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Abstract: A non-destructive verification method was explored in this work using the Barkhausen
noise (BN) method for induction hardening depth measurements. The motive was to investigate
the correlation between the hardness depth, microstructure, and the Barkhausen noise signal for
an induction hardening process. Steel samples of grade C45 were induction-hardened to generate
different hardness depths. Two sets of samples were produced in two different induction hardening
equipment for generating the model and verification. The produced samples were evaluated by
BN measurements followed by destructive verification of the material properties. The results show
great potential for the several BN parameters, especially the magnetic voltage sweep slope signal,
which has strong correlation with the hardening depth to depth of 4.5 mm. These results were further
used to develop a multivariate predictive model to assess the hardness depth to 7 mm, which was
validated on an additional dataset that was holdout from the model training.

Keywords: Barkhausen noise; induction hardening; predictive modeling

1. Introduction

A major challenge in automotive industry when producing heat-treated engine parts is
given by acquiring of necessary material properties (e.g., surface hardness, microstructure
and hardening depth) within specification limits of a given component to withstand loads
during its use. Therefore, the verification of these properties from manufacturing is essential.
One of these components are cam shafts for heavy duty vehicles, which is in a great need
of a non-destructive characterization (NDC) method to verify the material properties after
heat treatment. Currently, this verification is solely done by first-part destructive testing,
where manufactured parts are sectioned to smaller pieces and the microstructure and
hardness are verified relative the operational window of the process. For cam shafts, this is
necessary every time the induction hardening process is reset or when other planned or
un-planned interruptions occurs. However, this verification process is very costly due to
production stands still during process performance verification.

In the present investigation, the basic relationships for the development of a NDC
method for the induction hardening process of cam shafts for heavy duty vehicles was
considered. During induction hardening, the surface of the starting material undergoes a
rapid heating and quenching, which results in a martensite transformation of the surface
layer. This is performed sequentially from one cam lobe to the other, which generates a
much harder and wear resistant surface at each sub-section of the part treated.

The need for non-destructive verification of the heat treatment process is important and
prior investigations have shown great potential in the Barkhausen noise (BN) method [1,2]
with several potential benefits: higher process capability to lower cost and a more even
quality of the surface treated.
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The BN method is sensitive to residual stresses, hardness, and microstructure of
ferromagnetic materials [3–5]. Compressive stresses and high hardness provide a low
BN-signal, while tensile stresses and low hardness results in high BN-signal. The BN
are the irreversible electromagnetic response of the magnetic domain wall movement in
the material surface when a ferromagnetic material is exposed for an external magnetic
field [6,7]. The domain wall movement is defined by the domain size, distribution, and the
amount of pinning sites as described by the Kittel [8]. These pinning sites are dislocations
and line defects in the microstructure, which are directly related to the material hardness,
since they aggravate plastic strain. This relationship has been used in different works, i.e.,
by Tam et al. and Santa-aho et al., who made advancement of the analysis methodology of
how to characterize the response signal for sub-surface microstructural characterization for
case depth measurements [9,10].

Barkhausen noise is well-known of its sensitivity to the impact of the microstructure
in the near surface zone while the actual signal depth is not understood. Theoretically,
the BN signal depth is only a few tenths of millimeters, but empirical studies have shown
potential correlation with larger hardening depths, down to several millimeters [9–11].
Advancements have been made by developing new measurement techniques such as the
magnetic voltage sweep slope method (MVSS), i.e., shown by Santa-aho et al. [10]. This
method performs two voltage sweeps at two different frequencies, one low and one high,
and calculates the ratio between the maximum slope is used for each frequency. The
maximum slope is an indirect measure of the permeability of the material and by taking
the ratio, the signal is normalized. Santa-aho et al. further showed a correlation between
the case hardening depth of steel and the MVSS ratio to depths of 3.5 mm [10]. Sorsa et al.
suggested development of predictive models to support non-destructively assessment of
nitride hardening depth [12]. However, the correlation with greater hardening depths is
yet not fully understood, since the analysis depth of the Barkhausen noise signal also is
dependent of the so-called skin effect for eddy-current or magnetic fields, as described by
Equation (1).

