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Abstract: The microfluidic technique for the three-dimensional (3D) printing of Janus droplets offers
precise control over their size, orientation, and positioning. The proposed approach investigates the
impact of variables such as the volume ratio of the oil phase, droplet size, and the ratio of nonionic
surfactants on the dimensions of the structured color apertures of Janus droplets. The findings
reveal that structured color apertures modulate accurately. Furthermore, fabricating color patterns
facilitates cat, fish, and various other specific shapes using structured color Janus droplets. The color
patterns exhibit temperature-sensitive properties, enabling them to transition between display and
concealed states. Herein, the adopted microfluidic technique creates Janus droplets with customizable
characteristics and uniform size, solving orientation as well as space arrangement problems. This
approach holds promising applications for optical devices, sensors, and biomimetic systems.

Keywords: microfluidic technology; structural color; Janus droplet; temperature-sensitive characteristics;
hydrogel

1. Introduction

In the development processes of production and life, functional composite materials
gradually occupy an important position in fields such as medicine, optics, functional dis-
plays, and biological manufacturing due to their complex chemical composition, multiple
physical structures, and diverse functions [1,2]. Single-component materials generally
have problems such as a simple physical structure, lack of functionality, single chemical
composition, and inability to meet the needs of high-precision production [3,4]. Compared
to single-component materials, functional composite materials Janus droplets have ex-
cellent comprehensive performance characteristics, making them have broad application
prospects [5,6].

Structural color is a physical phenomenon arising from the precise alignment of
atomic or molecular spacing within a material with the wavelengths of visible light. This
phenomenon manifests as visually stunning and exhibits remarkable color stability and
environmentally sustainable characteristics [7,8]. Janus droplets typically consist of materi-
als exhibiting distinct chemical or physical properties, and their dimensions consistently
fall within the range of microns or nanometers [9,10]. The anisotropic structure of Janus
droplets is not only reflected in the non-pairing of chemical composition or morphological
structure, but also in the non-pairing of function or performance [11,12]. When Janus
droplets are composed of two liquids with different refractive indexes, the incident light
can interfere at the interface, resulting in a gorgeous ring pattern, that is, structural color.
Therefore, Janus droplets with a structured color have important application value in optics,
displays, anti-counterfeiting materials, and other fields [13–15]. The density of n-hexane
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(C6H14) is 0.66 g/cm3; it is insoluble in water and has a refractive index of 1.372 [16,17]. Per-
fluorohexane (C6F14) has a density of 1.68 g/cm3, is insoluble in water, and has a refractive
index of 1.252 [18,19]. At room temperature, n-hexane and perfluorohexane are not miscible,
but have a unique temperature sensitivity; that is, they have a critical mutual solubility
temperature of 23 ◦C. When heated to above 23 ◦C, the two oil phases are miscible, while
when cooled to below 23 ◦C, the two are immiscible and immediately delaminate [20,21].
Due to the physical and chemical properties of n-hexane and perfluorohexane that meet
the conditions for preparing structural colored Janus droplets, this article intends to use
these two materials as the main raw materials to prepare structural colored Janus droplets.

In microfluidic 3D droplet printing, droplets are continuously discrete and extruded
from a printing nozzle in a bath filled with a supporting substrate. The supporting substrate
generally adopts a shear-thinned hydrogel [22–24]. Carbomer 940 is a polymer obtained via
the copolymerization of a monomer and crosslinking agent, which is white and fluffy, and
its aqueous solution is acidic. It is a viscous hydrogel when neutralized with an alkaline
solution [25,26]. Carbomer hydrogels have excellent shear-thinning characteristics. When
the printing nozzle moves rapidly in a carbomer hydrogel, the local liquefaction of the
hydrogel enables the nozzle to move easily and shear droplets. With the passage of the
nozzle, the partially liquefied hydrogel returns to a stable hydrogel state. This process
suspends the droplets in a fixed position. Since the properties of carbomer hydrogels meet
the requirements, this paper plans to select a carbomer hydrogel as the support matrix
material for microfluidic 3D droplet printing.

