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Abstract: Aiming at the dynamic testing of the ignition temperature of micro-initiating explosives,
a novel Pt-Rh10/Pt thin-film thermocouple was designed in this paper. The author carried out the
preparation of the thermocouple by using a screen printing process on an Al2O3 ceramic substrate.
The formed thermocouple was made of Pt-Rh10 wire and Pt wire as compensation wires, with a
size of ≤ 1 mm and a thickness of about 6 µm. In the testing process, the static calibration of the
thermocouple at 50~600 ◦C and 650~1500 ◦C was completed by a portable temperature verification
furnace and a horizontal high temperature verification furnace, and the results showed that the
Seebeck coefficient of the thermocouple was about 10.70 µV/◦C, and its output voltage–temperature
curve was similar to that of a standard S-type thermocouple, which achieved the effective temperature
measurement up to 1500 ◦C. The dynamic response of Pt-Rh10/Pt thin-film thermocouple was then
tested and studied using the pulsed laser method, and the results show that the time constant of the
thermocouple prepared in this paper is about 535 µs, which has the characteristics of fast response
and high precision high-temperature testing. Compared with the traditional thin-film thermocouple,
the thermocouple has excellent electrical conductivity, more oxidation resistance, the surface layer is
not easy to peel off and other advantages.

Keywords: Pt-Rh10/Pt; thin-film thermocouple; screen printing process; static calibration;
dynamic response

1. Introduction

With the development of information technology, micro-electromechanical system
(MEMS) technology, new energy, new materials and other high-tech technologies, the
fourth generation of initiating explosive device—MEMS-initiating explosive device, with
the advantages of miniaturization, integration, multi-function, high precision and high
reliability—has made great progress, which has a new requirement for dynamic mea-
surement of the ignition temperature of initiating explosive devices [1,2]. The ignition
temperature is an important index of the safety and performance of the explosive device,
and the test and determination of the ignition point is an important basis for the reliability
design, appraisal and evaluation of the explosive device [3–5].

For the measurement of the ignition temperature of the pyrotechnic agent, there are
currently the equal heating rate method, and its improvement method, and the modeling
simulation method. In the former, a quantitative sample is placed in a special test tube and
heated at a specified heating rate [6]. At the same time, the tester visually observes the
moment of ignition to determine the temperature of the heating medium when the sample
burns or explodes, which represents the ignition point of the sample [7]. This method
has a certain degree of danger and requires observation by human eyes to determine the
ignition temperature of the sample, and there is a certain test deviation. At the same time,
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some researchers study the ignition temperature of the pyrotechnic agent through the
method of micro-transducer modeling and simulation. Using the finite element analysis
software ANSYS, through certain modeling assumptions, the finite element simulation
model of the bridge wire or bridge mode electric pyrotechnic device is established, and
the finite element analysis of the DC ignition process and the capacitor discharge ignition
process of the electric pyrotechnic device is carried out [8]. The temperature change curve
of the interface between the bridge wire or bridge film and the medicament (for example,
chemically sensitive agents such as gunpowder) is obtained by simulation, and then the
ignition temperature of the pyrotechnic device is obtained [9].

When the ammunition exploded, most of the heat released by the on-chip reactor was
lost to the surrounding environment, and only a small part was detected. In 2013, Asaf
Zuck et al. [10,11] found that the MEMS-based microcalorimetry can detect the melting
and deflagration of particles with the same diameter as the explosive TNT. The ultra-thin
thermocouple installed above the heater can detect heat loss and obtain temperature data
that is highly consistent with the actual surface temperature. This research provides a basis
for the use of MEMS technology to develop sensors for portable explosive detection. In
the blasting field, the measurement of the generated high-temperature flowing fluid has
always been an arduous task. In order to measure the static temperature, the measuring
device should move with the fluid at the same speed without disturbing the flow rate,
which is unrealistic. In 2015, Sonker et al. [12,13] of the Indian Institute of Technology,
studied ultra-high temperature thin-film thermocouples based on this, which can be used
in the maximum temperature range of 2900 K, and can be used to measure the heat flux
of the missile and the gas flow through the nozzle. In 2016, Satish et al. [14] conducted
basic experiments and proof-of-concept studies on a thin-film thermocouple deposited
by the electron beam evaporation process. Its Seebeck coefficient was 42 µV/◦C, and its
time constant was 1.11784 ms. The proposed method can be applied in the temperature
measurement of aviation gas turbine engines.

