequency electronics like radars and satellite communications. The
symbiotic relationship between GaN and SiC, marked by minimal lattice mismatch and
thermal stress, ensures devices that are reliable over extended operational timelines. This
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integration is known to reduce parasitic capacitances and resistances, paving the way for
quicker device switching and diminished energy losses [51,52].

Despite the obvious advantages, SiC substrates tend to be more expensive compared
to alternatives like Si or sapphire, which can escalate the overall device cost. The nuanced
processes involved in the epitaxial growth of GaN on SiC lead to defects, which could
compromise device efficiency. The demand for large-diameter SiC wafers often outstrips
the supply, potentially hindering widespread commercial adoption and mass produc-
tion [53,54]. A major issue with these devices is their compromised off-state performance,
characterized by increased leakage and reduced VBD. Studies suggest that these defects can
intensify leakage by acting as electron–hole pair generators under strong electric fields. As
illustrated in some research, when exposed to high electric fields, these defects create holes
that can accumulate at the boundary between the dielectric and the semiconductor. This
accumulation can then intensify the field in the oxide, leading to a potential device failure.
Interestingly, in comparisons using trench MOSFETs, devices on bulk GaN outperform
those on alternative materials [55,56]. GaN on SiC in vertical devices is a tapestry of clear
advantages punctuated by challenges.

3. Vertical GaN Field Effect Transistors

Several types of vertical GaN devices have been developed, including p–i–n diodes [57,58],
vertical GaN Schottky barrier diodes (VSBDs), and vertical GaN transistors. Among vertical GaN
transistors, two primary types exist: (a) current aperture vertical electron transistor (CAVET) and
(b) vertical GaN MOSFET. Figure 3a–d illustrate the schematic structure of vertical GaN devices.
Vertical GaN MOSFETs can be further categorized into two subtypes: (a) planar GaN MOSFET
and (b) trench GaN MOSFET. Planar GaN vertical MOSFETs are crafted using ion implantation
to create regions like p-well and n+ source contact regions, resulting in a relatively cost-effective
fabrication process [59]. However, significant challenges include achieving precise control of
the acceptor concentration in the p-well to determine the VTH and addressing the formation
of residual point defects during p-well ion implantation and post-implantation annealing.
These factors are crucial for ensuring stability in the VTH and overall device reliability [60].
As a result, from the early stages, the trench MOS structure of the gate is adopted since the
p-well can be formed by epitaxial growth to avoid the immature ion-implantation of p-GaN in
device fabrication.

The concept of the CAVET structure was introduced in 2004 [61]. This device structure
bears similarity to a double-diffused metal-oxide-semiconductor (DDMOS) structure and
exhibits a negative VTH due to the presence of a channel region beneath the gate, arising
from the AlGaN/GaN heterointerface. However, the vertical trench GaN MOSFET is
a normally-off device, which is preferred for safe power device operation. Therefore,
trench GaN MOSFETs have gained preference over CAVET devices. Moreover, they offer a
relatively straightforward manufacturing process, eliminating the need for regrowth of the
AlGaN/GaN layer [62,63].

In 2007, ROHM Co. Ltd. (Kyoto, Japan) achieved a significant milestone by reporting
the first-ever GaN trench MOSFET [64]. The following year, in 2008, a normally-off ver-
tical GaN trench MOSFET, utilizing a common MOS structure, was introduced with an
impressive VTH of approximately 3 V [65]. Fast-forwarding to 2014, T. Oka et al. achieved
a breakthrough by presenting a vertical GaN trench MOSFET on a freestanding GaN
substrate. This device boasted a formidable VBD of around 1.6 kV, along with a 7 V VTH.
It employed a field plate termination strategy around the mesa isolation, effectively re-
ducing electric field crowding at the p–n junction edge [41]. Then, in 2015, T. Oka et al.
extended their pioneering work to unveil a vertical trench MOSFET featuring a low RON-SP
of 1.8 mΩ·cm2. This remarkable device had a VBD of approximately 1.2 kV and operated
at over 20 A [66]. This modified device was based on the authors’ prior work [41] and
featured a hexagonal trench gate layout, effectively reducing the RON-SP by increasing the
gate width per unit area.
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In 2016 [67], the same research group made notable advancements. They demonstrated
a single-cell vertical GaN MOSFET featuring an impressive VBD of around 1.6 kV and
RON-SP of approximately 2.7 mΩ·cm2 for a single cell. These achievements were realized by
decreasing the n-GaN drift layer doping concentration of the previous work [66]. Notably,
the group also reported the fabrication of a multicell MOSFET with a chip size measuring
1.5 mm × 1.5 mm, which exhibited a VBD of roughly 1.3 kV. This device could operate at a
drain current of up to 23.2 A and demonstrated rapid switching characteristics. Moving
on to 2016, a normally-off 1.2 kV “all-gate” vertical MOS-gate transistor was designed
and successfully fabricated [68]. This innovative structure featured two MOS gates on
both sides of the source pillar and achieved an RON-SP of approximately 2.8 mΩ·cm2. In
2020 [59], researchers introduced a 1.2 kV vertical GaN planar MOSFET with an effective on-
resistance of 1.4 mΩ·cm2, employing an ion implantation process. To enhance the device’s
VBD, they executed a sequential implantation process using Mg and N. Additionally, a
short cell pitch design was implemented to improve the device’s RON.