A surfactant is a substance with an amphiphilic molecular structure, which has
both hydrophilic and lipophilic properties. They can adjust the surface tension of the
solution [27–29]. Selecting suitable surfactants is imperative to enhance the interfacial ten-
sion between oil-phase materials like n-hexane, perfluorohexane, and carbomer hydrogels.
Suitable material can effectively manipulate the interfacial morphology of structured color
Janus droplets, enabling precise control over their preparation. The inclusion of ionic sur-
factants in this context poses a potential issue. Ionic surfactants introduce an electric charge,
which can disrupt the integrity of the carbomer hydrogel, rendering it incapable of support-
ing the formation of Janus droplets [30,31]. Nonionic surfactants Capstone FS-30 (FS-30)
and Triton X-100 (X-100) have excellent emulsifying and wetting properties. They can
adjust the interfacial tension, thus forming Janus droplets with stable interfacial morphol-
ogy [32,33]. Therefore, in this paper, non-ionic surfactants FS-30 and X-100 will be selected
as the regulating materials of interfacial tension between n-hexane/perfluorohexane and a
carbomer hydrogel to prepare structural color Janus droplets with excellent performance.

Microfluidic technology is a scientific technology to control and operate fluids in
micron-scale chip space, which has the advantages of low cost, simple operation, and
high precision [34–38]. At present, microfluidic technology is commonly used to prepare
small-volume Janus droplets composed of two or more materials with different chemical
properties and physical structures. This method can generate droplets quickly and in
large quantities while maintaining the uniformity of droplet size [39,40]. However, this
technology cannot control the spatial orientation and position distribution of Janus droplets,
and its manufacturing ability for macroscopic Janus droplets is relatively weak [41,42].
3D printing technology is a rapid prototyping technology that directly converts the size
information of a model into complex spatial structures. It has the advantages of free
design, high-precision manufacturing, and maximizing material utilization, making it the
preferred method for manufacturing complex 3D models. In response to the problems in
the preparation of Janus droplets using microfluidic technology, this article combines 3D
printing technology with microfluidic technology and successfully achieves a structurally
colored Janus droplet with controllable size, position, and spatial orientation through an
improved 3D printing device.

In this paper, structural color Janus droplets were prepared using microfluidic 3D
droplet printing technology and a temperature-induced phase separation method, using
a carbomer hydrogel containing non-ionic surfactant (FS-30/X-100) as a support matrix
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and n-hexane and perfluorohexane as printing materials. The obtained Janus droplets can
be flexibly adjusted in terms of size, proportion, orientation, position, and structural color,
and can generate various color patterns composed of Janus droplets. The color patterns
have temperature-sensitive properties and can be switched between display and hidden
states, making them highly applicable.

2. Materials and Methods
2.1. Materials

Kapom 940, deionized water, sodium hydroxide, n-hexane, perfluorohexane, and
X-100 were purchased from Aladdin Biochemical Technology, Shanghai, China. FS-30 was
purchased from DuPont, Wilmington, DE, USA.

2.2. Methods
2.2.1. Preparation of Janus Droplets with Structural Color

Step 1 involves the preparation of the supporting matrix, where Carbomer 940, FS-30,
and X-100 are combined and dissolved in deionized water at 50 ◦C. The solution contains
0.075 wt% of carbomer, 1.5 wt% of FS-30, and 0.05 wt% of X-100. The solution is initially
acidic, and then 10 wt% of NaOH solution is added to neutralize its pH. Finally, any
remaining bubbles are eliminated in a vacuum box to yield a carbomer hydrogel, which
serves as the supporting matrix for microfluidic 3D droplet printing.

In Step 2, the printing materials are prepared by mixing n-hexane and perfluorohexane
at 24 ◦C, adhering to a volume ratio of 3:7. This results in a mutually soluble mixed solution.
The ambient temperature within the printing system is maintained at 24 ◦C to ensure the
two-phase solution remains mutually soluble throughout the printing process.

Step 3 involves the actual printing of Janus droplets. The 3D droplet printer was
modified from the purchased 3D printer (Aurora Volvo A8L, Shenzhen Aurora Volvo
Technology Co., Ltd., Shenzhen, China) (as shown in Figure 1). Take the hydrogel in step 1
as the substrate and place it on the lifting platform of the 3D droplet printer. Then, immerse
the print nozzle in the carbomer hydrogel, generate the G code of the print path through
Solidworks® version 2021 software (Dassault Systèmes SolidWorks Corporation, Waltham,
MA, USA), and import it into the printer to start printing. During the printing process, the
printer seamlessly adapts various parameters such as the feed rate, X/Y/Z axis movement
speed, pause time, and more for the microinjection pump (LSP01-2A, Baoding Dichuang
Electronic Technology Co., Ltd., Baoding, China), all based on the instructions encoded
in the G code. This dynamic adjustment enables precise control over droplet size and
positioning throughout the printing operation.
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Figure 1. Schematic diagram of 3D droplet printer.