δ =
1√

π f µσ
=

1
A

(1)

where δ = depth of penetration of the magnetic field, f = frequency of the magnetic field,
µ = magnetic permeability, and σ = electrical conductivity. This model describes the
theoretical penetration depth of the applied magnetic field assuming a homogeneous
material property at a specific constant frequency.

However, since the BN signal is filtered in a frequency range, the equation for depth
analysis, D(x), of the Barkhausen noise signal needs to be modified. Therefore, as suggested
in the work of Tiitto et al. [13], a variant of the skin effect formula for a frequency range of
the BN signal is given by Equation (2).

D(x) =

∫ f2
f1

g( f ) exp
[
−A·x· f 1/2

]
d f∫ f2

f1
g( f )d f

(2)

where g(f) is the form of the amplitude variation as a function of frequency. g(f) = 1, for
random white noise and f1 and f2 are the frequency limits of the filtered frequency range
and x as the distance inside of the material. Applying typical settings for a hardened
and tempered steel, conductivity of 106 Ω−1·m−1, µr = 200, and frequency range, f1 − f2,
70–200 kHz, equals to a depth of analysis of 0.1 mm. For a non-hardened, mild steel,
the depth of analysis will decrease to approximately 40 µm. Harder steel provides a
higher analyzing depth and softer steel provides a lower analyzing depth at the same
frequency range.

This is closely related to the BH-hysteresis loop, which is completely different for a soft
or hard steel affecting the saturation, the width and slope of the loop as shown by Saquet
et al., Jiles, and Swallem [14–16]. Induction hardening gives rise to a change in the BN
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response, as the amount of pinning sites increases [8]. This directly affects the root mean
square (RMS) parameter, and generates a secondary peak as shown by Saquet et al., who
used this to measure hardness depths to 3.5 mm [15]. In a similar manner, Vaidyanathan
et al. utilized this secondary peak to measure the hardening depth down to 3.5 mm [17].
For shallow heat-treated layers, Augustis et al. suggested using the BN Power spectrum,
which showed to give very high resolution for layers down to 0.8 mm [18].

One plausible reason for the relationship between hardening depth and the MVSS is
that the signal utilizes the hardness difference between surface and bulk, which then in
principle is a measurement of the permeability of the material. As the MVSS method uses
two different magnetizing frequencies, resulting in measurements at two different depths,
it can be assumed that the MVSS parameter correlate with the gradient of the hardness.
This implies that the analyzing depth of the Barkhausen noise signal does not need to be in
the same range as the hardening depth.

The major motive in this investigation has been to further explore the correlation
between the hardness depth and the Barkhausen noise signals for induction steels with
hardening depths used for cam shafts, in the range of 1.8–7 mm. With this knowledge,
a statistical approach has been used to generate valid models for predictive analysis of
relevant BN signals.

However, it is of great importance to verify the range of the relevant variation that
needs to be detected, in the combination of hardening process and material composition
at hand, which can be detected with sufficient precision. The literature show that the BN
method has great potential, but the resolution, influenced by the microstructure variation
and component geometry on data/decision quality, is not fully understood. This has been
the target in this work, realized by evaluation of a new approach utilizing the different BN
signals in combination. In a future stage, this will be used as input for process monitoring
in combination with, for example, control charts, which combined, ease the need of high
measurement system precision [19].

This work was divided into three main parts. Part one focused on developing samples
with greatest possible variety of hardening depths. The second part was devoted to
characterizing the samples by both non-destructive and destructive analysis in order
to establishing clear relationships of the influential aspects of correlation between the
hardening depth and the BN response. The third part developed and verified predictive
models of the non-destructive measurements of the hardening depth.

2. Methodology
2.1. Material

Two sets of samples were developed using two different types of induction hardening
equipment. Randomly selected samples from both test sets were used to train a predictive
model, while the holdout samples were used for verification of the model. Set A was gener-
ated with the greatest possible variation of hardness profiles, while set B was developed
within the range of set A with the settings used according to Table 1. Using this approach,
the developed model became more generic since it handled different induction heating
equipment. Both sample sets were produced using laboratory scale induction hardening
equipment, with progressive induction hardening. The material of the samples was steel
grade C45 (main alloying elements of Fe: Bal, C: 0.45 wt-%, Mn: 0.71 wt-%, Si: 0.23 wt-%)
with a ferritic/pearlitic microstructure as seen if Figure 1. The samples had a diameter of
23 mm and a length of 100 mm.