In the most recent developments of 2022 [69], a 1.3 kV vertical GaN MOSFET was intro-
duced on a 4-inch freestanding GaN substrate. This device featured a VTH of approximately
3.15 V and demonstrated a low RON-SP of 1.93 mΩ·cm2. These achievements translated
into an impressive power figure of merit (PFOM) of 0.88 GW/cm2. Figure 4 provides a
comparison of the PFOM for vertical GaN MOSFETs with breakdown voltages of 1 kV and
above, highlighting the progress made in this field over the years.

While GaN MOSFETs hold great promise for high-performance power devices, they
encounter two significant challenges during fabrication and operation. Firstly, the device
exhibits low mobility within the p-GaN inversion layer, necessitating higher gate voltages
for device activation. Secondly, achieving reliable ohmic contacts becomes problematic
after the plasma etching process in the buried p-type region (used for body contact) as
the generation of n-type compensating vacancies increases during the etching process [70].
Moreover, the p-type GaN layer has lower acceptor activation and much lower mobility
compared to the n-type. To overcome these challenges, innovative GaN transistor structures
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have been introduced, including fin structures [71,72] and in situ oxide–GaN interlayer FETs
(OG-FETs) [73,74]. Figure 5 illustrates schematic diagrams of fin structure GaN transistors
and OG-FETs.

Micromachines 2023, 14, x FOR PEER REVIEW 7 of 21 
 

 

after the plasma etching process in the buried p-type region (used for body contact) as the 
generation of n-type compensating vacancies increases during the etching process [70]. 
Moreover, the p-type GaN layer has lower acceptor activation and much lower mobility 
compared to the n-type. To overcome these challenges, innovative GaN transistor struc-
tures have been introduced, including fin structures [71,72] and in situ oxide–GaN inter-
layer FETs (OG-FETs) [73,74]. Figure 5 illustrates schematic diagrams of fin structure GaN 
transistors and OG-FETs. 

 
Figure 4. The comparison of PFOM for various vertical GaN MOSFET with a breakdown voltage of 
1 kV and above [41,59,66–69]. 

The novel GaN vertical fin power field-effect transistor features a fin-shaped n-GaN 
channel enclosed by gate oxide and a gate electrode, enabling precise control of current 
flow. This device exclusively relies on n-type GaN and eliminates the need for epitaxial 
growth. The device achieves normally-off operation by ensuring the fin width remains 
below 500 nm. The difference in work function between the gate electrode and GaN allows 
for complete electron depletion in the channel, resulting in normally-off operation without 
requiring a p-GaN layer. In [72], a 200 nm fin width normally-off vertical GaN FinFET 
with a 1.2 kV VBD and a 0.8 V VTH was reported. This device exhibited a low RON-SP of ap-
proximately 0.2 mΩ·cm2, translating to an impressive PFOM value of 7.2 GW/cm2. It was 
noted that a larger device could achieve a higher current of around 10 A at 800 V. How-
ever, both large and small devices faced the challenge of catastrophic breakdown, high-
lighting the impact of the absence of the p-GaN layer on device robustness. Additionally, 
strict control over fin width to achieve a normally-off device increased fabrication costs 
[71]. 

