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Abstract: This work outperforms the previous literatures by proposing a delay-cell-controlled voltage
control oscillator (VCO) design for common unipolar, single-gate, and enhancement-mode thin-film
transistor (TFT) technologies. A design example with InZnO TFTs is simulated to verify the proposed
design. The design example has a 500 µW power consumption, 0.7 mm2 area, 3.8 kHz–8 kHz output
frequency range, 600 Hz/V tuning sensitivity, and 4% maximum linear error. This design may have
the potential to be used for flexible, low cost, and moderate speed sensor readout interfaces.
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1. Introduction

Thin-film transistor (TFT) circuits have made great progress in recent years. Compli-
cated circuits and systems including ARM processers [1], analog frontends and conversion
circuits [2], and wireless communication systems [3] have been reported. Voltage control
oscillators (VCOs) are an integral part of many electronic systems. Table 1 reviews the
existing TFT-based VCO designs [4–10]. This work focuses on the digital ring oscillator
(RO) architecture with delay-cell-control scheme since it has the advantages of the simple
and compact structure, the high input impedance, the digital output that can be processed
directly using digital circuitry without shaping, and it does not require analogue blocks
such as high-performance operation amplifiers that are difficult to achieve with current
TFT technologies. The delay-cell-control VCO design that was proposed for the first time
in [6], however, was designed for the uncommon dual-gate and depletion-mode TFT device.
This work solves this issue by presenting another design for the common TFT devices, i.e.,
unipolar (non-complementary), single-gate, and enhancement-mode TFTs.
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Table 1. Summary of the existing TFT VCO designs.
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1 This design with active inductors and light-sensing scheme is shown, while the common LC tank VCO design
with the capacitor control scheme is shown in the simplified schematic. 2 The design depends on the value of the
input resistor.

2. Device

The design example was based on our 10 µm channel length, n-type, etch stop layer
(ESL), and InZnO (IZO) TFTs. The device has a bottom gate and top contact structure
on glass substrate as shown in Figure 1. Three metal layers are provided: the gate metal
(M1), the source/drain metal (M2), and the top metal (M3) for further connection. The
gate metal is a 200 nm thick molybdenum (Mo) layer (M1). The gate insulator (GI) is two
stacked layers of SiNx/SiO2 with 200 nm/50 nm. The active layer is a 30 nm thick IZO.
Source and drain electrodes are 200 nm thick Mo layers (M2). A 300 nm SiO2 is formed as a
passivation layer (PV) for protecting the TFT devices. A layer of Ni serves as the contact
electrode (M3). The typical threshold voltage (Vth), mobility, and subthreshold slope are
3 V, 10.5 cm2V−1s−1, and 110 mV/dec, respectively. Because of the bottom gate structure,
overlapping capacitance per unit channel width is 1.41 nF/m. On-chip capacitors with
19 nF/cm2 are also available by using the M1 and M2 as two plates and the gate oxide as an
insulating layer. More details about the TFT device technology can be found elsewhere [11].
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Characteristics of the TFT devices used are calibrated with experimental data [11]. An
Hspice Level = 62 RPI Poly Si TFT Model is established using parameter extraction to fit the
measured device characteristics. Figure 2 shows the simulated transfer and output curves
of the device.
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3. Circuit Design

Figure 3 shows the schematic of the proposed VCO. It consists of a RO and a level
shifter, while the RO consists of an odd number of inverters and a non-inverting delay cell.
It generates self-oscillation with the frequency adjusted using a voltage control resistor
realized through T2. The waveform of the delay cell output (node Va) is shaped using the
inverter chains and becomes a series of pulses at the output node Vout. Typical waveforms
of the circuit nodes are shown in Figure 4a.
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The delay cell consists of T1, T2, and C1. The rising time constant of the delay cell
is proportional to R1C1 while C1 is charging through T1, and the falling time constant of
the delay cell is proportional to R2C1 while C1 is discharging through T2, whereas R1 and
R2 are equivalent resistances of T1 and T2, respectively. T1 and T2 are both biased in the
deep linear region so that they can act as resistors. R2 is a voltage control resistor controlled
using the gate voltage of T2, Vctrl, thus the oscillation period can be controlled using Vctrl. If
the rising time and delay of the inverter chain are both much smaller than the falling time,
the oscillation frequency can be proportional to Vcrtl, thus (W/L)1 is designed to be much
greater than (W/L)2, to make R2 much greater than R1. Also, a relatively large capacitance
is chosen. The oscillation period can be given using

