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Abstract: The combination of microstructural units is an effective strategy to improve the micromixing
of liquid phase systems, especially viscous systems. However, how the microstructural combination
influences micromixing is still not systematically investigated. In this work, the Villermaux/Dushman
reaction is used to study the micromixing performance of the viscous system of the glycerol–water
in the combination of a T-type micromixer and a micropacked bed. Micromixing performances
under various structural parameters and fluid characteristics are determined and summarized,
and the micromixing laws are revealed by dimensionless analysis considering the specific spatial
characteristics and temporal sequence in the combined microstructures. It achieves good agreement
with experimental results and enables guidance for the design and scaling-up of the combined T-type
micromixer and micropacked bed towards micromixing intensification in viscous reaction systems.
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1. Introduction

The liquid phase system is widely involved in chemical processes [1–3]. Typical liquid–
liquid reaction systems, such as nitration [4–7], saponification [8,9], and polymeriza-
tion [10–13], were commonly sensitive to mass transfer involving micromixing, depending
on the viscosity and the ratio of flow rates remarkably [1,14]. In conventional stirring
equipment, low mass transfer efficiency, as well as micromixing performance, were always
a limit of these liquid phase chemical processes.

The continuous flow microreactor technologies developed in recent years are pow-
erful tools to overcome the problem of poor micromixing due to their high specific sur-
face area and also present excellent mass and heat transfer performance and intrinsic
safety [1,3,15–18]. Many strategies to enhance the micromixing performance have also been
derived for microreactors, most of which belong to passive mixing without external energy
input through intensifying diffusion or chaotic advection, such as special channel struc-
tures [19–22], microbubble enhanced mixing [14,23], and micropacked bed reactors [24–26].
At the same time, many methods to characterize the micromixing performance have also
been developed, including the visualization methods and the chemical molecular probe
methods [27,28]. The visualization methods mainly use the dye tracer or the acid–base
indicator to characterize the micromixing performance [29,30], which has the advantage
of perceptual intuition but is limited by image capture and analysis capacity. Compara-
tively, the chemical probe methods are easy to implement and quantify, which introduce
probe reactions such as the Villermaux/Dushman reaction [25,31–33], the fourth Bourne
reaction [34–36], acid–base reaction [37–40], and redox reaction [41–43]. Additionally, the
numerical simulation may give more clues about flow physics for micromixing perfor-
mance [44,45]. However, as for mixing flow in complicated spatial structures and extended
spatio-temporal scale, a reliable numerical methodology was still challenged in terms of
geometric modeling and computational force and is worth further developing.
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The liquid–liquid micromixing is challenged by the incremental differences between
the mixing fluids in terms of viscosity, density, and wettability [1,14,46]. In particular, the
low diffusion coefficient in high-viscosity fluids resulted in slow molecular motion [14], and
increasing the viscosity also decreased the Reynold number and inhibited the generation of
convection individually. Therefore, it is hard to achieve fast and complete mixing and to
provide continuous mixing enhancement with conventional simple micromixing elements
such as T-type micromixers. As an alternative, a microstructural combination was proposed
to enhance the mixing of viscous fluids. In the previous research by our group [4,47], the
combination of a T-type micromixer and a micropacked bed reactor was successfully used
to enhance the liquid phase reaction in viscous systems. However, the quantitative studies
on the micromixing characteristics of this combination, as the fundamental of process and
equipment design, were still limited.

In this work, we aim to quantitatively evaluate and interpret the micromixing perfor-
mance of viscous systems in the combination of a T-type micromixer, a connecting pipe,
and a micropacked bed. By using all these elements that can be obtained commercially,
we tried to establish a quantitative methodology on the design of combinatory, which is
various and necessary for enhancing the micromixing of viscous systems. For this purpose,
the Villermaux/Dushman reaction was adopted as a characterization method, and the
glycerol–water solutions as the model viscous systems. The influences of microstructure
parameters, fluid viscosities, and the ratio of flow rates of mixing fluids were systemati-
cally investigated. By considering the connection of various microstructure elements for
micromixing based on their spatio-temporal relationship, the dimensionless correlation
was also established for micromixing performance prediction and combinatory design.