On the other hand, the OG-FET trench MOSFET structure enhances channel mobility 
without compromising its normally-off characteristics. Generally, in an MOSFET, oxide 
growth occurs ex situ using atomic layer deposition (ALD) after trench etching. In con-
trast, OG-FET leverages MOCVD for a regrowth process [75]. The improved channel mo-
bility can be attributed to the in situ oxide and the regrowth of a thin unintentionally 
doped (UID) channel layer. The UID GaN channel improves the channel mobility by re-
ducing impurity scattering. In [73], a 1.4 kV GaN OG-FET with a double field-plated struc-
ture was reported. This device had VTH of 4.7 V and RON of approximately 2.2 mΩ·cm2. 

In the following discussions, we will list the process skills to improve the VBD 
through electric field management in various types of vertical GaN MOSFET power de-
vices. Finally, we will summarize the vertical GaN device performance and then bench-
mark it against lateral GaN MOSFETs and SiC power devices. 

Figure 4. The comparison of PFOM for various vertical GaN MOSFET with a breakdown voltage of
1 kV and above [41,59,66–69].

Micromachines 2023, 14, x FOR PEER REVIEW 8 of 21 
 

 

 
Figure 5. (a) Fin structure vertical GaN MOSFET and (b) in situ oxide–GaN interlayer FET 
(OG_FET). 

4. Techniques to Boost the Breakdown Voltage 
The most prevalent approaches to enhance the VBD in GaN vertical devices, including 

GaN vertical MOSFETs, typically involve the following methods: (a) lowering n-GaN drift 
layer doping concentration, (b) optimizing n-GaN drift layer thickness, (c) incorporating 
field plates, and (d) implementing edge termination techniques. Furthermore, the VBD of 
GaN vertical MOSFETs is also influenced by the characteristics of the metal-oxide-semi-
conductor capacitor (MOSCAP) within the device. The thickness of the gate oxide affects 
the distribution of the electric field, as the gate oxide has a higher ability to withstand a 
higher electric field, thus increasing the breakdown voltage, while a thinner gate oxide 
increases the leakage current through the gate, resulting in premature breakdown. How-
ever, increasing the gate oxide thickness increases MOSCAP, thus reducing the speed of 
the device [76]. 

Moreover, the durability of the oxide dielectric, particularly a high-quality gate ox-
ide, is pivotal as it can withstand a substantial electric field, ultimately contributing to an 
augmentation in the VBD. The dielectric constant (k) of the gate oxide plays a crucial role 
in determining the device’s performance. A high k gate oxide can achieve a thicker gate 
dielectric with the same capacitance as that of a smaller k, thus achieving a higher VBD with 
a similar speed as that of a smaller k. Additionally, a higher k gate oxide reduces the gate 
leakage current, thus improving the VBD [77]. However, although high k gate oxide can 
improve VBD and reduce gate leakage, high k gate dielectric materials are susceptible to 
thermal stress; hence, proper thermal management is required to avoid reliability issues. 
The gate dielectric material with positive valence band offset with GaN, namely, SiO2, 
Al2O3, etc., tends to exhibit catastrophic breakdown, while the dielectric with a negative 
valence band offset, namely, SiN, shows an increase in offset leakage current [78]. 

4.1. Drift Layer Thickness and Doping Concentration 
Although the GaN vertical MOSFET is grown homoepitaxially on a bulk GaN sub-

strate, the amount of dislocation density present is still very high. To achieve a high-per-
formance GaN device, an improved epitaxial layer is required. Additionally, the thickness 
and doping concentration of the buffer or the drift layer also play important roles in en-
hancing the device’s performance [79]. A thicker drift or buffer GaN layer improves the 
material quality by reducing defect density and resulting in better surface morphology. 
Moreover, a thicker drift layer can filter dislocations during epitaxial growth and prevent 
dislocations from propagating towards the upper layers [80–82]. 

Another critical factor for enhancing performance is the optimization of doping con-
centration in the drift region. To obtain the optimized doping concentration for the drift 
region, it is imperative to understand the dependence of doping concentration on the VBD 
and the RON-SP of the device. One of the most preferred benchmarks for power devices is 
the PFOM (power figure of merit) given by [83–85]: 

Figure 5. (a) Fin structure vertical GaN MOSFET and (b) in situ oxide–GaN interlayer FET (OG_FET).