Step 4 involves the phase separation stage. Here, the support bath containing the
droplets printed in Step 3 is carefully transferred to a refrigerated environment set at 8 ◦C.
Over a certain duration, n-hexane and perfluorohexane within the droplets will naturally
undergo phase separation. This separation results in the lighter-density n-hexane settling
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in the upper layer, while the denser perfluorohexane occupies the lower layer. Conse-
quently, this process forms Janus droplets, each oriented vertically in space, representing a
significant outcome of this phase separation process.

The preparation process of structured color Janus droplets is visually detailed in
Figure 2.
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2.2.2. Influence of Volume Ratio of the Oil Phase

Janus droplets are composed of two oil phases, n-hexane and perfluorohexane, with
structural colors occurring near the three-phase contact line. In order to verify the effect
of the ratio of n-hexane-to-perfluorohexane on the structural color aperture, seven control
experiments were set up, with the oil phase volume ratios of n-hexane and perfluorohexane
as variables and the nonionic surfactants and droplet diameter as constants. The experi-
ments were sorted according to the large and small oil phase volume ratio (as shown in
Table 1). The concentration of FS-30 was 1.5 wt%, the concentration of X-100 was 0.05 wt%,
and the droplet diameter was 0.569 mm.

Table 1. Experimental grouping of oil phase volume ratio.

Group Oil Phase Volume Ratio
(n-Hexane/Perfluorohexane) Diameter (mm) FS-30 (wt%) X-100 (wt%)

1 19:11 (1.727) 0.569 1.5 0.05
2 3:2 (1.5) 0.569 1.5 0.05
3 17:13 (1.308) 0.569 1.5 0.05
4 8:7 (1.143) 0.569 1.5 0.05
5 1:1 (1.0) 0.569 1.5 0.05
6 13:17 (0.765) 0.569 1.5 0.05
7 11:19 (0.579) 0.569 1.5 0.05

2.2.3. Influence of Droplet Size

Seven control experiments were set up, with the droplet diameter as a variable and
the volume ratio of nonionic surfactants-to-oil phase as a constant. The experiments were
sorted based on the smallest to largest droplet diameters (as shown in Table 2). The
concentration of FS-30 was 1.5 wt%, the concentration of X-100 was 0.05 wt%, and the
volume ratio of n-hexane-to-perfluorohexane was 3:7.

Table 2. Experimental grouping of different droplet diameters.

Group Diameter (mm) Oil Phase Volume Ratio
(n-Hexane/Perfluorohexane) FS-30 (wt%) X-100 (wt%)

1 0.487 3:7 1.5 0.05
2 0.589 3:7 1.5 0.05
3 0.638 3:7 1.5 0.05
4 0.715 3:7 1.5 0.05
5 0.745 3:7 1.5 0.05
6 0.770 3:7 1.5 0.05
7 0.825 3:7 1.5 0.05
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2.2.4. Influence of Surfactant Ratio

The results show that the surfactant can change the interfacial tension and destroy the
balance between the three-phase interfacial tensions, thus affecting the internal interface
morphology of Janus droplets. To investigate the impact of surfactants on Janus droplet
structural color, we conducted 25 control experiments. These experiments varied the
surfactant ratio while keeping the Janus droplet diameter-to-oil phase volume ratio constant
at 0.569 mm and an n-hexane-to-perfluorohexane volume ratio of 3:7.

In order to explore the relationship between surfactants and interfacial tension and
aperture diameter, the hanging drop method was used [43–45]. The interfacial tension
under different surfactants was measured. First, the image of the hanging drop was
obtained through experiments and converted into a 16-bit graph. Following the acquisition
of the image, it was imported into MATLAB (Mathworks Inc., Natick, MA, USA). In this
step, the needle diameter was provided as input, and the program carried out an automatic
calibration of the pixel size. Subsequently, the Canny edge operator was applied to process
the symmetrical line of the hanging drop, extracting the coordinates of X and Z. Finally, the
4-5 Runge-Kutta method was used to calculate the total arc length and the curvature of the
lowest point, and the shape factor and the interface tension were calculated.