In summary, it is necessary to develop a tiny temperature measuring device to explore
the ignition temperature test of pyrotechnic products. Through studying a large number
of documents, it has good erosion resistance, low volume occupancy, high accuracy, short
response time, etc. Thin-film thermocouples with advantages in temperature measurement
can provide new ideas. Given the tiny junctions and size of the thin-film thermocouple, it
has a small heat capacity with transient response [15]. Aiming at the current application
environment of pyrotechnics’ ignition temperature testing methods, by studying materials
with excellent performance and efficient thin-film thermocouple preparation methods, it can
provide a new temperature measurement technology attempt for the ignition temperature
testing of a new generation of pyrotechnics [16,17].

2. Process of Thermocouple Preparation
2.1. Structure

According to the general application scenarios of explosive devices, this paper selects
a sheet structure to prepare a thin-film thermocouple. The structure has a smooth surface,
which is conducive to better adhesion of the film layer, and can effectively fit with a variety
of measured objects. The structure has high strength and good stability. The size of the
micro energy commutator of the micro explosive device is generally in the millimeter
level, so the size of the thin-film thermocouple developed should also be in the millimeter
level. According to the working principle of a thermocouple, when two electrodes of
a thermocouple contact each other, the contact potential difference will be generated in
the contact area, and this contact end is the coupling junction of the sensor. At the same
time, the size of the hot junction directly affects the heat capacity and response time of the
thermocouple, and the response of the film thermocouple will be improved if the size of
the coupling junction is controlled within 1 mm.

This article explores the various structures of thermocouples and designs the structure
of the micro-sized thin-film thermocouple, as shown in Figure 1a.
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Figure 1. Structure diagram of Pt-Rh10/Pt thin-film thermocouple. Thin-film Thermocouple Structure
Diagram: (a) Thin-film thermocouple plan structure diagram; (b) Thin-film thermocouple three-
dimensional structure diagram; (c) Serpentine micro-energy exchange element structure diagram.

It is determined that the designed thin-film thermocouple integrated with the micro-
transducer is mainly composed of a substrate and a thermoelectrode. The thermoelectrode
layer is composed of thermoelectrode 1 and thermoelectrode 2 arranged in mirror symme-
try along the center line of the substrate. The first electrode and the second hot electrode
constitute the thermal junction of the thermocouple through the overlapping area. Among
them, the micro transducer adopts a serpentine structure, which is distributed in a serpen-
tine shape at a distance of 200 µm from the thermal junction, and is mirror-symmetrical
along the center line of the ceramic substrate. The pads are symmetrically distributed
on both sides, and the three-dimensional structure is shown in Figure 1b. Among them,
the thermoelectrode is 7000 µm long, 500 µm wide and 2 µm thick. The size of the even
junction is 500 × 500 µm. The size of the pad is 3250 × 2000 µm, and the pad is used to
connect the compensation wire.

2.2. Materials

High-purity alumina ceramics have many advantages, such as high melting point,
thermal shock resistance, corrosion resistance, good wear resistance, high temperature
stability and good bonding force with Pt/Rh alloy film thermoelectrode [18]. In addition,
the insulation resistance of high-purity ceramics is not less than that of ceramic materials. In
view of the many advantages of ceramic materials, this paper selects high-purity alumina
ceramics (99 porcelain) as the substrate for preparing thin-film thermocouples, and its
structural matrix parameter is 10 mm (length) × 8 mm (width) × 0.5 mm (thickness).

