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Abstract: In this work, we successfully demonstrated In0.53Ga0.47As/InAs/In0.53Ga0.47As composite
channel metamorphic high electron mobility transistors (mHEMTs) on a GaAs substrate. The fabri-
cated mHEMTs with a 100 nm gate length exhibited excellent DC and logic characteristics such as
VT = −0.13 V, gm,max = 949 mS/mm, subthreshold swing (SS) = 84 mV/dec, drain-induced barrier
lowering (DIBL) = 89 mV/V, and Ion/Ioff ratio = 9.8 × 103 at a drain-source voltage (VDS) = 0.5 V. In
addition, the device exhibited excellent high-frequency characteristics, such as fT/fmax = 261/304 GHz
for the measured result and well-matched modeled fT/fmax = 258/309 GHz at VDS = 0.5 V, which is
less power consumption compared to other material systems. These high-frequency characteristics
are a well-balanced demonstration of fT and fmax in the mHEMT structure on a GaAs substrate.

Keywords: mHEMT; HEMT; InAs HEMT; InGaAs HEMT; Mo-based Ohmic contact; In0.53Ga0.47As/
InAs/In0.53Ga0.47As composite channel; GaAs; InGaAs/InAs/InGaAs composite channel

1. Introduction

High electron mobility transistors (HEMTs) based on indium-rich InxGa1-xAs channel
materials on an InP substrate have demonstrated excellent high-frequency and logic charac-
teristics. In terms of high-frequency characteristics of the InGaAs channel HEMT, H. -B. Jo
et al. demonstrated 738 GHz unity current gain cutoff frequency (fT) in a 19 nm In0.8Ga0.2As
composite-channel HEMT on a InP substrate [1], D. -H. Kim et al. showed excellent logic
performance and a fT of 644 GHz in 30 nm InAs Pseudomorphic HEMTs (pHEMTs) [2], and
Northrop Grumman Corporation exhibited an fT of 610 GHz/fmax of 1.5 THz by using an
In0.53GaAs/InAs/In0.53GaAs composite channel with a Lg of 25 nm [3]. These remarkable
performances have been achieved through downscaling of device feature size, an optimized
fabrication process, and optimized InGaAs channel materials for excellent transport prop-
erties. In addition, InGaAs channel MOSFETs have shown outstanding logic performance
on various substrates, such as InP and flexible substrates, with extensive efforts to enhance
their capability in new device structures, S/D Ohmic contacts, and optimization of the gate
stack [4–7]. Meanwhile, large-size and cheaper-cost substrates will be essential for large-
volume manufacturing from a mass production point of view, but an InP substrate is more
expensive than a GaAs substrate, and the size to date is limited to 6 inches. To overcome
these limitations of the InP substrate, many groups have demonstrated many outstanding
results for mHEMTs on a GaAs substrate [8–11]. In particular, Teledyne demonstrated
excellent results of a 688 GHz fT by utilizing an In0.7GaAs mHEMT structure with dual Si
δ-doping and an InAs-rich In0.7Al0.3As spacer on a GaAs substrate in 2011 [9]. Fraunhofer
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showed a maximum oscillation frequency (fmax) exceeding 1000 GHz by using an In0.8GaAs
mHEMT structure on a GaAs substrate in 2013 [11]. Among various HEMT structures, an
InGaAs/InAs/InGaAs composite channel was used to enhance high-frequency character-
istics in HEMT structures because of its excellent electron transport properties, such as
electron velocity and mobility [2,3,12]. However, an In0.53Ga0.47As/InAs/In0.53Ga0.47As
composite channel structure on a GaAs substrate has not been demonstrated yet. In this
work, we fabricated an In0.53Ga0.47As/InAs/In0.53Ga0.47As composite channel HEMT on
a GaAs substrate incorporating a molybdenum (Mo)-based Ohmic contact using blan-
ket Mo deposition and investigated its electrical performance, such as DC, logic, and RF
characteristics, with an Lg of 100 nm.