2.2.5. Statistical Analysis

All data are presented as mean ± one standard deviation (SD) of n samples for each
experimental group. Groups were compared using one-way analysis of variance (ANOVA)
to determine significance. Differences between groups were considered significant when
p < 0.05.

3. Results and Discussion
3.1. Structural Color of Janus Droplets

When white light is irradiated in the vertical direction, the structural color phe-
nomenon of Janus droplets is observed by using an inverted fluorescence microscope
(Eclipse Ti-U, Nikon, Tokyo, Japan) (as shown in Figure 3). The reflected light is emitted
from the ring near the three-phase contact line of the Janus droplet, indicating that the
color is caused by the interaction between light and matter in a single droplet (as shown
in Figure 4). The refractive index of n-hexane surpasses that of perfluorohexane. Conse-
quently, when light enters perfluorohexane, characterized by its elevated refractive index,
it undergoes total internal reflection at the concave surface. This phenomenon leads to the
generation of the structural color as multiple beams of light, each taking distinct paths due
to the internal reflection and interfering with one another upon exiting.
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Therefore, the size of the structured color aperture of Janus droplets depends on the
shape of the three-phase contact line. In this study, the objective was to attain precise
control over the interface shape of Janus droplets and create structured color Janus droplets
marked by uniform size, well-defined positioning, and precise spatial orientation. To
accomplish this, we undertook a comprehensive series of comparative experiments. These
experiments were designed to investigate the impact of specific variables—namely, the oil
phase volume ratio of n-hexane and perfluorohexane, droplet size, and the proportion of
nonionic surfactant—on the attributes and properties of the structured color apertures.
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3.2. Effect of Oil Phase Volume Ratio on Janus Droplets

The observation of Janus droplets was conducted using an inverted fluorescence
microscope, which provided both top and side views of the results for seven experimental
groups (as depicted in Figure 5). The figure reveals variations in the structured color
apertures generated by Janus droplets with differing oil phase volume ratios. Notably,
when the volume ratio is either 19:11 or 3:2, Janus droplets exhibit an absence of structured
color apertures. Conversely, when the volume ratio is 11:19, the diameter of the structured
color aperture in Janus droplets is notably smaller compared to when the ratio is 17:13. This
discrepancy can be attributed to the constant total volume of droplets; lower volume ratios
result in a reduced n-hexane content. Consequently, when Janus droplets establish a stable
interface, the size of the three-phase contact line becomes smaller, leading to a reduced
aperture diameter for the structured color. Conversely, larger volume ratios yield interface
morphologies that do not meet the requirements for generating structural color, resulting
in the absence of structured color apertures.
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From Figure 6, it can be seen that the oil phase volume ratio has an impact on the
diameter of the structural color aperture. When the oil phase volume ratio is less than
or equal to 17:13, Janus droplets will produce a structural color aperture, and their size
will decrease as the volume ratio of n-hexane-to-perfluorohexane decreases. Therefore, the
structural color aperture size of Janus droplets can be adjusted by adjusting the oil phase
volume ratio.
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3.3. Influence of Droplet Size on Structure Color Aperture Diameter

Using an inverted fluorescence microscope to observe Janus droplets, a top and side
view of seven experimental results were obtained (as shown in Figure 7). From the figure,
it can be seen that the diameter of Janus droplets affects the diameter of the structural
color aperture.
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As shown in Figure 8, the size of the Janus droplets is positively correlated with the
size of the structural color aperture, meaning that as the size of the Janus droplets increases,
the diameter of the structural color aperture also increases. In addition, when the droplet
diameter is 0.745 mm, changes in interface morphology will lead to an increase in the
size of the three-phase contact wire, and the diameter of the structural color aperture will
also increase accordingly. However, changes in the diameter of droplets will not affect
the generation of structural color apertures, as the interface morphology will not undergo
significant changes.RETRACTED
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3.4. Influence of Surfactant Ratio on Janus Droplets