According to the basic working principle of thermocouples and the law of intermediate
conductors, the Seebeck coefficient of thermoelectrode material is the only factor that affects
the thermoelectric potential in the closed circuit of thermocouples, and the thermoelec-
trode material determines the performance of thin-film thermocouples. The thermocouple
made of precious metals is often used in high temperatures and harsh environments. Pt-
RH10/Pt thermocouple in the thermocouple series has the advantages of high accuracy,
good stability, wide temperature measurement area, long service life and high temperature
measurement upper limits [19] and is suitable for oxidation and inert atmosphere. The
tungsten–rhenium thermocouple is a high melting point metal thermocouple developed
gradually in order to meet the demand of temperature information measurement in high
temperature environments. It is also an industrial thermocouple that can meet the demand
of temperature measurement in high temperature environments above 1800 ◦C at present.
It is widely used in aerospace, metallurgy, the nuclear industry and other high temperature
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industries. It has the advantages of a high melting point of alloy electrode material, high
output thermoelectric potential, high sensitivity, low price, and so on.

By comparing the advantages and disadvantages of the two materials, the precious
metal platinum–rhodium material is more expensive than tungsten–rhenium, and vulnera-
ble to pollution, so the one-time investment is large; therefore, this paper has used, respec-
tively, tungsten–rhenium materials (positive extreme W:Re = 95 wt%:5 wt%, the prepara-
tion of thin-film thermocouple with negative electrode W:Re = 74 wt%:26 wt%), platinum–
rhodium alloy and pure platinum as electrode materials (positive extreme Pt-Rh10, negative
extreme pure Pt) was explored [20].

As the resistance of the transducer element increases, the critical ignition voltage of
the transducer element increases in the form of a power function. When the resistance of
the transducer is the same, the common Ni-Cr, Pt, and Cr materials have lower ignition
voltage. Taking into account many factors such as process difficulty, fabrication cost, and
material properties, the authors finally chose Pt as the transducer material for the design
and integrated production of the micro-initiator [21].

Synthesizing the process compatibility and performance requirements of thin-film
thermocouples, the device structure material is determined: high-purity alumina ce-
ramics (99 porcelain) as the matrix material and Pt metal as the energy-transducing el-
ement material. According to verification requirements and experimental conditions,
W-5%Re/W-26%Re thin-film thermocouples and Pt-Rh10/Pt thin-film thermocouples were
separately prepared on the substrate.

In order to understand the heat distribution of the designed structure, the Pt-Rh10/Pt
thin-film thermocouple with a substrate size of 10 mm (length) × 8 mm (width) × 0.5 mm
(thickness) and a junction size of (500 × 500 µm) is used as an example. Then, the corre-
sponding element type and material properties are defined, as shown in Figure 2. Below,
the author uses Comsol finite element analysis software to simulate the designed structure
and pulse laser to excite the coupling junction to simulate the heat transfer of the structure.
Given that the laser spot area is smaller than the area of the thermocouple junction, it
radiates heat longitudinally from the central region and has a good response. Since the
properties of the material in the simulation process are selected as the thermal physical
parameters of the unit solid-like material, it will inevitably lead to some errors in the ther-
moelectric properties of the thin film thermocouple under the simulation conditions, but
the variation pattern of its temperature profile is consistent with the conventional physical
properties of thermocouples.
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2.3. Preparation

The magnetron sputtering method is adopted, and two WRe alloy targets with
a purity of 99.99% with different composition ratios are used as the target materials
(W:Re-95 wt%:5 wt%; W:Re-74 wt%:26 wt%; Φ76.2 mm × 6.35 mm). High-purity Ar
is used as the sputtering gas, and the flow rate in working condition is 400sccm; the target
base distance is adjusted to 110 mm, and then W-5%Re and W-26%Re are prepared on an
Al2O3 ceramic substrate with a size of 10 mm × 8 mm × 0.5 mm. The detailed process and
effect of thin-film thermocouple prepared by magnetron sputtering are shown in Figure 3.
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Figure 3. The detailed process and effect drawing of thin-film thermocouple prepared by magnetron
sputtering method: (a) Diagram of sputtering process; (b) Ceramic base and two different sputtered
metals.

