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Abstract: In this paper, the responses of machined surface roughness and milling tool cutting forces
under the different milling processing parameters (cutting speed v, feed rate f, and axial cutting
depth ap) are experimentally investigated to meet the increasing requirements for the mechanical
machining of T2 pure copper. The effects of different milling processing parameters on cutting
force and tool displacement acceleration are studied based on orthogonal and single-factor milling
experiments. The three-dimensional morphologies of the workpieces are observed, and a white-light
topography instrument measures the surface roughness. The results show that the degree of influence
on Sa (surface arithmetic mean deviation) and Sq (surface root mean square deviation) from high to
low level is the v, the f, and the ap. When v = 600 m/min, ap = 0.5 mm, f = 0.1 mm/r, Sa and Sq are
1.80 µm and 2.25 µm, respectively. The cutting forces in the three directions negatively correlate with
increased cutting speed; when v = 600 m/min, Fx reaches its lowest value. In contrast, an increase in
the feed rate and the axial cutting depth significantly increases Fx. The tool displacement acceleration
amplitudes demonstrate a positive relationship. Variation of the tool displacement acceleration states
leads to the different microstructure of the machined surfaces. Therefore, selecting the appropriate
milling processing parameters has a positive effect on reducing the tool displacement acceleration,
improving the machined surface quality of T2 pure copper, and extending the tool’s life. The optimal
milling processing parameters in this paper are the v = 600 m/min, ap = 0.5 mm, and f = 0.1 mm/r.

Keywords: T2 pure copper; surface roughness; cutting force; tool displacement acceleration;
machining parameters optimization

1. Introduction

Pure copper has excellent electrical and thermal conductivity, high elasticity, high
ductility, and good corrosion resistance. Hence, it has been widely used in automobile
industry manufacturing, electronic communication, aerospace, and many other fields [1–3].
Higher demands are placed on the cutting process and the machining quality of pure copper
material in the actual machining process. Complex cutting techniques and high material
plasticity often lead to the adhesion of workpiece materials, displacement acceleration of
tools, plastic deformation of machined surfaces, and severe tool wear problems, reducing
the cutting quality and processability of pure copper material [4]. Therefore, to meet
the industry’s growing demands and improve the machining quality of the pure copper
part, it is particularly important to study the cutting process and surface quality of pure
copper material.

Regular and standard machined surface topography is the primary prerequisite to
ensuring the service performance of parts [5]. Therefore, to improve the cutting quality of
the pure copper part, it is necessary to study the formation process of the machined surface
topography during cutting. Many researchers use surface roughness to evaluate surface
topography and to study the variation trend of surface topography under different process-
ing parameters through cutting tests [6,7]. Su et al. [8] used the orthogonal test method to
analyze the roughness variation trend of the machined surface at different cutting speeds.
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They investigated the basic method to obtain optimized surface quality. The experimental
results showed a close relationship between the roughness of the machined surface and the
chip formation process. Yue et al. [9] summarized the influence of processing parameters
on the morphology of the machined surface from the perspective of material properties.
The authors concluded that although each process parameter has similar influence rules
for different machined materials, the degree of influence is different. Paturi et al. [10]
established a surface roughness model using a multi-objective optimization method and
analyzed the influence of different processing parameters on surface roughness. The feed
rate had the strongest influence, followed by cutting speed and depth.

In the actual cutting process, the machining path of the tool is often affected by
the cutting speed, feed rate, and other processing parameters. Hence, the displacement
acceleration state of the tool constantly varies, affecting the surface morphology of the work-
piece [11,12]. Zhang et al. [13] proposed a method to control the integrity of milled surfaces
to explore the effect of cutting vibration on the topography of the machined surface. With
an increase in the cutting speed and spindle vibration amplitude, the hardening effect of
the workpiece was gradually weakened, and the surface topography of the workpiece was
optimized. Babu et al. [14] used the response surface method to analyze tool vibration and
surface roughness. Moreover, the authors adopted multi-response optimization technology
to reduce the cutting surface roughness and tool displacement acceleration amplitude as
the optimization objective while determining the optimal cutting parameters. In addition,
Kumar et al. [15] optimized the cutting speed, feed rate, and cutting depth of magnesium
alloy milling via multi-response optimization technology. Lastly, the authors evaluated and
recommended optimal milling process parameters by using analysis of variance (ANOVA).