Table 1. Induction hardening settings of the two test sets, set A and B.

Sample Set Scanning Speed
[mm/s]

Power
[% of Full Power]

Full Power
[kW]

Quenchant
Concentration [%]

A 2–8 90/100 50 5
B 2.5–12 42–55 150 5, 11
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2. The sample was fixtured in a rotational chuck that rotate the sample during heating and 
a quench shower, which sprays quenching fluid on the sample after heating. Test set A 
was heat-treated by altering the scanning speed from 2–8 mm/s, the power from 90–100%, 
pre-heating time of 4 s, and a concentration of the quenchant of 5%. The equipment used 
for the test set B offered higher powers up to 150 kW. The samples for set B were produced 
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tration from 5–11%. 
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Figure 1. Overview of surfaces and microstructures before and after induction hardening.

2.2. Heat Treatment

The heat treatment was performed using two types of lab-scale induction hardening
(IH) equipment, as seen in Figure 2. Both types of equipment consisted of a circular inductor,
constructed of three coil loops for equipment 1 and one single loop for equipment 2. The
sample was fixtured in a rotational chuck that rotate the sample during heating and a
quench shower, which sprays quenching fluid on the sample after heating. Test set A was
heat-treated by altering the scanning speed from 2–8 mm/s, the power from 90–100%,
pre-heating time of 4 s, and a concentration of the quenchant of 5%. The equipment used for
the test set B offered higher powers up to 150 kW. The samples for set B were produced with
scanning speed of 2.5–12 s/mm, the power from 42–55%, and the quenchant concentration
from 5–11%.
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2.3. Sample Characterization

The BN-measurements were performed with a Rollscan 300 from Stresstech Oy, using
a shielded sensor with normal bandwidth. Measurements were done using a magnetizing
voltage of 6 V and a magnetizing frequency of 80 Hz. The collected BN data were analyzed
and calculated as the arithmetic average of three measurements, each consisting of 10 bursts,
using the full frequency band. The burst analysis of root mean square (RMS), full width
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half maximum (FWHM), and peak position was done using a moving average smoothing
and a polynomial fit for the peak calculation. The Barkhausen noise were measured using
two different approaches:

• MicroScan software from Stresstech of the conventional BN parameters such as: root
mean square value (RMS), peak position, and full width half maximum (FWHM);

• PCCaseDepth software from Stresstech of the magnetizing voltage sweep slope
(MVSS), which measured the ratio from the maximum slope of the sweeps of 200 Hz
and 20 Hz. In total, the average slope ratios of four sweep measurements were used.

The surface residual stresses were measured with X-ray diffraction using a Stresstech
G2R equipment with Chromium radiation. The (211) diffraction plane was used for
measurements located at a diffraction angle of 156.4◦ and the sin2ψ, in modified χmode,
was used with 5 tilt angles in the interval of ±40◦.

The microstructure of all samples was evaluated on polished and nital-etched cross sec-
tion surfaces of the samples. The hardness was measured with a Qness Q10A+ equipment
using Vickers method (1 kg) and the Knoop method (200 g).

Statistical analyses were done of the measured data to develop models and verification
using the software JMP Pro 16.2. A principal component analysis (PCA) approach was
selected, as the datasets showed a heavy bi-variate correlation between themselves and the
hardening depth.