2. Layer Structure and Experiments

The mHEMT heterostructures consisted of a 500 nm In0.52Al0.48As buffer, a 12 nm
In0.53Ga0.47As/InAs/In0.53Ga0.47As (4/5/3 nm) channel, a 3 nm In0.52Al0.48As spacer, Si
δ-doping (4.1 × 1012 cm−2), an 8 nm In0.52Al0.48As barrier, a 4 nm InP etch stop layer, and
a 35 nm heavily doped In0.53Ga0.47As/In0.52Al0.48As multi-layer cap from the bottom to
the top as shown in Figure 1a. The energy band diagram of the epitaxial structure is shown
in Figure 1b. From this structure, sheet carrier density and electron hall mobility were
measured to be 2.92 × 1012 cm−2 and 10,000 cm2/V·s at room temperature, respectively,
with four-point probe measurement methods (Van der Pauw measurement method). Device
fabrication began with a 30 nm blanket molybdenum (Mo) deposition for ohmic contact to
prevent surface contamination and improve the contact resistance (Rc), then mesa isolation
down to an InAlAs buffer layer by Mo dry etching and wet etching. After Ti/Au/Ni
(20/150/30 nm) metallization for source and drain, dry etching in an SF6/Ar plasma was
performed to etch Mo in the gate region using the Ni metal etch mask of the source and
drain [13]. A 30 nm thick layer of SiO2 was deposited by plasma-enhanced chemical vapor
deposition (PECVD), and then the pad patterns with Ti/Au (20/300 nm) were defined for
ground-signal-ground probing. After e-beam exposure, the defined e-beam resist pattern
was transferred to define the T-gate by using reactive ion etching based on CF4 plasma.
Gate recessing was performed in two different step stages, followed by anisotropic reactive
ion etching of the InP etch stop layer in an Ar-based plasma [14]. After InP etching, Schottky
gate metallization of Ti/Pt/Au (20/30/300 nm) was deposited on top of the InAlAs layer.
Finally, the mHEMT with a width of 2 × 50 µm was fabricated, and a schematic of the
fabricated mHEMT is shown in Figure 1c. Figure 1d shows the SEM image of the fabricated
t-gate, whose foot and head sizes are 100 nm and 470 nm, respectively.
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Figure 1. (a) Epitaxial structure of the In0.53Ga0.47As/InAs/In0.53Ga0.47As composite channel HEMT
structure on a GaAs substrate. (b) Energy band diagram of the epitaxial structure (c) Schematic of the
In0.53Ga0.47As/InAs/In0.53Ga0.47As composite channel HEMT on a GaAs substrate (d) SEM image of
the fabricated T-gate.

3. Results and Discussion

The transfer characteristic and output characteristic of the mHEMTs are shown in
Figure 2. The maximum transconductance (gm,max) and maximum drain current density
(ID,max) were 949 mS/mm and 413 mA/mm at VDS = 0.5 V, respectively. The output
characteristics presented in Figure 2b show good pinch-off characteristics, but the measured
Ron was 733 Ω-µm, which is a higher value than the lift-off Mo/Ti/Mo/Au metal scheme
with an InAs rich InAlAs barrier spacer [15]. The ohmic contact resistance (Rc) and sheet
resistance (Rsh) measured by the transmission line method (TLM) was as low as 0.01 Ω-mm
and 75.5 Ω/sq as shown in Figure 2c. When compared to the lift-off method using a
Mo/Ti//Mo/Au scheme (30/20/20/150 nm) on the same multi-cap layer, the blanket
Mo method shows a higher Rsh value of 75.5 Ω/sq than the lift-off method of 69.2 Ω/sq
because of SF6/Ar plasma damage in the active region during Mo etching to define the
active gate region. However, the blanket Mo method shows a Rc of 0.011 Ohm-mm, which
is lower than that of 0.026 Ohm-mm with the lift-off method because it is beneficial to
protect the surface underneath the metal contact region from contaminants during the
device process. Due to the lower Rc of the Mo blanket method, a lower Ron value could be
achieved if the S/D distance was reduced, as in the self-aligned gate scheme.
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Figure 2. (a) Typical transfer characteristics of the mHEMTs measured at VDS = 0.5 V. (b) Typical
output characteristics of the mHEMTs (VGS = −0.5 V ~ 0.5 V). (c) TLM result of the Mo-based
Ohmic contact.

Figure 3 shows the subthreshold characteristics at VDS = 0.5 V and 0.05 V, respectively.
At VDS = 0.5 V, the threshold voltage (VT) is −0.13 V, defined as the value of VGS that yields
at ID = 1 mA/mm, and a VT of −0.13 V indicates that the fabricated mHEMT operated in
depletion mode (D-mode). The fabricated device shows excellent electrostatic integrity,
such as the subthreshold swing (SS) of 84 mV/dec, the drain-induced barrier lowering
(DIBL) of 89 mV/V, and the Ion/Ioff ratio of 9.8 × 103, respectively. Additionally, the gate
leakage current of the fabricated mHEMT was measured at VDS = 0.5 V and shows that the
gate Schottky metallization is in good contact with the In0.52Al0.48As barrier layer. These
outstanding logic performances are due to the well-designed heterostructure and optimized
fabrication process on the GaAs substrate.

To verify the high-frequency RF characteristics of the mHEMT, S-parameters were
measured from 0.5 to 40 GHz using a vector network analyzer (VNA). In addition, small-
signal modeling was performed by using a small-signal equivalent circuit [16], and we
found that small-signal modeling and measured S-parameters are well matched, as shown
in Figure 4a. Figure 4b shows the unity current gain cutoff frequency (fT), maximum
oscillation frequency (fmax), and maximum stable gain (MSG)/maximum available gain
(MAG) against frequency for the measured results (symbols) and modeled results (solid
lines) at VDS = 0.5 V and VGS = 0.2 V with a Lg of 100 nm mHEMT device. The de-embedding
method was done by using open and short patterns to extract parasitic pad capacitance
and inductance. We obtained 261 GHz/304 GHz for fT/fmax by extrapolation (dashed lines)
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and 258 GHz/309 GHz for fT/fmax by small-signal modeling, respectively. This excellent
high-frequency response is due to the high value of the intrinsic transconductance (gmi) of
2.0 mS/µm. The extracted intrinsic parameters of the mHEMT are summarized in Table 1
and are well-matched to the measured results. The difference between gm,ext (0.95 mS/µm)
and gmi (2.0 mS/µm) is due to the Rs and go values according to equation (1) [17].