2. Materials and Methods

Analytical grade potassium iodide (KI, ≥99%; Aladdin, Shanghai, China), potassium
iodate (KIO3, ≥99.8%; Aladdin, China), boric acid (H3BO3, ≥99.5%; Aladdin, China),
iodine (I2, ≥99.8%; Aladdin, China), sodium hydroxide (NaOH, ≥96%; Greagent, China),
and glycerol (GL, ≥99%; Greagent, China) were used directly without further purification.
Water (resistivity of 18.2 MΩ·cm) used throughout the experiment was prepared by an
ultrapure water system (Center 120FV-S, The lab, Haverhill, MA, USA).

The Villermaux/Dushman reaction system was used to characterize the micromix-
ing performance [27], which included a group of parallel competitive reactions as fol-
lows [31,32]:

H2BO−3 +H+ k1→ H3BO3 (1)

5I−+IO−3 +6H+ k2→ 3I2+3H2O (2)

I2+I−
KC↔ I−3 (3)

Among them, reaction (1) can be considered an instantaneous reaction, reaction (2)
is a fast reaction, and reaction (3) is an equilibrium reaction with an equilibrium constant
expressed as:

KC =
CI−3

CI2 ·CI−
(4)

KC can be obtained from the empirical correlation with temperature [48,49]:

lgKC =
555
T

+7.355 − 2.575·lgT (5)

When the micromixing is ideal, the acid is distributed evenly instantly, and H+ can be
completely consumed by H2BO−3 in reaction (1) to form H3BO3. Otherwise, some H+ may
participate in a reaction (2) to generate I2, and then transform to I−3 through reaction (3). It
implies that lower I−3 concentration corresponds to faster mixing.
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The segregation index (XS), derived from the concentration of I−3 , was defined to
quantitatively characterize the micromixing performance of the system [31,32]. Specifically,
the mole ratio of the H+ consumed by reaction (2) to the total H+, denoted as Y, is:

Y =
2(n I2

+nI−3

)
nH+ ,0

(6)

If micromixing did not take place at all, reactions (1) and (2) would conduct separately,
corresponding to a value of Y at the segregation state:

YST =
6CIO−3 ,0

6CIO−3 ,0+CH2BO−3 ,0
(7)

Additionally, XS is the ratio of the actual Y to YST:

XS =
Y

YST
=

(Q A+QB)(C I2
+CI−3

)
QBCH+ ,0

6CIO−3 ,0+CH2BO−3 ,0

3CIO−3 ,0
(8)

where QA and QB are the flow rates of solution A (KI, KIO3, H2BO−3 /H3BO3 solution)
and solution B (acid solution), respectively, and CI2 and CI−3

can be calculated by the
combination of the reaction equations and the mass conservation of iodine, written as
Equation (9).

− 5
3

C2
I2
+

(
CI− ,0 −

8
3

CI−3

)
CI2 −

CI−3
KC

= 0 (9)

Thus, through monitoring I−3 concentration in real-time by online UV absorption
spectrum, XS can be calculated. The variation range of the XS is 0~1. XS = 1 corresponds to
a segregation state without mixing at all; XS = 0 corresponds to a completely ideal state of
micromixing. XS is a typical and easily accessible index for micromixing characterization.

The experimental setup of the micromixing performance characterization is shown in
Figure 1. The glycerol–water solutions with different viscosity were prepared according to
the relationship between the content of glycerol and the viscosity presented in the physical
properties manual [50]. Then, they were bubbled with nitrogen (N2) for more than one
hour to remove the dissolved oxygen before adding reactants. The concentrations of the
reactants are listed in Table 1.

Micromachines 2023, 14, x  4 of 11 
 

 

0.350~0.500 mm, and 0.500~0.710 mm, respectively, and the void fraction was determined 

to be 33%, 34%, 38%, and 40%, respectively. 

 

Figure 1. Schematic of the micromixing performance characterization setup: 1 and 2: Delivery 

pumps; 3: T-type micromixer; 4: Connecting pipe; 5: Micropacked bed reactor; 6: Online UV spec-

trometer. 

Table 1. Concentration of each reactant in the Villermaux/Dushman reaction system. 

 Reactant Concentration/mol/L 

Solution A KI 0.03 

 KIO3 0.006 

 H3BO3 0.09 

 NaOH 0.09 

Solution B a H2SO4 0.005 
a The concentration of H2SO4 in solution B was the concentration when the ratio of flow rates of two 

fluids was 1:1. When the ratio of flow rates of mixing fluids was R:1 (solution A over solution B), 

the concentration of H2SO4 in solution B should be (0.005 × R) mol/L. 