3. Results
3.1. Non-Destructive Testing

The Barkhausen noise parameters RMS, FWHM, peak position (Pos), and MVSS
(200 Hz/20 Hz) versus the hardening depths (HD) are shown in Figures 3 and 4 with
set A to the left and set B to the right. These parameters show different relationship and
degree of correlations to the hardening depth. The RMS values were of the same magnitude
for hardening depths in the interval 1.8–3.2 mm. At a greater depth, the RMS increased
drastically down to 5 mm, but not for the greatest depth, 7 mm. The correlation to the
hardness depth is rather S-shaped than linear, as seen in Figure 3A). The FWHM showed
a more linear correlation with hardening depth for set A compared to set B, increasing
gradually, see grey-colored curves in Figure 3. The MVSS-parameter has a very higher
degree of linear correlation to the hardening depth down to 4.5 mm, see Figure 4. In the
same Figure, the peak position showed a high correlation for the shallow hardness depth
interval for validation set B but not for the deeper interval for training set A.
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The surface residual stresses and diffraction peak broadening, also known as full width
half maximum (FWHM), were measured with XRD for the samples as shown in Figure 5.
These results showed a great variation of stresses for the different samples ranging from
high compressive stresses for samples with low hardening depth (HD) to tensile stresses
for the samples with high HD. The surfaces residual stresses showed a linear correlation
to HD for set A, as shown by the high R2 values of linear trendlines, if the 7 mm sample
was considered as an outlier. The FWHM values ranged in the interval 3–7◦, showing a
decrease with a higher HD. The correlation was s-shaped for set A while set B showed a
great variation.
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3.2. Destructive Evaluation

The series of heat treatments to generate sets A and B produced a variety of hardness
profiles for the different settings of scanning speed, power, and quenchant concentration,
as seen in Figure 6. The effective hardening depth (EHD) was determined as the depth
where the hardness dropped below 400 HV, in accordance with SAE J423 [20]. The results
in Figure 5 show that an increasing scanning speed generated a lower hardness depth
and a sharper transition between hardened and non-hardened materials. It could also be
observed that decreasing the power from 100% to 90% resulted in a shift towards lower
hardness depth for set A. It is further seen that the surface hardness was less influenced of
the scanning speed. Test set A show a wide range of hardening depth of 1.7–7.0 mm while
set B show a narrow range of 2.4–4.3 mm.
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Figure 6. Hardness profiles, Vickers (HV1), for (A) test set A and (B) test set B, induction hardened
samples with different scanning speed (S), power (P), and quenchant concentration (Q).

The surface hardness using the Vickers HV1 method in Figure 6 was a too rough
measurement and instead the surface hardness was evaluated using the Knoop method
with a load of 200 g. This enabled us to measure closer to the surface, thereby measuring
the very outer surface hardness. The resulting surface hardness versus the hardening
depth was shown in Figure 7A for set A, and in Figure 7B for set B. Test set A show a
clear correlation between the surface hardness and hardening depth showing an increasing
surface hardness for low hardening depths. This further gives evidence to the correlation
between the deep hardening depth and the more superficial BN signal.
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The microstructure for the different samples was also evaluated on polished cross
sections. Examples for test set A are seen in Figure 8. The martensitic structure changed
with the different induction hardening parameters where the martensitic needles gradually
became sharper and coarser with hardening depths (HD). The amount of bainite, also
known as troostite, gradually increased as well with increasing hardening depths, observed
as small dark spots in the microstructure.
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Figure 8. Micrographs of selected samples, induction heat-treated with different scanning speed (S)
and power (P), with gradually increasing hardening depth (HD).

Apart from the great difference observed for the microstructure in the surface, the
different samples show more or less sharp microstructural gradients in the transition zone
i.e., between the hardened zone and core material. The sharpness of these gradients appears
to correlate well to the surface hardness. In Figure 9, two extremes from test set A are
shown at different depths: (1) the surface, (2) the effective hardness depth (EHD) and
(3) the total hardness depth (THD), which is defined as the depth where the hardness of
the core material is reached as defined in SAE J423 [20]. The microstructure clearly differed
between the two samples, especially in the transition zones. The left sample with lower
EHD showed a slightly lower surface hardness due to presence of retained austenite in the
surface, which rapidly changed into a mixture of martensite and ferrite in the transition
zone. At the total hardening depth, a sharp transition between different microstructural
features was observed. The sample with higher EHD showed fully martensitic surface but
a much more gradual transition between different microstructures in the transition zone
and no sharp transition at the THD.
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4. Analysis and Predictive Modeling