In the manufacturing industry, the service performance of mechanical parts is closely
related to their surface quality [16,17]. As shown in Figure 1, the metallic material with high
plasticity, such as copper and aluminum alloys, are influenced by the high temperature
and high contact pressure in the local cutting deformation area. The workpiece materials
easily adhere to the surface of the tools, forming the phenomenon of tool sticking. This phe-
nomenon causes displacement acceleration of the tool and aggravates tool wear, including
abrasive and diffusion wear. Tool sticking phenomenon would also damage the machined
surfaces. Therefore, studying the internal relationships between machining processing
parameters, tool displacement acceleration and machined surface quality is very important.

Micromachines 2023, 14, x FOR PEER REVIEW 2 of 19 
 

 

surface topography and to study the variation trend of surface topography under different 

processing parameters through cutting tests [6,7]. Su et al. [8] used the orthogonal test 

method to analyze the roughness variation trend of the machined surface at different cut-

ting speeds. They investigated the basic method to obtain optimized surface quality. The 

experimental results showed a close relationship between the roughness of the machined 

surface and the chip formation process. Yue et al. [9] summarized the influence of pro-

cessing parameters on the morphology of the machined surface from the perspective of 

material properties. The authors concluded that although each process parameter has sim-

ilar influence rules for different machined materials, the degree of influence is different. 

Paturi et al. [10] established a surface roughness model using a multi-objective optimiza-

tion method and analyzed the influence of different processing parameters on surface 

roughness. The feed rate had the strongest influence, followed by cutting speed and 

depth. 

In the actual cutting process, the machining path of the tool is often affected by the 

cutting speed, feed rate, and other processing parameters. Hence, the displacement accel-

eration state of the tool constantly varies, affecting the surface morphology of the work-

piece [11,12]. Zhang et al. [13] proposed a method to control the integrity of milled sur-

faces to explore the effect of cutting vibration on the topography of the machined surface. 

With an increase in the cutting speed and spindle vibration amplitude, the hardening ef-

fect of the workpiece was gradually weakened, and the surface topography of the work-

piece was optimized. Babu et al. [14] used the response surface method to analyze tool 

vibration and surface roughness. Moreover, the authors adopted multi-response optimi-

zation technology to reduce the cutting surface roughness and tool displacement acceler-

ation amplitude as the optimization objective while determining the optimal cutting pa-

rameters. In addition, Kumar et al. [15] optimized the cutting speed, feed rate, and cutting 

depth of magnesium alloy milling via multi-response optimization technology. Lastly, the 

authors evaluated and recommended optimal milling process parameters by using anal-

ysis of variance (ANOVA). 

In the manufacturing industry, the service performance of mechanical parts is closely 

related to their surface quality [16,17]. As shown in Figure 1, the metallic material with 

high plasticity, such as copper and aluminum alloys, are influenced by the high tempera-

ture and high contact pressure in the local cutting deformation area. The workpiece ma-

terials easily adhere to the surface of the tools, forming the phenomenon of tool sticking. 

This phenomenon causes displacement acceleration of the tool and aggravates tool wear, 

including abrasive and diffusion wear. Tool sticking phenomenon would also damage the 

machined surfaces. Therefore, studying the internal relationships between machining 

processing parameters, tool displacement acceleration and machined surface quality is 

very important. 

 

Figure 1. The schematic diagram of tool wear and surface defects in pure copper milling. 
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Figure 1. The schematic diagram of tool wear and surface defects in pure copper milling.

The goal of this study is to improve the processed surface quality of T2 pure copper.
This article provides evaluation and measurement methods for the surface topography of
pure copper, and the surface roughness evaluation method is expressed in Section 2.2 by
using the surface arithmetic mean deviation Sa, the surface root mean square deviation
Sq and the range analysis. Based on the results of orthogonal and single-factor tests, the
degree to which cutting speed v, feed rate f, and axial cutting depth ap affect the surface
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roughness of the machined surface are characterized in Section 3.1. According to the results
of the single-factor test, the influence rules of v, f, ap on the cutting force of the tool during
milling are shown in Section 3.2. In Section 3.3, the influence rules of v, f, ap on the tool
displacement acceleration during milling are shown, the frequency domain diagrams are
obtained by the Fast Fourier Transform, and the relationship between the tool displacement
acceleration state and the surface morphology is then studied. The conclusions of this
article are presented in Section 4. The research results of this paper can provide a theoretical
basis and technical guidance for high-quality and high-efficiency milling of T2 pure copper.
Figure 2 illustrates the framework of the study and research technology roadmap.
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Figure 2. The framework of the study and research technology roadmap.