3. Results and Discussion 

3.1. Micromixing Performance of Various Combined Microstructures 

Firstly, we established two microstructural combinations, a T-type micromixer con-

nected with a thin tube and a T-type mixer connected with a micropacked bed, to compare 

their micromixing performance, and a sole T-type micromixer (including connecting pipe) 

was used as a reference. In this group of experiments, the viscosity of solution A was fixed 

at 25 mPa·s, the viscosity of solution B was fixed at 1 mPa·s, and the ratio of flow rates of 

solution A to solution B was 5:1. As shown in Figure 2a, it can be found that for all three 

cases XS decreased with the increase in the flow rates, corresponding to micromixing per-

formance enhancement due to the enhancement of convection. Compared with the T-type 

micromixers only, both thin tube and micropacked beds following the T-type micromixers 

could improve the micromixing performance significantly, and the micropacked bed 

achieved the best micromixing performance at the same flow rates. For example, when 

the total flow rate was 15 mL/min, XS was 0.00111 for the T-type micromixer connected 

with a micropacked bed and 0.00254 for the T-type micromixer connected with a thin tube, 

respectively. Following the primary mixing of the T-type micromixer, the secondary 

crushing of fluids took place in the micropacked bed, resulting in further collision and 

mixing, which enhanced the micromixing performance. 

Then, we filled the packing with different sizes in the micropacked bed and investi-

gated the effect of packing size on the micromixing performance. As shown in Figure 2b, 

the smaller the packing size is, the better the micromixing performance is. It indicates that 

Figure 1. Schematic of the micromixing performance characterization setup: 1 and 2: Delivery pumps;
3: T-type micromixer; 4: Connecting pipe; 5: Micropacked bed reactor; 6: Online UV spectrometer.



Micromachines 2023, 14, 45 4 of 11

Table 1. Concentration of each reactant in the Villermaux/Dushman reaction system.

Reactant Concentration/mol/L

Solution A KI 0.03
KIO3 0.006

H3BO3 0.09
NaOH 0.09

Solution B a H2SO4 0.005
a The concentration of H2SO4 in solution B was the concentration when the ratio of flow rates of two fluids was
1:1. When the ratio of flow rates of mixing fluids was R:1 (solution A over solution B), the concentration of H2SO4
in solution B should be (0.005 × R) mol/L.

In the experiment, two constant flux pumps (Beijing Xingda Science and Technol-
ogy Development Co., Ltd., Beijing, China; flow rate, 0~30.00 mL/min; pressure range,
0~20 MPa, repeat precision ≤ ±1%) were used to deliver solution A and solution B to a
microstructure combinatory consisting of a T-type micromixer, a connecting pipe, and a
micropacked bed. In the T-type micromixer, solution A and solution B were contacted
in crossflow mode, and the latter flowed perpendicularly. All experiments were carried
out at room temperature (25 ◦C). The effluent flowed into the online ultraviolet flow cell
(FIA-ZSMA-ML-100-PEEK, Ocean Optics), and the 353 nm band was measured by an
online ultraviolet device (DH-2000-FHS-DUV-TTL light source, QEPRO fiber spectrometer,
Ocean Optics, precision ≤ ±0.4%), which was transformed into the concentration of I−3 for
XS calculation by using the standard curve in Figure S1b. In experiments, all the pumps
and monitors were calibrated in advance to ensure to work well. Each measurement was
repeated five times, and the error bars were recorded.

All valves and tubes (inside diameter (I.D.), 0.75 mm; outer diameter (O.D.), 1.60 mm)
were made of 316L stainless steel. Among them, the micromixer was a T-type mixing tee
(I.D., 0.25 mm); the micropacked bed reactor was a pipeline (I.D., 4 mm; O.D., 6 mm) filled
with glass beads supported by PTFE meshes (0.150 mm) at both ends. Four kinds of glass
beads (ASONE Co.) were used, of which the size was 0.105~0.125 mm, 0.177~0.250 mm,
0.350~0.500 mm, and 0.500~0.710 mm, respectively, and the void fraction was determined
to be 33%, 34%, 38%, and 40%, respectively.