As seen earlier, several NDC-parameters showed a strong correlation with the harden-
ing depth. Further studies of each of these parameter’s relationship to the hardening depth
are shown in Figure 10. This highlights the bi-variate correlation of hardening depth versus
surface hardness, residual stress, and BN-characteristics for the two test sets. Two possible
outliers are statistically identified, explained below (Section 4.1), and marked with stars (*).
These are the two deepest hardened samples from both test sets, also identified in Figure 6:
the 7 mm sample for set A and the 4.3 mm sample for test set B. These samples also had
an elevated hardness at the core of the samples, compared to the samples with a shal-
lower hardening. It is assumed that this influences the RS and BN surface measurements,
respectively.
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The color-coded matrix of correlations in Figure 11 reveals a heavy bi-variate correla-
tion between the predictors themselves and with the hardening depth. This fact prevents
using an ordinary linear regression approach, which assumes predictor independence. The
parallel plot in Figure 12 shows the multivariate pattern of the hardness depth characteris-
tics stratified on respective test set. The pattern for both sets is similar and shifts from one
pattern for shallow hardening depths and another pattern at deeper. It seems that lack of
some signals in combination with others contain hardening depth information of value.
This suggests using principal component analysis to find a lower number of independent
latent factors that may be used for prediction modeling.

The statistical modeling analysis, using a PCA approach in this work, was targeted to
develop prediction models robust for interpolation of the hardening depths in-between
measured samples, which otherwise is risky using correlated predictors. The model
development consists of three refinement steps:

(i) All NDC predictors in a model using principal components (PC), assuming laboratory
set-up independence;

(ii) All NDC predictor in a model using principal component and principal component
interaction with Tests sets, assuming laboratory set-up dependence;

(iii) Modeling based on minimal set of NDC using BN predictors only, to reduce the
monitoring demand.
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4.1. Prinicple Component Analysis (PCA) of Predictor Correlation

PCA is a technique to reduce correlated variables into a smaller set of independent
factors that can be used for ordinary linear regression analysis [21]. Each observation
consisted of four + four RS- and BN-characteristics that were projected on the plane defined
by the principal components and represented by pairs of PC1- and PC2-coordinates. The
plane defined by the two orthogonal principal components capture 87.8% of the variation
and removes the correlation between the four + four original characteristics. In Figure 13
all observations are from the test sets projected on the PC1/PC2 plane, test set A (black •),
and test set B (red x), respectively. The outliers discussed above marked with a red and a
black star were identified with a T2-control chart on the residuals, using the default settings
of JMP Pro 16.2. The outliers were kept in the analysis, even though they might not fully
represent the same physical phenomena as the other, due to the elevated core hardness.
However, they provided some useful information or lack of information that in itself
was useful for the elevated understanding. The principal components were themselves
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linear combinations of the base parameters and represented the main and second most
important axis of the variation. These can be interpreted as two perpendicular axes in
rotated coordinate system. The coordinates for each sample in the rotated coordinate
system were calculated using Equations (3) and (4).

PC1 (BN + RS) = −0.00154 × RS Ax − 0.00242 × RS Tang + 0.307 ×
RS FWHM Ax + 0.308 × RS FWHM Tang − 0.0047 × BN RMS + 0.127 ×
BN Peak Pos − 0.236 × BN FWHM + 1.689 × MVSS

(
200Hz
20Hz

)
− 1.325

(3)

PC2 (BN + RS) = 0.00068 × RS Ax − 0.00179 × RS Tang + 0.0058 ×
RS FWHM Ax + 0.026 × RS FWHM Tang − 0.00656 × BN RMS + 0.109 ×
BN Peak Pos + 0.590 × BN FWHM + 1.795 × MVSS

(
200Hz
20Hz

)
− 15.104

(4)
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effects truly explains the variation, and (3) heredity principle—if an interaction is active, 
most likely will its parental effects also be. In this case, it resulted in a good prediction 
model, Equation (5), which captured 86% of the variation in hardening depth (Figure 
14A): HD =  2.761 − 0.198 × PC1 + 0.190 × PC2 +  0.056 × PC1 + 0.127 × PC1 × PC2  (5)

However, the model does not capture all information hidden in the data, when strat-
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4.2. Ordinary Multi-Parameter Linear Regression of Hardening Depth (HD) Using Principal
Components—Model i