The novel GaN vertical fin power field-effect transistor features a fin-shaped n-GaN
channel enclosed by gate oxide and a gate electrode, enabling precise control of current flow.
This device exclusively relies on n-type GaN and eliminates the need for epitaxial growth.
The device achieves normally-off operation by ensuring the fin width remains below 500 nm.
The difference in work function between the gate electrode and GaN allows for complete
electron depletion in the channel, resulting in normally-off operation without requiring a
p-GaN layer. In [72], a 200 nm fin width normally-off vertical GaN FinFET with a 1.2 kV
VBD and a 0.8 V VTH was reported. This device exhibited a low RON-SP of approximately
0.2 mΩ·cm2, translating to an impressive PFOM value of 7.2 GW/cm2. It was noted that a
larger device could achieve a higher current of around 10 A at 800 V. However, both large
and small devices faced the challenge of catastrophic breakdown, highlighting the impact
of the absence of the p-GaN layer on device robustness. Additionally, strict control over fin
width to achieve a normally-off device increased fabrication costs [71].

On the other hand, the OG-FET trench MOSFET structure enhances channel mobility
without compromising its normally-off characteristics. Generally, in an MOSFET, oxide
growth occurs ex situ using atomic layer deposition (ALD) after trench etching. In contrast,
OG-FET leverages MOCVD for a regrowth process [75]. The improved channel mobility
can be attributed to the in situ oxide and the regrowth of a thin unintentionally doped
(UID) channel layer. The UID GaN channel improves the channel mobility by reducing



Micromachines 2023, 14, 1937 8 of 21

impurity scattering. In [73], a 1.4 kV GaN OG-FET with a double field-plated structure was
reported. This device had VTH of 4.7 V and RON of approximately 2.2 mΩ·cm2.

In the following discussions, we will list the process skills to improve the VBD through
electric field management in various types of vertical GaN MOSFET power devices. Finally,
we will summarize the vertical GaN device performance and then benchmark it against
lateral GaN MOSFETs and SiC power devices.

4. Techniques to Boost the Breakdown Voltage

The most prevalent approaches to enhance the VBD in GaN vertical devices, including
GaN vertical MOSFETs, typically involve the following methods: (a) lowering n-GaN drift
layer doping concentration, (b) optimizing n-GaN drift layer thickness, (c) incorporating
field plates, and (d) implementing edge termination techniques. Furthermore, the VBD
of GaN vertical MOSFETs is also influenced by the characteristics of the metal-oxide-
semiconductor capacitor (MOSCAP) within the device. The thickness of the gate oxide
affects the distribution of the electric field, as the gate oxide has a higher ability to withstand
a higher electric field, thus increasing the breakdown voltage, while a thinner gate oxide
increases the leakage current through the gate, resulting in premature breakdown. However,
increasing the gate oxide thickness increases MOSCAP, thus reducing the speed of the
device [76].

Moreover, the durability of the oxide dielectric, particularly a high-quality gate oxide,
is pivotal as it can withstand a substantial electric field, ultimately contributing to an
augmentation in the VBD. The dielectric constant (k) of the gate oxide plays a crucial role
in determining the device’s performance. A high k gate oxide can achieve a thicker gate
dielectric with the same capacitance as that of a smaller k, thus achieving a higher VBD with
a similar speed as that of a smaller k. Additionally, a higher k gate oxide reduces the gate
leakage current, thus improving the VBD [77]. However, although high k gate oxide can
improve VBD and reduce gate leakage, high k gate dielectric materials are susceptible to
thermal stress; hence, proper thermal management is required to avoid reliability issues.
The gate dielectric material with positive valence band offset with GaN, namely, SiO2,
Al2O3, etc., tends to exhibit catastrophic breakdown, while the dielectric with a negative
valence band offset, namely, SiN, shows an increase in offset leakage current [78].