In order to not affect the electrical performance of the thin-film thermocouple, the
tungsten–rhenium wire, which is the same as the electrode material, is used as the lead
wire, and the tungsten paste is the welding material. When welding the lead, it was found
that the bonding force between the tungsten paste and the pad was poor and easy to fall
off. Then, the sample was placed in a tube furnace for high-temperature treatment; the
holding temperature was 800 ◦C, the time was 1 h, and the heating rate was 10 ◦C/min. In
order to prevent the tungsten–rhenium film from being rapidly oxidized, argon gas was
filled in the furnace, and the flow rate of argon gas is 400 sccm. The surface morphology
after heat treatment is shown in Figure 4 below.
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It can be seen that during high-temperature sintering, the organic matter of the con-
ductive tungsten paste will volatilize during the heating process, the volume shrinks and
discolors, and the shape is dry. The prepared W-5%Re/W-26%Re thin-film thermocouple
still underwent oxidation in the hot end region. The film changed from silver-white metal-
lic luster to dark green, and the film adhesion was not high. After studying the relevant
literature, it is found that the tungsten–rhenium film thermocouple deposited with the
Al2O3 protective layer will also fail in a short time under high-temperature environments,
and the film protection process is not yet mature.

Based on previous experiments, the authors explore a low-cost and efficient prepara-
tion process, using screen printing technology to prepare Pt-Rh10/Pt thin-film thermocou-
ples suitable for oxidizing and inert atmospheres on ceramic substrates. The preparation
process is shown below.

(1) The substrate is selected and wiped with alcohol for surface hydrophilization;
(2) The platinum–rhodium conductive paste is mixed with a fineness of <15 µm with

an organic carrier to make a platinum–rhodium conductive micron paste, and the platinum–
rhodium electrode (left electrode) mask is placed on the insulating substrate to form a
printing plate;

(3) The platinum–rhodium conductor micron paste is stacked on the printing plate and
moved and pressed with a scraper to make it leak through the image area of the mask and
the pores of the screen to the surface of the substrate, thereby forming a platinum–rhodium
electrode film;

(4) Multi-layer printing and reinforcement of platinum and rhodium electrodes are
achieved by performing leveling, drying and heat treatment on the obtained platinum
rhodium electrode film and then cooled down naturally;

(5) This is replaced with a platinum electrode (right electrode) mask and a platinum
electrode slurry with a fineness of <10 µm is mixed with an organic carrier to make a
platinum electrode micron slurry. Step (2) to step (3) are repeated to form a platinum
electrode film; the film thickness is about 6 µm;

(6) Multi-layer printing and reinforcement of the platinum electrode, film leveling,
drying and heat treatment of the obtained electrode, and then natural cooling, are per-
formed;

(7) The sample was dried in an oven and then sintered at a high temperature in a
muffle furnace at 1300 ◦C for four hours to complete the preparation of the sensor.

Figure 5 below shows the screen-printing stencil structure during the preparation
process and the final finished film thermocouple.
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In the screen-printing manufacturing process, sintering is a very important process.
The film dried on the substrate must be sintered to have certain electrical properties.
The sintering process is decisive for the properties and composition of the film, and its
important condition is the sintering temperature. Only by sintering under the most suitable



Micromachines 2023, 14, 4 7 of 15

temperature and other conditions can the best properties of the materials used be obtained.
After each electrode is printed, in order to make the film thickness more uniform and not
easy to deform, the prepared film specimens are dried in a muffle furnace environment
temperature of 200 ◦C for 20 min. During this period, most of the organic matter in the film
will be slow. Slow volatilization enhances the adhesion of the film layer and the substrate.
After the film is air-dried, the shape and performance of the dried film will not be affected
when printing on the other side. At the same time, it also prevents the binder in the slurry
from escaping during high-temperature sintering and causing the newly printed film to
break.