gm,ext = gmi(1 − 2Rs · go)/(1 + Rs · gmi) (1)
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Figure 4. (a) Comparison of small-signal modeling and measured S-parameters at VDS = 0.5 V and
VGS = 0.2 V. A Smith chart of S11, S12, and S22 (left) and a polar chart of S12 (right). (b) Measured
(symbols) and modeled (solid lines) of RF gains-Maximum oscillation frequency (fmax), maximum
stable gain (MSG)/maximum available gain (MAG), and unity current gain cutoff frequency (fT) of
the mHEMTs at VDS = 0.5 V and VGS = 0.2 V.
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Table 1. Extracted intrinsic small-signal parameters.

Intrinsic
Parameters Measured fT Modeling fT

gmi = 2.0 mS/µm

261 GHz 258 GHz
gds = 0.22 mS/µm

Rg = 70 Ω-µm

Rs = 360 Ω-µm

Rd = 360 Ω-µm Measured fmax Modeling fmax

Ri = 100 Ω-µm
304 GHz 309 GHz

Cgs = 0.65 fF/µm

Figure 5 shows fT and fmax as functions of ID at VDS = 0.5 V and 0.4 V. Around an ID of
75 mA/mm, our device had already exhibited an fT and fmax value of over 200 GHz and
was confirmed to operate stably for the fabricated mHEMT.
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Table 2 shows the benchmark high-frequency characteristics of the published state-
of-the-art pHEMT and mHEMT results with an Lg of 100 nm. Among various HEMT
structures, the In0.53Ga0.47As/InAs/In0.53Ga0.47As composite channel HEMT on an InP
substrate shows excellent high-frequency characteristics such as an fT of 421 GHz and an
fmax of 620 GHz because of the well-optimized fabrication process and improved carrier
transport properties of the In0.53Ga0.47As/InAs/In0.53Ga0.47As composite channel [18].
Our fabricated mHEMT exhibits an excellent LgfT of 26.1 GHz-µm, which is related to
carrier transport properties [19], and an outstanding fT/fmax of 261/304 GHz with a Lg
of 100 nm at a VDS = 0.5 V. Although the performance of the fabricated mHEMT is not
comparable to that of the In0.53Ga0.47As/InAs/In0.53Ga0.47As composite channel HEMT on
an InP substrate, our fabricated mHEMT shows outstanding high-frequency characteristics
compared to a single InGaAs channel HEMT on an InP substrate and other mHEMT
structures because of the excellent transport properties of the composite channel on a GaAs
substrate. Additionally, our fabricated device is operated at a VDS = 0.5 V, which has a
lower power consumption than other group devices’ operational voltage. These excellent
performances are mainly attributed to the well-grown In0.53Ga0.47As/InAs/In0.53Ga0.47As
composite channel structure by using an In0.52AlAs buffer layer on a GaAs substrate, and a
fabricated mHEMT would be a good candidate for the high-frequency device in both 5G
and 6G communications through further scaling-down of device feature size.
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Table 2. Performance parameters of the pHEMTs and mHEMTs with a Lg of 100 nm.

[20] [18] [21] [22] This Work

Substrate InP InP GaAs GaAs GaAs

Channel In0.68Ga0.32As
In0.53Ga0.47As

/InAs/
In0.53Ga0.47As

In0.65Ga0.35As/
In0.53Ga0.47As In0.6Ga0.4As

In0.53Ga0.47As
/InAs/

In0.53Ga0.47As

Buffer
layer

InAlAs
buffer

InAlAs
buffer

Linear
InxAl0.48Ga0.52-xAs

Graded
InAlAs 500 nm In0.52AlAs

Lg [nm] 100 100 100 100 100

fT [GHz] 183 421 220 210 261

fmax [GHz] 230 620 300 252 304

LgfT
[GHz-µm] 18.3 42.1 22.0 21.0 26.1

VDS [V] 0.5 0.7 1 1 0.5

Passivation 100 nm SiNx - 250 nm SiNx 50 nm SiNx -

4. Conclusions

The 100 nm In0.53Ga0.47As/InAs/In0.53Ga0.47As composite channel metamorphic high
electron mobility transistors (mHEMTs) on a GaAs substrate exhibited excellent logic
characteristics as well as high-frequency RF performances. These outstanding performances
are due to the excellent carrier transport properties of the well-grown In0.53Ga0.47As/InAs/
In0.53Ga0.47As composite channel mHEMT structure on a GaAs substrate and an optimized
fabrication process. The proposed mHEMT structure on a GaAs substrate, together with
optimized source/drain and gate technologies, will potentially improve logic and high-
frequency characteristics. Furthermore, the proposed mHEMT structure grown on a
large-size GaAs substrate could be indispensable for large-volume manufacturing.
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