4.1. Drift Layer Thickness and Doping Concentration

Although the GaN vertical MOSFET is grown homoepitaxially on a bulk GaN sub-
strate, the amount of dislocation density present is still very high. To achieve a high-
performance GaN device, an improved epitaxial layer is required. Additionally, the thick-
ness and doping concentration of the buffer or the drift layer also play important roles in
enhancing the device’s performance [79]. A thicker drift or buffer GaN layer improves the
material quality by reducing defect density and resulting in better surface morphology.
Moreover, a thicker drift layer can filter dislocations during epitaxial growth and prevent
dislocations from propagating towards the upper layers [80–82].

Another critical factor for enhancing performance is the optimization of doping con-
centration in the drift region. To obtain the optimized doping concentration for the drift
region, it is imperative to understand the dependence of doping concentration on the VBD
and the RON-SP of the device. One of the most preferred benchmarks for power devices is
the PFOM (power figure of merit) given by [83–85]:

PFOM =
VBD

2

RON−SP
(1)

The connection between the doping concentration and the RON-SP of the drift region can
be assessed through majority carrier conduction, as expressed by the following equation:

RON−SP =

( tDri f t

qnµn(n)

)
, (2)
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where tDrift represents the thickness of the drift layer, n signifies the doping concentra-
tion, and µn denotes the electron mobility, which depends on the doping concentration.
The correlation between electron mobility and doping concentration is elucidated by the
Mnatsakanov empirical mobility model [86], given by

µN(n)µmin +

(
µmax − µmin

1 + (n/NG)
γ

)
, (3)

In this equation, µmin, µmax, NG, and γ are the parameters used for fitting. However,
establishing a direct relationship between the doping concentration of the drift layer and
the VBD is not a straightforward task. It necessitates a thorough examination of the primary
causes of the avalanche effect, which can be attributed to either parallel-plane breakdown or
punch-through breakdown [87]. Parallel-plane breakdown, also referred to as non-punch-
through breakdown, primarily depends on factors such as the doping concentration of the
drift region and the impact ionization coefficient of the material rather than the thickness
of the drift layer. The distribution of the electric field within the device for both types of
breakdowns is illustrated in Figure 6:
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In the case of parallel-plane breakdown, the electric field distribution takes on a well-
defined triangular shape across the drift region. Under these conditions, determining
the maximum electric field is a straightforward task, and device breakdown occurs when
this maximum electric field reaches the critical electric field (Ecrit,NPT) characteristic of the
device. The typical critical electric field (Ecrit) in GaN can be computed using the following
equation, which draws upon values reported by Maeda et al. [89]:

ECrit =

(
2.162 × 106 + 800 × T
1 − 0.25.log10(n/106)

)
, (4)

where T is the temperature in kelvin. In the scenario of punch-through breakdown, the
electric field distribution within the drift region assumes a trapezoidal shape, primarily
because the drift region becomes entirely depleted of charge carriers. Within this configu-
ration, the electric field experiences a more gradual change in the drift region, owing to
its lower doping concentration, while it exhibits a rapid variation over distance in the n+
doping region due to the higher doping concentration [90]. The breakdown voltage under
punch-through conditions is given by [85]

VBD_PT = VBD_PP

(dDri f t

Wpp

)(
2 −

dDri f t

Wpp

)
, (5)
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where VBD_PT is the breakdown due to punch-through, VBD_PP is the parallel-plane break-
down voltage, Wpp is the parallel-plane depletion region, and drift is the drift layer thickness.
VBD_PP is given by VBD_PP = (Ecrit.Wpp/2) and Wpp = (εsECrit/eNd). The validity of the previ-
ously mentioned equation for the breakdown voltage of the punch-through region holds
when the critical electric field for punch-through (Ecrit,PT) closely approximates the Ecrit,NPT,
meaning that ECrit,NPT ≈ ECrit,PT ≈ ECrit. According to findings reported in [89], the dispar-
ity between the critical electric fields for parallel-plane and punch-through breakdown is
exceedingly minimal.