TOSC= TINV+TR+TF ≈ TF ∝ R2C1 (1)

where TINV is the inverter chain delay, TR is the rising time of the delay cell, TF is the falling
time of the delay cell, and R2 is the equivalent resistance of T2.

The pull-down transistor T2 is designed to be biased in the deep linear region so that
it can act as a voltage control resistor whose resistance is given by

R2 =
1

µCOX(W/L)2(V ctrl − Vth)
(2)

Combining (1) and (2), the oscillation frequency is given using

fOSC ∝
µCOX(W/L)2(V ctrl − Vth)

C1
(3)

To ensure T2 in the linear region, its gate voltage Vctrl should be higher than VDD-
Vth. However, the input signal Vin ranges from GND to VDD, which cannot meet the
requirement. Thus, a level shifter is designed to boost the Vin to above VDD-Vth.

The level shifter is actually a diode-load inverter or amplifier that is powered using
VSS. Figure 4b gives the voltage transfer curve of the level shifter. When Vin increases from
Vth to VDD, Vctrl linearly decreases from VSS−Vth to Vx. The slope of the transfer curve

equals to −
√

(W/L)3
(W/L)4

. Thus, the transfer function of the level shifter is given using

Vctrl = −

√
(W/L)3
(W/L)4

(V in − Vth) + VSS − Vth (4)

Vin ≥ Vth (5)
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To make sure that T3 is in the saturation region and T2 is in the linear region, Vx must
be higher than VDD−Vth. Therefore, the sizes of T3 and T4 should satisfy

VSS − VDD
VDD − Vth

≥

√
(W/L)3
(W/L)4

(6)

In this design, the VSS is set to be 2VDD [12], and T3 and T4 are designed to have
the same size. Since its gain remains constant over the entire input range, the level shifter
does not introduce linear errors into the VCO. Signals will be inverted after passing
through the level shifter, so the input voltage and output frequency are ultimately inversely
proportional.

Combining (3) and (4), we can give the final f-V characteristic using

fOSC ∝ −µCOX(W/L)2
C1

[

√
(W/L)3
(W/L)4

(Vin − Vth)+2Vth − VSS] (7)

The above formula can be further described as

fOSC= KVCO(Vin − Vth) +
2Vth − VSS√

(W/L)3
(W/L)4

KVCO (8)

KVCO = −K
µCOX(W/L)2

C1

√
(W/L)3
(W/L)4

(9)

where KVCO represents the tuning sensitivity and K is a scale constant.
In summary, the properties of the proposed VCO are described by (8) and (9), with the

constraints described by (5) and (6).
One of the sources of the nonlinearity of the proposed VCO is the delay of the inverter

chains and the rising time of the delay cell, as described in (1). Therefore, a large value of C1
and a small size of T2 are desired to achieve a high linearity. However, according to (8) and
(9), this will reduce the output frequencies as well as the KVCO. A tradeoff between linearity,
oscillation frequencies, and sensitivity is found in the proposed design. Another source of
the nonlinearity derives from the deviation between the actual device characteristics and
the square-law model that makes T2 not behave as an ideal voltage-controlled resistor.

4. Simulation Results and Discussion

Figure 5a shows the layout of the proposed VCO. The VCO occupies 0.7 mm2 area
fully on-chip and consumes 500 µW power.
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The simulations were performed under VDD = 10 V and VSS = 20 V. The reason for
choosing these supply voltages is the relatively high Vth (~3 V) of our TFT devices. VCO
outputs under different input voltages that range from Vth to VDD were captured.