To test if the principal components based on RS- and BN-measurements were sufficient
to predict the hardening depths, a second-order response surface model was created based
on PC1 and PC2, fitted to the hardening depth data. A second-order linear model consists
of main-effects, two-factor interactions, and quadratic terms. The latter was needed to
describe the response surface curvature. The predictive modeling approach, fitting a model
to data, was built on three general guiding principles in search for interactions described
in [22]: (1) the hierarchy principle—the higher order the less likely the interaction will
explain the variation, (2) effect sparsity—only a fraction of the possible effects truly explains
the variation, and (3) heredity principle—if an interaction is active, most likely will its
parental effects also be. In this case, it resulted in a good prediction model, Equation (5),
which captured 86% of the variation in hardening depth (Figure 14A):

HD = 2.761 − 0.198 × PC1 + 0.190 × PC2 + 0.056 × PC12 + 0.127 × PC1 × PC2 (5)
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Figure 14. (A) Actual vs. predicted plot for the model (i), based on principal components only and
(B) stratified on test sets.

However, the model does not capture all information hidden in the data, when strati-
fying on Test sets (Figure 14B). The model exaggerates the hardening depth on the test set
B samples. This pattern is also indicated in Figure 13, where the test set B samples mainly
show negative PC2 coordinates.

4.3. Modeling Including Test Sets and Principal Component Interaction—Model ii

The result in the former section implies that it is not sufficient to fully rely on NDC
alone to predict the hardening depth, independently of set-up. PC1 captured most of
the variation in hardening depth (76%) independently of test sets, that is if there was no
separation horizontally between test set A and B, as seen in Figure 13. The general trend
was captured, but the precision of prediction model probably increased if it is calibrated
with respect to the actual hardening set-up, including sample geometries and application
specific alignment.

Adding test sets as a discrete variable, a stepwise regression suggested a best sub-set
model based on both PC1 and PC2 and test sets parameter that explained 90% of the
variation in hardening depth. The actual by predicted plots in Figure 15 showed the result
of the improved model.
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The models predicting the hardening depth in each test set, respectively, were pre-
sented in Equations (6) and (7). The interpretation of the coefficient adjusted depending on
the test set was that the PC captured the general behavior of the relation between NDC and
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hardening depths in the same manor for both test sets but needed to be adjusted slightly
depending on the application.

HDfull(Set A) = 2.624 − 0.185 − (0.257 + 0.175)× PC1 + (0.355 + 0.312)× PC2 +
0.031 × PC12 (6)

HDfull(Set B) = 2.624 + 0.185 − (0.257 − 0.175 × PC1 + (0.355 − 0.312)× PC2 +
0.031 × PC12 (7)

4.4. Residual Analysis for Model Comparison

Analysis of the residuals in Figure 16 revealed a remaining pattern when stratified on
test sets. This is an indication of remaining information in the data, Figure 16A, whereas
there was no such pattern in the second model when adding test sets and interaction
between test sets principal component interaction to the model. This suggests that the
second model utilized the revived data, better indicated by the higher goodness of fit score
of the second model.
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4.5. Modeling Including Test Set and Principal Componets Based on BN-Characteristics—Model iii

To reduce the need for monitoring, it would be interesting to use BN-characteristics
only. A second set of principal components using the four BN characteristics only is shown
in Equations (8) and (9):

PC1 (BN) = −0.007 × BN − RMS + 0.193 × BN Peak pos − 0.364 ×
BN FWHM + 2.657 × MVSS

(
200Hz
20Hz

)
+ 6.332

(8)

PC2 (BN) = −0.007 × BN − RMS + 0.146 × BN Peak pos + 0.628 ×
BN FWHM − 1.394 × MVSS

(
200Hz
20Hz

)
− 16.576

(9)

Figure 17 shows the performance of the regression model stratified on test sets. It
captured the variation in the data very well (R2 = 0.92). The models predicting hard-
ening depth based in BN characteristics scaled for the different test sets are shown in
Equations (10) and (11):

HDBN(Set A) = 2.815 − 0.157 − (0.502 + 0.259)× PC1(BN)+
(0.234 + 0.314)× PC2(BN)