In the punch-through state, the VBD is influenced not only by the doping concentration
but also by the thickness of the drift region. It is worth noting that the typical breakdown
voltages for punch-through and parallel-plane conditions can significantly differ under
certain doping conditions [91], as shown in Figure 7. To obtain the optimum drift doping
concentration, the relation between the PFOM and the doping concentration shown in
Figure 7 should be considered. The region where PFOM has the highest value is considered
to be the optimized drift doping concentration.
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4.2. Field Plate Termination

Another widely adopted technique used to enhance the VBD of power devices is the
incorporation of field plate (FP) technology. GaN-based HEMTs have particularly benefitted
from this approach, as it helps increase the VBD by mitigating electric field concentration
at the edges of the gate or drain electrodes [92–94]. During the off state of the power
device, the electric field distribution is not uniform across the device. Instead, there are
areas of high electric field concentration, specifically located at the edges of the gate or
drain electrodes. This heightened electric field can lead to increased leakage current in
these regions, attributed to the tunneling effect, thereby causing premature breakdown of
the device. Moreover, the presence of this high electric field can impact the charging and
discharging processes of the device, potentially resulting in switching delays.

In the vertical GaN MOSFET, there is a highly doped n-type GaN region for the ohmic
contact and a lightly doped n-type GaN drift layer for voltage blocking. Due to these
structural distinctions, the distribution of electric fields within the device differs from that
in lateral GaN devices. Electric field crowding primarily occurs at the interface between the
gate metal and the semiconductor. This leads to the formation of a depletion region around
the edge of the gate, where the electric field resulting from the space charge accumulation
intensifies, significantly enhancing the electric field strength in that region [95]. Figure 8
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depicts the schematic structure of a vertical GaN OG-FET with a field plate [73]. Through
the use of the first field plate (FP1), the high electric field at the gate metal edge is reduced
from 3.7 MV/cm to 2.6 MV/cm [96]. The field enhancement factor, η, which characterizes
the degree of field crowding, is used to investigate the effect of field crowding quantitatively
and is given by

η =
EM
E0

, (6)

where EM represents the maximum gate-edge electric field, and E0 denotes the electric
field at the opposite end of the gate [95]. In the case of the device without FP, the field
enhancement factor exhibits a linear dependence on the depth of the depletion region. As
the depletion region becomes deeper, there is a greater concentration of the electric field
stemming from the nearby space charge near the gate edge, resulting in an augmented
field enhancement factor, η [97]. An empirical formula of η and the depletion region depth
(WDD) is given by [95]

η = 1 + aWDD, (7)

where the parameter “a” is approximately 1.5 µm−1 and exhibits some degree of depen-
dency on various structural parameters. The relationship of η on WDD is different for
different types of breakdown. For parallel-plane breakdown, η is the same as the formula
given in Equation (7). For punch-through condition, η is given by

η = 1 + aTGaN (8)

where TGaN is GaN drift layer thickness. With FP, the depletion region extends beyond the
gate edge, partially overlapping with the FP electrode. Consequently, the concentration
of the electric field at the gate edge disperses towards the edge of the FP electrode. This
redistribution results in a reduction of the maximum electric field at the contact edge,
thereby decreasing η. While the incorporation of the FP improves the device’s VBD, it also
introduces another high-field region situated within the semiconductor and the dielectric
material beneath the FP edge region, and the breakdown in this region becomes another
issue to be concerned. The effect of FP also depends on the type of dielectric materials as
well as the height of the FP from the semiconductor.
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4.3. Edge Termination

An established technique for improving VBD entails employing an edge termination
method to mitigate the concentration of electric field lines near the edge of the p–n junction.
This technique is closely linked to the phenomenon of impact ionization, which exerts a
significant influence on the VBD of the device [98]. Edge termination represents a method-
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ology for modifying the contour of the depletion layer at the junction’s edge. This can be
achieved through various means, including etching, anode extension, ion implantation,
and dielectric passivation. In the realm of GaN devices, various types of edge termination
techniques have been reported, such as mesa etches, floating guard rings, plasma treatment,
junction termination extension [99], ion implantation [57], and bevel termination [100]. The
application of edge termination techniques does not compromise the rectifying properties
of the device. Among these techniques, ion implantation stands out as a widely adopted
method in Si and SiC power devices. However, in the context of GaN devices, ion implan-
tation is still relatively less utilized, as indicated in reference [101]. Ion implantation is
employed in GaN devices to achieve isolation by introducing material damage through
controlled bombardment, resulting in the creation of mid-gap defects [102–104], hence,
creating a highly resistive edge that facilitates the lateral distribution of the electric field.