3. Results and Discussion
3.1. Micromixing Performance of Various Combined Microstructures

Firstly, we established two microstructural combinations, a T-type micromixer con-
nected with a thin tube and a T-type mixer connected with a micropacked bed, to compare
their micromixing performance, and a sole T-type micromixer (including connecting pipe)
was used as a reference. In this group of experiments, the viscosity of solution A was fixed
at 25 mPa·s, the viscosity of solution B was fixed at 1 mPa·s, and the ratio of flow rates
of solution A to solution B was 5:1. As shown in Figure 2a, it can be found that for all
three cases XS decreased with the increase in the flow rates, corresponding to micromixing
performance enhancement due to the enhancement of convection. Compared with the
T-type micromixers only, both thin tube and micropacked beds following the T-type mi-
cromixers could improve the micromixing performance significantly, and the micropacked
bed achieved the best micromixing performance at the same flow rates. For example, when
the total flow rate was 15 mL/min, XS was 0.00111 for the T-type micromixer connected
with a micropacked bed and 0.00254 for the T-type micromixer connected with a thin
tube, respectively. Following the primary mixing of the T-type micromixer, the secondary
crushing of fluids took place in the micropacked bed, resulting in further collision and
mixing, which enhanced the micromixing performance.
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Then, we filled the packing with different sizes in the micropacked bed and investi-
gated the effect of packing size on the micromixing performance. As shown in Figure 2b, the
smaller the packing size is, the better the micromixing performance is. It indicates that the
segmentation effect of packing on the fluids plays a major role in mixing intensification. The
packing with a smaller size could provide smaller channels for flow segmentation and en-
able the micropacked bed to achieve mixing intensification at lower flow rates. For instance,
when the total flow rate was 6 mL/min, XS with fine packing (0.105~0.125 mm) could reach
0.00424, which was comparable to that of a sole T-type micromixer at 15 mL/min. Accord-
ing to the fluids’ viscosity and the flow capacity, the Reynold number in our experiments
was always far less than 2000. Judged from the common criterion, the flow pattern was
kept at laminar flow.

Herein, we used the same micropacked bed following different T-type micromixers
and connecting tubes to investigate the effects of upstream elements. In detail, we changed
the I.D. of the micromixer, the I.D. of the connecting pipe, and the length of the connecting
pipe separately. Figure 3a presents the effect of the I.D. of the micromixer. When the total
flow rate was 9 mL/min, XS corresponding to the micromixers with the I.D. of 0.75 mm,
0.50 mm, and 0.25 mm were 0.00617, 0.00467, and 0.00324, respectively. In general, the
smaller the I.D. of the micromixer was, the smaller XS was, reflecting the better micromixing
performance since the decrease in internal diameter decreases the mass transfer distance
and accelerates the mixing. Similarly, as shown in Figure 3b, better mixing performance
can be achieved by using a connecting pipe with a smaller I.D. The influence of the length
of the connecting pipe was shown in Figure 3c: when the flow rate was relatively high, the
XS of different connecting pipe lengths were similar; when the flow rate was relatively low,
the shorter connecting pipe seemed to correspond to smaller XS. In fact, mixing took place
in every element, including the T-type micromixer, the connecting pipe, and the packed
bed. In case we observed a lower total byproduct yield (lower XS) by adding a further
element downstream, it indicates that mixing was not complete in the upper elements. In
this specific case, mixing was not completed in the T-type micromixer and the connecting
pipe and then finalized in the packed bed. In the case of long connecting pipes, triiodide
was predominantly formed in the connecting pipes. Hardly any triiodide would be formed
in the more effective mixing unit ‘packed bed’. On the contrary, the shorter the connecting
pipes, the lower the triiodide concentration because the byproduct would not form in time
in the connecting pipes without enhanced mixing.
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Figure 3. Influence of upstream microstructural elements on micromixing performance: (a) I.D. of
micromixer, (b) I.D. of connecting pipe, and (c) length of connecting pipe. Reference conditions:
micromixer, 0.25 mm of I.D.; connecting pipe, 0.5 mm of I.D., 5 cm of length; micropacked bed, 10 cm
of length; packing size, 0.177~0.250 mm; QA:QB = 5:1; µA = 10 mPa·s and µB = 1 mPa·s.