(10)

HDBN(Set B) = 2.815 + 0.157 − (0.502 − 0.259)× PC1(BN)−
(0.234 − 0.314)× PC2(BN)

(11)
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5. Discussion

This work demonstrated the potential using NDC methods for monitoring of surface
hardening processes that had the potential to reducing the need of process stand-still after
resetting during destructive verification. It was further shown that there may exist some
individual differences originating of the hardening process itself, comparison between set
A and B, which requires individual models to be built for different process setups. The
difference between the two sets could further be explained by the variation and differences
in quenching, the efficiency of the quenching shower, as well as of different induction coils
that may heat the parts differently, including the individual coupling distances.

The destructive evaluation of the samples was important in order to understand the
correlation with the BN signal. The correlation between the BN signal and HD was believed
to be a combination of differences in the microstructure as well as in the surface hardness.
The destructive analysis showed that the sharpness of the transition zone differed greatly
between the samples with different HD as well as the very outer surface hardness. This
explains why there exists a correlation between deep hardening depth of several millimetres
and the shallow signal of Barkhausen noise of a few hundreds of penetration depth.

The statistical analysis revealed that modeling directly using the NDC is difficult due
to heavy correlation among the predictors that prevents ordinary linear regression. The two-
step procedure consisted of two steps: first, reducing the number of correlated predictors
to a few orthogonal principal components. This represents the main physical behavior of
the predictors. In this case, the set included four residual stress characteristics and the four
BN characteristics. One underlying advantage using this approach was that the principal
components captured the combined pattern of metrics to a larger extent, and even a lack of
signal is useful information. For example, when the BN-signal became weaker but not the
RS signal, this was also a characteristic pattern that was useful. The second step was to use
the orthogonal principal components as predictors when fitting a predictive model to the
data. In this case, a second-order response surface model was sufficient.

The predictive modeling toolbox contains many different kinds of modeling tech-
niques, from ordinary linear regression to more advanced non-linear techniques, such as
general regression or neural networks, etc. It is important to remember, however, that the
purpose with the models using this approach is not to explain the physics behind. It only
makes it possible to handle the physics and to prioritize the likelihood of the importance of
the parameters in a certain case, which is sometimes invaluable when there are lots of char-
acterization and process control parameters involved. After the model building phase, the
models can be re-transformed to the natural parameter space and it is possible to build the
foundation for monitoring systems in the next phase. An alternative approach would be to
use partial least square regression, PLS, in this case, which finds latent factors that capture
the variation of both predictors and responses in one step, connecting them directly. The
gain is somewhat simpler model building. One practical difference between the approaches
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is that the principal components above can be used to model other responses without losing
the general connection to the physical behavior of the predictors. In PLS, the latent factors
connect them. Both methods may be used to explore if the hardening depths are related
to the NDC characteristics within the range tested. The analysis further revealed that the
precision of the predictions further can be improved if the model is calibrated relative the
specific application regarding sample shape and hardening application geometry. This
implies that the even though the general pattern of how combination of characteristics react
to variations of the hardening depth is the same, the variations of sample geometry and
induction hardening equipment set-up influence the scaling of the coefficients, which make
them case-dependent. Understanding exactly how such variations influence, and if and to
what extent and how the monitoring further can be simplified, remains to be explored.

6. Conclusions

The concluding results from depth measurements and statistical modeling of induction
hardening samples show that:

• The different Barkhausen noise parameters, RMS/FWHM and MVSS(200 Hz/20 Hz),
correlate well to hardening depths down to 4.5 mm;

• The surface hardness and hardening depth correlate, which explains the Barkhausen
noise signal sensitivity to the several-millimetres-deep correlation to the harden-
ing depth;

• It is possible to predict the hardening depth using principal components based on all
or a reduced set of BN and RS characteristics;

• The test set dependence indicate that the BN and RS characteristics capture subtle
differences of the hardening result hidden in the microstructure whether it depends
on variations of the base material or slightly different heating and cooling efficiency in
the elaborative set-up;

• The surface hardness and hardening depth are correlated, which explains the correla-
tion between the hardening depth and the Barkhausen noise signal.
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