Another technique that utilizes ion implantation involves managing the charge on
the edge termination by offsetting the region through the introduction of counter-doping
in p-GaN with Si, as detailed in reference [105]. Additionally, N ion implantation can be
employed to create a semi-insulating region by controlling the total dose within the edge
termination [104]. The ion implantation method is also employed in techniques such as
junction termination extension (JTE) and field-limiting rings (FLR). In the case of JTE, an
ion implantation process is used to create a thin, lightly doped layer encircling the diffusion
junction area. Figure 9 illustrates a device featuring FLR edge termination, where the
extension of this thin layer results in the expansion of the depletion layer, akin to the effect
of a field plate [106]. This extension helps to reduce the issue of electric field crowding at
the junction. Nevertheless, a major challenge faced by GaN devices lies in the difficulty of
establishing p-type regions through ion implantation, as highlighted in reference [107].
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Mesa termination stands out as the most widely adopted technique in vertical GaN
power rectifying devices. This method involves selectively removing a portion of the
device using dry etching techniques. Typically, the use of a 90◦ angle mesa termination
is avoided because it leads to significant electric field crowding, which can reduce the
device’s VBD. However, a study conducted by Fukushima et al. [108,109] reveals that
deep mesa termination can enhance the VBD and reduce reverse leakage. The device with
deep mesa (5–10 µm) exhibits a uniform electric field distribution across the entire device,
while shallow mesa (1–2 µm) tends to have increased leakage and lower VBD. Another
commonly employed mesa termination technique for GaN devices is the beveled mesa,
where the heavily doped region is removed to a greater extent than the lightly doped
side [90]. Figure 10 illustrates a schematic representation of mesa edge termination in
GaN power devices [96]. Furthermore, to mitigate electric field crowding at the edge, a
combination of field plates with mesa termination is often used. Mesa termination, when
coupled with a field plate, can alleviate the electric field at the junction without the need
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for ion implantation [45,110]. However, it is worth noting that this intricate process can
increase the fabrication costs of the device.
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The choice of the optimal method for improving VBD depends on specific require-
ments, necessitating careful consideration of associated trade-offs. The advantages and
trade-offs of the abovementioned methodologies are as follows. (1) Modifying doping
concentration in the drift region: decreasing doping concentration increases VBD; however,
RON increases. Conversely, increasing doping concentration improves RON but reduces
VBD. (2) Drift region scaling: increasing drift thickness enhances VBD but simultaneously
increases device RON, thus reducing the switching speed of the device. (3) Gate oxide
engineering: optimizing gate oxide thickness and material properties can influence GaN
MOSFETs’ voltage-blocking capabilities. Thicker gate oxides enhance VBD but elevate
gate capacitance, impacting overall performance. (4) Field plate termination: field plate
termination is a widely adopted method for improving VBD. It facilitates even distribu-
tion of the electric field, reducing electric field crowding at the gate-edge region, thus
improving voltage handling capabilities and device reliability. However, the efficacy of
field plate termination diminishes as device size decreases. (5) Edge termination techniques:
edge termination techniques aim to enhance VBD at the device’s edges, especially benefi-
cial for high-voltage applications. These techniques effectively mitigate the risk of edge
breakdown, offering simplicity and scalability. Nevertheless, the dry-etched sidewalls in
edge termination introduce a leakage path that significantly impacts the off-state drain
current [111]. Ion implantation has demonstrated significant improvements in Si and SiC
devices by protecting the dielectric at the trench bottom and serving as a body contact. In
GaN, limitations exist for p-ion implantation and selective area doping. An alternative
approach involves creating a buried shield under the trench using etching and regrowth
methods. Ion implantation has shown significant improvement in Si and SiC-based devices
to protect the dielectric at the bottom of the trench and to serve as body contact. However,
due to the limitation in p-ion implantation and selective area doping in GaN [112], a buried
shield is formed under the trench by the etching and regrowth method [113].