The dried thin-film thermocouple is placed in a muffle furnace for high-temperature
sintering. The sintering steps include three stages of uniform heating, heat preservation
and natural cooling. For different slurries, the appropriate high-temperature sintering
temperature will directly affect the adhesion between the film and the substrate and the
stability of the film. Too low of a temperature will result in unstable film structure and
decrease in electrical conductivity. Too high of a sintering temperature will cause the
crystal particle size difference in the film composition to be too large, resulting in a small
oxidation reaction. Similarly, the length of the holding time will also affect the sintering
effect. Too long of a holding time will continuously increase the crystal grains in the film
and increase the resistance. Too short of a holding time will cause insufficient reaction
of the film and lose the sintering effect. In order to improve the efficiency of preparing
thin-film thermocouples and prevent excessive volatilization of organic solvents in the
film, a muffle furnace with a maximum firing temperature of 1800 ◦C is used to fire the
thin-film thermocouples during the sintering process, as shown in Figure 6a below. The
organic binder consists of resin, solvent and additives, of which the resin and solvent are
ethyl cellulose and pine alcohol, respectively, and, finally, additives such as surfactants,
leveling agents and defoamers are added according to actual needs. After many sintering
experiments, the specific temperature rise rate when sintering the Pt-Rh10/Pt thin-film
thermocouple is 7.2 ◦C, as shown in Figure 6b below; the holding temperature is 1300 ◦C,
and the holding time is 1 h. After four hours of sintering, it is cooled naturally. Intervention
with cool-down can easily form internal stress in the film, which affects the stability of the
film thermocouple.
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Figure 6. High temperature sintering of thermocouples by means of a muffle furnace: (a) Muffle
furnace used in the experiment; (b) The temperature variation of Muffle furnace in the preparation.

3. Test and Analysis
3.1. Thickness Test

In this paper, the authors used a P6 Stylus Profiler to perform thickness measurements
on thin-film thermocouples. The use of a high-resolution step meter not only makes it
easier and more intuitive to measure the film thickness, but also accurately characterizes
the roughness of the film surface. The stylus is perpendicular to the substrate, and, by
measuring the change in displacement of the stylus in the vertical direction as it crosses
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the thermocouple surface, the surface characteristics can be accurately characterized. The
physical diagram of the P6 Stylus Profiler is shown in Figure 7 below, and the measurement
results for the thin-film thermocouple are shown in Table 1 below.
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Table 1. The measurement results for the thin-film thermocouple.

Measurement Items Measured Value Theoretical Value Error Value

Thermocouple thickness 6.21 µm 6.0 µm 3.5%
Electrode length 7.01 mm 7.0 mm 1.4%
Electrode width 550 µm 500 µm 10%
Hot node area 0.52 × 0.51 mm2 0.5 × 0.5 mm2 6.1%

The measurement results in the table above illustrate that the average values of errors
for the thickness, electrode width and its length of the thin-film thermocouple are 3.5%,
1.4% and 10%, respectively. The average thickness error of the thin-film thermocouple is
3.5%, which is not much different from the actual design of the theoretical value, basically
to meet the design requirements. The thickness of the thin-film thermocouple, although
there are some places where there is a certain small deviation, belongs to the normal
phenomenon. The small deviations occur because the printing process is subject to a small
range of perturbations in the gas environment and the muffle furnace sintering temperature,
all of which can cause irregular changes in the crystal particles in the film layer.

3.2. Static Test

In order to better evaluate the static performance index of the prepared Pt-Rh10/Pt
thin-film thermocouple sensor, the Pt-Rh10/Pt thin-film thermocouple is statically cali-
brated according to the requirements of JJG542-1997 platinum rhodium–platinum thermo-
couple verification regulations. The electric potential value of the standard graduation
table is compared with the thermocouple under test at different temperature points.

The basic composition of the thermocouple temperature measurement circuit is shown
in Figure 8. It is composed of a thermocouple, a compensation wire, a connecting wire
and a secondary instrument. Among them, T represents the temperature of the measuring
terminal, T1 represents the temperature of the terminal, and T0 is the temperature of the
reference terminal. When indexing and calibrating the thermocouple, the temperature of
the reference junction should be maintained at 0 ◦C throughout the measurement process,
that is, to ensure that the temperature of the cold junction is 0 ◦C, and the measured
electromotive force (mV) is proportional to the temperature of the measurement junction.
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Figure 8. The basic composition of the thermocouple temperature measurement circuit.