The inverted fluorescence microscope was used to observe the Janus droplets, and the
top view and side view of 25 groups of experimental results were obtained (as shown in
Figure 9). It can be seen from the figure that the ratio of surfactant will affect the interfa-
cial tension between the n-hexane and hydrogel and the perfluorohexane and hydrogel,
thus changing the internal interface morphology of the Janus droplets and affecting the
generation of the structured color aperture.
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When X-100 is kept constant, such as 0.03 wt%, the diameter of the structured color
aperture increases with the increase in FS-30 concentration (as shown in Figure 10a). This
is because the interfacial tension between the perfluorohexane and carbomer hydrogel
decreases with the increase in FS-30 concentration (as shown in Figure 10c). Similarly,
when FS-30 is kept constant, such as 2 wt%, the diameter of the structured color aperture
increases with the increase in X-100 concentration (as shown in Figure 10b). In addition,
the diameter change of the structured color aperture is related to the change in the internal
interface morphology of the Janus droplets. As the concentration of X-100 increases, the
interfacial tension between the n-hexane and carbomer hydrogel decreases. Simultaneously,
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the interfacial tension between the perfluorohexane and carbomer hydrogel increases. This
leads to the formation of a larger three-phase contact line, as depicted in Figure 10d.
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3.5. Patterned Printing

Microfluidic 3D droplet printing allows for the meticulous management of Janus
droplet characteristics, encompassing size, spatial placement, and orientation. Addition-
ally, it facilitates the precise modulation of the diameter of the structured color aperture
through the manipulation of variables such as the oil phase volume ratio, droplet size, and
surfactant concentration.

The G code of the pattern needs to be imported so it can be printed into a microfluidic
3D droplet printer. The 3D droplet printer reads the G code and transmits it to the control
system, thereby controlling the feeding and moving mechanisms to feed materials and
change the position of the printing nozzle and start printing. During the printing process,
the microfluidic 3D droplet printer can dynamically adjust the feed rate of the microinjection
pump, as well as the movement speed and pause time of the X/Y/Z axis, according to
each instruction in the G code, thereby achieving control of the size and position of the
Janus droplets.

The G code for the printing path of the cat- and the heart-shaped outlines is compiled
using a text editor. Subsequently, microfluidic 3D droplet printing technology is employed
to generate the color outline, depicted in Figure 11a,b. For the fish and heart models, the
design is carried out using Solidworks, and the corresponding G code for the printing
path is generated. Utilizing microfluidic 3D droplet printing technology once more, the
color plane pattern is produced, as illustrated in Figure 11c,d. These color patterns exhibit
remarkable brightness, clarity, and aesthetic appeal, showcasing the exceptional optical
properties inherent in Janus droplets with structural color.
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Moreover, Janus droplets, when suspended in a carbomer hydrogel, exhibit temperature-
responsive characteristics. Precise temperature control allows for the deliberate manipu-
lation of their phase separation, thereby facilitating the dynamic transition of the Janus
droplets’ structural color between a visible and concealed state, as illustrated in Figure 12.
This captivating property presents an innovative avenue for advancing the development of
anti-counterfeiting materials.
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4. Conclusions

For the printing material, this endeavor employed a carbomer hydrogel infused
with a nonionic surfactant (FS-30/X-100) as the foundational substrate and a mixture of
temperature-sensitive n-hexane and perfluorohexane. Microfluidic 3D droplet printing
technology, combined with a temperature-induced phase separation method, successfully
generated Janus droplets. The droplets were then characterized according to a consistent
size and precise control over their spatial positioning and orientation. This study also
engaged in an in-depth analysis of the underlying principles governing the production of
structural color in Janus droplets. The influence of variables such as the volume ratio of the
oil phase, droplet size, and surfactant composition was also explored.

Finally, the G code was compiled independently and generated the G code using
printing software. The color patterns with specific shapes, such as the cat and fish shapes,
were printed in the carbomer hydrogel. The degree of visualization was high. After that, the
temperature was adjusted. The Janus droplets of structural color switched freely between a
display and hidden state, which showed unique optical characteristics while broadening
application paths.

Author Contributions: Conceptualization, C.W. and B.Y.; methodology, C.W. and H.J.; software, H.J.
and H.Y.M.A.; validation, C.W., H.Y.M.A., A.S.M.M.F.S. and B.Y.; formal analysis, B.Y.; investigation,
H.J. and H.Y.M.A.; resources, B.Y.; data curation, C.W.; writing—original draft preparation, C.W.,
H.Y.M.A. and A.S.M.M.F.S.; writing—review and editing, C.W. and B.Y.; visualization, C.W.; supervi-
sion, B.Y.; project administration, B.Y.; funding acquisition, C.W. and B.Y. All authors have read and
agreed to the published version of the manuscript.
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