Figure 5b shows the simulated voltage versus frequency curve of the VCO. The output
frequency decreases from 8 kHz to 3.8 kHz as Vin increases from 3 V to 10 V.

Theoretical curves that are calculated (8) using KVCO of −570, VSS of 20 V, and Vth
of 3V, are also shown in Figure 5b. It is found that the theoretical curve fits well with the
simulated curve. This means that the theoretical analysis does provide an accurate predic-
tion of circuit behavior. Differences between simulated and theoretical characteristics result
from the deviation between the actual device characteristics and the square-law model.

Figure 6a shows the voltage versus KVCO curve of the VCO. The value of KVCO ranges
from 510 Hz/V to 680 Hz/V. The average value of KVCO is 600 Hz/V. Figure 6b shows
the linear error of the VCO that was normalized using the output frequency range. The
maximum linear error is 4% and appears at Vin = 6 V. The linear error is calculated as the
difference between the measured f-V curve and the linear fit through its extremes.
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Table 2 summarizes the performance of the proposed VCO and compares it to the
state-of-the-art counterparts. This work outperforms [6] by proposing a design suitable for
the single-gate and enhancement TFT devices. Moderate output frequencies and tuning
sensitivity are achieved, due to the inherent speed–linearity trade-off of the proposed
design. In addition, excellent circuit integration and power consumption are performed,
thanks to the compact and all-digital architecture. According to these results, it is suggested
that the proposed design may have the potential to be used for low-cost, moderate speed
applications such as voltage-to-frequency converters for flexible sensor interfaces.

Table 2. Summary and comparison table.

[4] [5] 1,2 [6] 2 [7] [8] 1 [9] 1 This Work 1

TFT type

Organic
unipolar

single-gate
enhancement

Oxide
unipolar

single-gate
enhancement

Organic
unipolar
dual-gate
depletion

Oxide
unipolar

single-gate
enhancement

Oxide
unipolar

single-gate
enhancement

Oxide
unipolar

single-gate
enhancement

Oxide
unipolar

single-gate
enhancement

VCO
architecture

Digital RO
with VDD

control

Digital RO
with VDD

Control

Digital RO
with delay-cell-

control

Analog
RO with

tail-current
source-control

Bi-stable
oscillator

Relaxation
oscillator

Digital RO
with delay-cell-

control

Supply (V) −20–−15 6–14 20 15 VDD = 6 V
VSS = 8 V ±5 VDD = 10 V

VSS = 20 V

Power (µW) 150–450 3 100–1000 3 6 1500 109 1300 500

Area (mm2) - 0.3 3 1 3 3.37 - - 0.7
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Table 2. Cont.

[4] [5] 1,2 [6] 2 [7] [8] 1 [9] 1 This Work 1

Output
frequency
range (Hz)

1.3 k–2.1 k 3 100 k–200 k 3 4—38 111 k–171 k 1 k–2 k 400–550 3 3.8 k–8 k

Input voltage
range (V) −20–−15 6–14 0–20 2–15 1–2 −5– +5 3–10

Average tuning
sensitivity

(Hz/V)
160 12.5 k 1.7 4.6 k 1 k 15 600

Max linear
error 0.011 3 0.01–0.13 3 0.016 0.04 0.016 Large 0.04

1 Simulation results. 2 The results consider only the VCO part. 3 Typical results estimated from figures and tables
in references.

5. Conclusions

A delay-controlled VCO design for unipolar, single-gate, and enhancement-mode TFT
technologies has been proposed. Theoretical analysis and design guidelines have been
given. A design example based on IZO TFTs has been proposed to verify the design. It is
found that the simulation results of the design example fit well with the theoretical analysis,
showing moderate speed and linearity, excellent integration, and power consumption
compared to the literatures.
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