Because the calibration temperature range is wide, the static calibration of the film
thermocouple is carried out in different regions, and different calibration equipment is used
in different temperature ranges. A portable temperature calibration furnace to calibrate
the thermocouple in the range of 50~600 ◦C is used, and a temperature point is set every
50 ◦C from 50 ◦C. The switch of the zero-degree thermostat is turned on, and 3ml of alcohol
are added to each zero-degree hole. When the temperature of the working area of the
zero-degree thermostat drops to 0 ◦C, the constant-temperature indicator light starts to
flash, and the zero-degree thermostat enters the constant temperature state. After about
10 min, the zero-degree thermostat can be used as the reference terminal temperature of the
thermocouple. In order to prevent the two lead wires from being contacted by mistake and
causing a short circuit, the lead wires are inserted into the high-temperature-resistant ce-
ramic tube before calibration for physical and mechanical protection. The bonding method
is used to clamp the extension cord between the high-temperature-resistant ceramic sheet of
the same material as the substrate and the thin-film thermocouple pad to form a sandwich
structure. The tungsten rhenium sheet and the ceramic sheet are bonded and fixed, and
the tested thermocouple is placed in the hole inside; the output terminal is connected to
a high-precision digital multimeter through a zero-degree thermostat for measurement.
The temperature of the heat source is set at 50 ◦C. When the temperature reaches the set
value, the error is constant within ±1 ◦C, and the temperature fluctuation is not greater
than 0.05 ◦C, the thermoelectric potential value of the measured film thermocouple sensor
is recorded in real time with a high-precision digital multimeter, and the experimental site
is shown in Figure 9a below.
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Figure 9. Static test system: (a) Low temperature section static test site; (b) Horizontal high tempera-
ture verification furnace static test system.

The high temperature calibration furnace system is used for calibration in the range of
600~1500 ◦C. The static test system of the horizontal high-temperature calibration furnace
is shown in Figure 3b above. In order to prevent the thermocouple from being affected
by slight oxidation in the high temperature section, the system is equipped with an argon
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gas bottle device; the flow rate of argon gas under working condition is 400 sccm. Similar
to the calibration process of the low temperature section, the film thermocouple is fixed
on the slide rail of the fast feed device during calibration, the output end is placed in the
zero-degree thermostat through the compensation wire, one end of the compensation wire
in the zero-degree thermostat is connected to the digital multimeter through the wire on
the multimeter, and the output voltage value of the film thermocouple is measured. The
temperature test range of the high-temperature verification furnace is set to 600~1500 ◦C.
The high-temperature furnace is heated at a heating rate of 5 ◦C/min, and the voltage
value of the digital multimeter is recorded every 50 ◦C. The high-temperature static test
experiment site is shown in Figure 10 below.
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Figure 10. Thin-film thermocouple high-temperature section static test experiment site.

In order to improve the accuracy of the data and reduce the influence of the environ-
ment on the experiment, the value of the high-precision digital multimeter is recorded
in real time during the experiment, and the collected data is processed to eliminate gross
errors and find the average value. The relationship curve between thermoelectric potential
and temperature is drawn and compared with the standard thermocouple index table, as
shown in Figure 11 below.
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Figure 11. Comparison of the thermopotential versus temperature curves of thin-film thermocouples
and standard thermocouples: (a) Fit of test data of thermocouples connected by keying; (b) Fit of
thermocouple test data connected by soldering method.

From Figure 11 above, it can be intuitively found that the output thermoelectric
potential of the tested thermocouple in the low temperature section is close to the standard
thermocouple value, and the error is small. There is a slight deformation around 1200 ◦C,
and the overall potential-temperature curve drops around 1mV in the range of 1200 ◦C to
1500 ◦C, resulting in a deviation of about 50 ◦C between the measured temperature and the
standard temperature. After taking out the calibrated thermocouple, it was found that the
clip at the lead connection was oxidized and deformed in a high temperature environment
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for a long time. As shown in Figure 12a below, the performance of the thermocouple in the
high temperature furnace cavity has a slight impact. After a lot of experimental analysis
and improvement, the sensor structure connected by welding method was tested, which is
shown in Figure 12b below.
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Figure 12. Oxidation deformation state of thermocouple under prolonged high temperature envi-
ronment: (a) Ceramic bonded sheet after high temperature calibration; (b) Sensor structure for lead
connection by welding.