Next, we investigated the influence of system viscosity on the mixing performance of
the combination of a T-type micromixer and a micropacked bed. Solution A was the same
as solution B in viscosity, and the results are shown in Figure 4a. As the viscosity increased
from 1 mPa·s to 10 mPa·s, XS increased gradually. It was difficult to achieve a good
mixing performance even at a high flow rate for the system with a viscosity of 10 mPa·s.
Subsequently, the micromixing performance characterizations were conducted with a fixed
viscosity of one fluid at 5 mPa·s and changing viscosity of the other fluid. Figure 4b
corresponds to fixing the viscosity of solution B, and Figure 4c fixes the viscosity of solution
A. It can be found that the viscosity of solution A showed a greater influence on XS than
the viscosity of solution B. This was because solution A had a larger flow rate and greater
influence on the properties of the mixed fluid. More examples of the influence of viscosity
on micromixing performance can be found in Figure S3 in Supplementary Information.
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Figure 4. Influence of fluids characteristics on micromixing performance: (a) bulk viscosity, (b) con-
tinuous fluid viscosity, and (c) dispersed fluid viscosity. Reference conditions: micromixer, 0.25 mm
of I.D.; connecting pipe, 0.5 mm of I.D., 5 cm of length; micropacked bed, 5 cm of length; packing
size, 0.177~0.250 mm; QA:QB = 5:1. (a) µA = µB, (b) µB = 5 mPa·s, (c) µA = 5 mPa·s.

The influence of the different ratios of flow rates (QA:QB) on the mixing performance
was also investigated, as shown in Figure 5. It can be found that increasing the ratio of flow
rates from 1:1 caused poor mixing performance. For example, setting the total flow rate
at 9 mL/min, when the ratio of flow rates increased from 5:1 to 10:1, XS increased from
0.00460 to 0.00983. The influence of the ratio of flow rates on the mixing performance may
be caused by the distribution of the two fluids in the microreactor [14]: under laminar flow
regimes; when the ratio of flow rates was large, the flow rate was low for the fluid from the
perpendicular inlet of T-type micromixer, and which may be compressed into a thin layer
in the downstream pipe and left larger distance for mass transfer in a continuous fluid. In
other words, a long distance was required for the dispersed fluid to diffuse throughout
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the downstream pipe, corresponding to high XS. Since the secondary crushing in the
micropacked bed can provide the re-collision and mixing of the fluid, the compression of
the dispersed fluid may be avoided to some extent, which was expected to improve the
mixing performance at a large ratio of flow rates effectively.
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micromixer, 0.25 mm of I.D.; connecting pipe, 0.5 mm of I.D., 5 cm of length; micropacked bed, 5 cm
of length; packing size, 0.177~0.250 mm; µA = 10 mPa·s, µB = 1 mPa·s.

3.2. Correlation and Prediction of Micromixing Performance

The micromixing performance determined above reflected the synergistic effects of
the fluid characteristics and the spatio-temporal structure of the combined microstructures.
Herein, we tried to establish a predictive dimensionless correlation with a wide range of
applications. Considering the existing microreactor mixing performance prediction corre-
lations in the literature [14,24,46,51] and the above-mentioned micromixing experimental
results, we proposed the following equation for correlation.

XS = x1

(
ReA

ReB

)x2

Rec
x3 Rebed

x4/(x5+tc) (10)

where the effects of fluid properties, micropacked bed characteristics, and each microstruc-
ture on the micromixing process were reflected by the ratio of the initial Reynolds number
of the two fluids (ReA/ReB), the Reynolds number in the connecting pipe after the mi-
cromixer (Rec), the Reynolds number in the micropacked bed (Rebed), and the time for the
fluid to enter the micropacked bed from the T-type micromixer (tc). Additionally, x1~x5
are associated parameters; Rec and Rebed are approximately calculated according to the
physical properties of the two fluids after mixing; the calculation equation of Rebed was
shown as follows.

Rebed =
ρMubeddeb

µM
=

ρM
( u0

ε

)( 4ε
(1−ε)a

)
µM

(11)

where ρM and µM are the density and viscosity of the mixed fluid, respectively; u0 is the
flow rate of the fluid in the empty packing tube; ε is the void ratio of the micropacked bed;
and a is the specific surface area of the packing particles.