5. GaN Vertical Transistor Summary and Benchmarking

Figure 11 presents a schematic comparison of GaN vertical MOSFETs designed for
VBD exceeding 1 kV. To achieve a high VBD, these devices employ both FP termination
and mesa termination to eliminate potential crowding issues at the p–n junction edge.
To reduce RON, modifications are made to the thickness and doping concentration of the
channel and drift layers. Reducing the doping concentration and thickness of the p-GaN
layer decreases channel resistance, while adjusting the thickness and increasing the doping
concentration of the n-GaN drift layer reduces drift resistance, thus increasing the VBD.
Additionally, further RON reduction can be achieved by increasing the gate width per unit,
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which in turn increases current density. This design improvement resulted in a reduction
in RON-SP from 12.1 mΩ-cm2 [41] to 18 mΩ-cm2 [66]. To increase the VBD from 1.2 kV [66]
to 1.6 kV [67], the doping concentration of the n-GaN drift layer is reduced. However,
there is a tradeoff between VBD and device switching speed. As VBD increases, RON also
increases, which can slow down device performance. In addition, reducing leakage current
can enhance the VBD [59]. Sequential N implantation after Mg implantation significantly
reduces leakage current by suppressing hole traps, resulting in improved VBD [59,114]. In
addition, enhancing the MOS interface quality and stability can also improve breakdown
characteristics. A two-step process introduced in [69] involves thorough surface cleaning
followed by (NH4)2S passivation to improve the MOS interface. Furthermore, the lower
electron mobility of p-GaN increases channel resistance, requiring a higher gate bias to
lower resistance [115]. Therefore, a GaN interlayer is grown between the in situ oxide layer
and the trench to increase channel mobility.
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Table 1 presents a comparison of different vertical GaN transistors featuring VBD
exceeding 1 kV. Generally, larger devices exhibit higher VBD, but this comes at the cost
of increased RON-SP. In the context of power devices, it is crucial to evaluate the PFOM,
where higher values signify superior voltage-blocking capabilities. Although elevated VBD
enhances PFOM, higher RON-SP can offset them. Illustrated in Figure 12 is Baliga’s figure of
merit benchmark plot, which assesses various vertical GaN and SiC devices designed for
VBD of approximately 900 V and above [36,41,59,66,67,69,71–73,115–132]. The plot suggests
that, at present, GaN vertical devices lie mainly near the SiC limit, indicating the potential
for further enhancements in GaN vertical technology to yield more efficient power devices.
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Table 1. The comparison of various vertical GaN transistors with a breakdown voltage greater than
1 kV.

Year Type Substrate Threshold
Voltage (V)

Breakdown
Voltage (kV)

Specific
On-Resistance

(mΩ-cm2)
PFOM References

2014 CAVET GaN 0.5 1.5 2.2 1.022 [116]

2014 Vertical trench
MOSFETVert GaN 7 1.6 12.1 0.211 [41]

2015 Vertical trench
MOSFETVer GaN 3.5 1.2 1.8 0.8 [66]

2016 CAVET GaN 2.5 1.7 1.0 2.89 [131]

2016 Vertical trench
MOSFET. GaN 3.5 1.6 2.7 0.95 [67]

2017 Vertical trench
MOSFET (OG-FET) GaN 3.2 1 3.6 0.28 [115]

2017 GaN OG-FET GaN 4.7 1.4 2.2 0.89 [73]

2017 GaN fin FET GaN 1 1.2 0.2 7.2 [72]

2019 Vertical Power
FinFETs GaN 1.3 1.2 2.1 0.68 [119]

2020 Vertical GaN planar
MOSFET GaN 2.5 1.2 1.4 1.03 [59]

2022 Vertical trench
MOSFET GaN 3.1 1.3 1.93 0.87 [69]
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6. Conclusions

Vertical GaN MOSFETs are pivotal in the realm of power electronics due to their ability
to provide higher efficiency, higher power density, fast switching ability, and good thermal
performance. Consequently, these vertical GaN MOSFETs find extensive utility across a
broad spectrum of applications, including power supplies, electric vehicles, renewable
energy systems, and data centers, among others. This article delves comprehensively into
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the accomplishments achieved thus far in the realm of GaN vertical devices. Additionally, it
offers a thorough examination of various methodologies aimed at enhancing the breakdown
voltage of these devices. The breakdown voltage is a critical parameter for power devices,
as it governs their voltage-handling capacity, overvoltage protection, power conversion
efficiency, design adaptability, and overall system reliability. Furthermore, while many of
the techniques for improving the breakdown voltage of GaN vertical devices are consistent,
it is worth noting that, in the case of GaN vertical MOSFETs, factors such as gate oxide
thickness and quality also play a pivotal role in augmenting the breakdown voltage of
these devices.
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