By controlling the temperature of the calibration furnace, the thermocouple is cali-
brated every 50 ◦C rise in furnace temperature, and the final scatter plot of thermal potential
versus temperature is obtained. In order to more intuitively reflect the static performance
of the thermocouple, it is necessary to curve-fit the thermocouple calibration data and
establish a mathematical model of temperature–thermoelectric potential relationship. This
paper chooses the least squares method that can match the best function according to the
square sum of the minimum error to curve fitting the static calibration data. The three
experimental data and the average fitting curve are shown in Figure 13 below.

After fitting by the least squares method, the Seebeck coefficient, fitting equation,
correlation coefficient R2 and nonlinear fitting error of the tested thin-film thermocouple
are summarized and analyzed, as shown in Table 2 below.

In view of the slow cooling rate of the horizontal high temperature appraisal furnace
and the long time of the single calibration experiment, this article compares and analyzes
the data of the above three repetitive experiments, and it can be seen intuitively that the
thermoelectric potential data obtained by the Pt-Rh10/Pt thin-film thermocouple connected
by the welding method in multiple repeated experiments are highly consistent, with
excellent repeatability and stability. In this paper, the maximum standard deviation of
experimental data obtained by the range method is 0.0123. The maximum repeatability
error of the Pt-Rh10/Pt thin-film thermocouple is 0.0816%, and its repeatability is about
99.9184%.

It can be seen from the fitting equation of the static calibration data that the developed
thin-film thermocouple has similar high temperature performance to the traditional fila-
ment S-type standard thermocouple, and the linear correlation coefficient R2 is close to 1,
although there are hysteresis, creep, friction, etc., and in an external environment in the
range of 50~1500 ◦C, the average Seebeck coefficient of the film temperature sensor can
reach 10.70 µV/◦C, which is close to the sensitivity of a standard S-type thermocouple, and
is not affected by the thickness of the film. The sensor has good repeatability. The tempera-
ture can be measured continuously for more than three hours under the environment of
1500 ◦C, which meets the needs of engineering testing.
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Figure 13. Data fitting of thin-film thermocouple after three calibration experiments: (a) First static
calibration data fitting curve; (b) Second static calibration data fitting curve; (c) Third static calibration
data fitting curve; (d) Mean fit curve for static calibration data; (e) Repeatability of data from three
calibration experiments.
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Table 2. Thermocouple static calibration data fitting results.

Times Fitted Equation Seebeck Coefficient (µV/◦C) Standard Error of Slope Coefficient of Association (R2)

1 E = 0.01071θ − 0.999 10.71 0.01042% 0.99726
2 E = 0.01070θ − 0.997 10.70 0.01041% 0.99726
3 E = 0.01070θ − 0.996 10.70 0.01043% 0.99725

average E = 0.01070θ − 0.997 10.70 0.01042% 0.99726

3.3. Dynamics Test

In view of the high energy density of laser and easy precise control, it is often used as
an ideal heat source. At the same time, thanks to the flat shape of the self-made thin-film
thermocouple junction, the laser energy can be effectively absorbed by the sensor. In this
paper, a laser method is used to conduct dynamic experiments on the sensor.

The thermal and shock resistance of thin-film thermocouples cannot be fully compared
with the thermocouple of the block structure; if the energy irradiated by the laser is too
large, the film or substrate material may be damaged to varying degrees, so the appropriate
laser power is key to the success of the experiment. The laser used in this paper is the
RFL-A500D semiconductor laser produced by Wuhan Rike Company, and the key technical
parameters of the laser are shown in Table 3 below.