The least-squares function (lsqcurvefit) in the Matlab software was used to fit the
experimental data. The fitting results are shown in Figure 6. The values of parameters
were 0.0445 for x1, 0.174 for x2, −0.479 for x3, 0.0156 for x4, −0.572 for x5, respectively.
The experimental values of XS,exp agreed with the predicted values of XS,pre well, with the
fitting errors (Resnorm value) only 1.33× 10−4. All data fall within±25%, and the R2 of the
linear fit of XS,exp and XS,pre was 0.853. The fitting of the correlation to some key influencing
factors can be found in Figure S4 in Supplementary Information. Correspondingly, Table 2
shows the ranges of main parameters for experimental data acquisition, including the
viscosities and Reynolds numbers of two mixing fluids, the ratio of flow rates of fluid
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A and fluid B, etc. It should be noticed that this correlation applied to a mixed system
with a viscosity ≥2.5 mPa·s, and the flow rate of fluid A was greater than the flow rate
of fluid B. At the same time, the type, size, and operating mode of the micromixer would
also affect the exponential factor of the fitting. The T-type micromixer used here was an
equal-diameter tee (I.D., 0.25 mm), the mixing mode was crossflow mixing, and the flow
directions of fluid A and fluid B were horizon direction and vertical direction, respectively.
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Table 2. Fitting range of liquid–liquid micromixing correlation in viscous system.

Items Data

µA/mPa·s 2.5~25
µB/mPa·s 1~10

ReA 6.73~100
ReB 1.35~84.6

QA:QB 1:1~10:1
dp/mm 0.105~0.710

tc/s 0.016~0.530

The obtained correlation parameters reflected the effects of various factors quantita-
tively. In detail, x2 is a positive number, indicating that the increase in the ratio of flow
rates and the viscosity ratio of the two fluids will weaken the micromixing. x3 is neg-
ative, indicating that increasing the Reynolds number in the connecting pipe enhances
the micromixing. x4 is a positive number, x5 is a negative number, and |x5| > tc, so
x4/(x5 + tc) < 0, indicating that increasing the Reynolds number in the micropacked bed
can enhance the micromixing. tc reflects the time scale of the mixing state evolution before
entering the micropacked bed reaction. Too-large tc will lead that the micropacked bed
does not have an influence on the Villermaux/Dushman reaction process. Thus, smaller tc
is favorable for the micropacked bed to take action and enhance the micromixing.

4. Conclusions

In this work, the micromixing performance of a combination of a T-type micromixer,
connecting pipe, and micropacked bed under the viscous systems was determined by the
Villermaux/Dushman reaction using the glycerol–water system. Through the exploration
of the influence laws of the structural parameters, the fluid viscosities, and the ratio of
flow rates, we recognized the synergistic effects of the fluid characteristics and the spatio-
temporal structure. Introducing the micropacked bed in a suitable way and time could
intensify the micromixing of the viscous system effectively, and the segregation index
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XS was less than 0.005, even at a large ratio of flow rates. Additionally, the correlation
equations between the segregation factor and the Reynolds numbers of different stages
were established with a good agreement and certain physical significance. Understanding
the micromixing characteristics of the combined microstructures composed of a T-type
micromixer, connecting pipe, and micropacked bed is beneficial to guide the design and
application of structured microreactors in practice.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mi14010045/s1, Figure S1: (a) UV-Vis absorption spectrum of
I−3 ; (b) standard curve fitting results under different systems; Figure S2: Influence of the length
of the micropacked bed on the micromixing performance. Experiment conditions: micromixer,
0.25 mm of I.D.; connecting pipe, 0.5 mm of I.D., 5 cm of length; packing size, 0.177~0.250 mm;
µA = 10 mPa·s, µB = 1 mPa·s; QA:QB = 5:1.; Figure S3: Influence of the fluid’s properties on the
micromixing performance: (a) system viscosity, (b) the viscosity of solution A. Reference conditions:
micromixer, 0.25 mm of I. D.; connecting pipe, 0.5 mm of I.D., 5 cm of length; micropacked bed, 5 cm
of length; packing size, 0.177~0.250 mm. (a) µA = µB, QA:QB = 10:1; (b) µB = 1 mPa·s, QA:QB = 5:1;
Figure S4: Experimental data (filled circles) and the correlation data (dashed line) under different
conditions: (a) I.D. of connecting pipe, (b) system viscosity, and (c) flow ratio. Reference conditions:
(a), (b), and (c) correspond to Figure 3(b), Figure 4(a), and Figure 5, respectively.
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