Table 3. List of key technical parameters of the laser.

Rated Power (W) Power Adjustment Range (%) Central Wavelength (nm) Output Power Instability

500 10~100 915 ± 10 <3%

Output Head Type Modulation Frequency (Hz) Fiber Core Diameter (µm) Beam Divergence Angle (Rad)

QBH 50~20 k 300 <0.22

The IGA 740-LO infrared thermometer with a response time of 6µs is used to measure
the surface pulse temperature of the thin-film thermocouple. The infrared thermometer
has an adjustable emissivity, and the measured temperature signal can be used as the
temperature excitation signal of the sensor.

First, the film sensor is fixed on the lifting platform with the aid of the infrared
rays provided by the laser. First, the height of the lifting platform is adjusted so that the
focus of the infrared light falls roughly within the temperature sensing area of the film
thermocouple, and then the position of the optical lens is adjusted to adjust the focal length
to ensure that the laser focus is the smallest and aligned with the film thermocouple, the
center of the hot junction. The Pt-Rh10/Pt thin-film thermocouple is connected to the
signal amplifier circuit through the extension cable; the amplified signal and the output
signal of the infrared thermometer are input to the 8-channel high-speed synchronous data
acquisition instrument. The laser switch is controlled, the signal of the film thermocouple
and the signal of the infrared thermometer are synchronously collected. The laser power
is set by the laser host computer software. In the Pt-Rh10/Pt dynamic test experiment,
the laser power is set to 60%, 70%, 80% and 90% of the highest power of the laser, and
the laser output time is 1 ms. The experimental site of the dynamic test of the thin-film
thermocouple is shown in Figure 14 below.

For temperature sensors such as thermocouples, the time constant is the most impor-
tant dynamic parameter, which reflects how fast or slow the thermocouple responds in
dynamic measurements. The time constant is defined as the time it takes for the response of
a temperature sensor under a temperature step excitation to reach 63.2% of its stable value
from the starting moment. The time constant of the Pt-Rh10/Pt thin-film thermocouple
was measured under different laser powers, as shown in Table 4 below, and the table also
gives the excitation temperature and the highest temperature of the thermocouple under
different laser powers.
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Table 4. Time constants of thin-film thermocouple at different laser power.

Laser Power Percentage Maximum Temperature (◦C) Maximum Excitation Temperature (◦C) Intrinsic Time(µs)

60% 466.3 661.3 600
70% 531.1 741.7 610
80% 642.5 881.6 490
90% 838.2 1069.0 440

In view of the thickness of the prepared thin-film thermocouple being 6 µm, the
junction area is ≤1 mm and the surface is flat; the absorption rate of the laser is lower, and
the time constant can reach the order of microseconds. It can be seen from the table that the
average time constant of the Pt-Rh10/Pt thin-film thermocouple is about 535 µs.

4. Conclusions

Aiming at dynamic testing of the ignition temperature of micro-initiating explo-
sives, a temperature sensor with high temperature stability and fast dynamic response
was prepared. The preparation method of thin-film thermocouple was explored, and
W-5%Re/W-26%Re thin-film thermocouple was prepared on Al2O3 ceramic substrate by
magnetron sputtering method. The focus is on the preparation and performance research
of Pt-Rh10/Pt thin-film thermocouples. The Pt-Rh10/Pt thin-film thermocouples with
coupling size ≤1 mm are fabricated on Al2O3 ceramic substrates by screen printing. The
results of fitting the thermocouple static calibration data reveal that the Seebeck constant of
the thermocouple is 10.70 µV/◦C, and it has good repeatability and stability. From the data
in Table 4 above, it can be analyzed that the time constant of the thermocouple measured
when the laser power is between 60% and 90% is about 535 µs, on average. It overcomes
the connection problem between the thin-film thermocouple and the extension wire under
the high temperature environment of 1500 ◦C in the static calibration test and has better
conductivity, oxidation resistance, and it is not easy for the film to fall off. It is believed
that the film prepared by this process has the potential for long-term application in a high
temperature environment of 1500 ◦C.
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