2. Experimental Details
2.1. Experimental Setups

T2 pure copper, a non-ferrous metal with good mechanical properties, an ultimate ten-
sile strength of 348 MPa, and a hardness of 105 HV, was selected in this study. Its chemical
composition is shown in Table 1. The workpiece size is 200 mm × 100 mm × 10 mm.

Table 1. Chemical compositions of T2 pure copper (wt.%).

Element Ag + Cu Bi Sb As Fe Pb S

Content 99.90 0.001 0.002 0.002 0.005 0.005 0.005

The milling equipment used in the series experiments is a vertical machining center
(VMC-850E, Shenyang No.1 machine tool works, Shenyang, China) with a maximum
spindle speed of 8000 rpm. C-W-Co cemented carbide was chosen as the material of the
milling cutter (APKT1604PDER-MA, Boen, Taizhou, China), the cutter corner radius was
0.2 mm, the main cutting edges angle was 90◦, the rake angle was 8◦, and the flank angle
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was 11◦. The milling cutter was installed on the milling cutter plate with a diameter
of 63 mm, and four milling blades can be installed. The cutting force was collected by
a dynamometer (9257B, Kistler, Zurich, Switzerland), and software (DynoWare, Kistler,
Zurich, Switzerland) was used for the force signal real-time monitoring and analysis.
During the milling machining experiments, a data recorder (NI PXIe-1078, NI, Austin,
TX, USA) with a sound and vibration module (NI PXIe-4492 PXI, NI, Austin, TX, USA)
was used to collect the displacement acceleration signal of machine spindle, and the
sampling frequency was set to 2000 Hz. Three-dimensional morphologies of the workpieces
were observed using a white-light topography instrument (Micromesure 2, STIL, Aix-
en-Provence, France), and the surface roughness was measured by a matched software
(Gwyddion, Open source). The cutting force and tool displacement acceleration tests were
performed using a single-factor method, and the specific test parameters are listed in Table 2.
The milling test equipment and schematic diagram of the process are shown in Figure 3.

Table 2. Cutting force and tool displacement acceleration test parameters for the T2 pure copper milling.

Independent Variables Level of Parameters Other Parameters

Cutting speeds v (m/min) 200 400 600 800 1000 ap = 0.5 mm, f = 0.1 mm/r, ae = 4 mm
Feed rates f (mm/r) 0.1 0.15 0.2 0.25 0.3 v = 600 m/min, ap = 0.5 mm, ae = 4 mm

Axial cutting depths ap (mm) 0.5 0.7 0.9 0.11 0.13 v = 600 m/min, f = 0.1 mm/r, ae = 4 mm
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2.2. Evaluation and Measurement of Surface Morphologies of Pure Copper

In this study, the two positions where the milling cutter head radius is completely
cut into and cut out of the workpiece surface are selected as the start and end positions
of the stable milling area. The surface roughness is measured and averaged in three
0.5 mm × 0.5 mm areas with the same interval in the middle of the stable milling area to
ensure the accuracy and authenticity of the test. The machined surface’s three-dimensional
(3D) signal is collected by a white-light topography instrument. The surface signal is
decomposed by Gwyddion software to characterize and evaluate the morphology of the
processed surface. The measurement method and equipment are shown in Figure 4.

Three-dimensional roughness means adding a dimension based on the two-dimensional
roughness to evaluate and characterize the 3D morphologies of the machined surfaces. The
principle is to establish the datum plane of the sampling area by the least squares method
and to calculate the surface roughness parameters based on the height of the surface profile.
The schematic diagram of a 3D surface roughness is shown in Figure 5. The evaluation
parameters of 3D surface roughness, especially the Sa and the Sq, significantly affect the
fatigue life and frictional properties of parts. Many scholars also use the two standards
mentioned above to evaluate the surface topography of the workpiece [18,19]. The related
expressions of the two parameters are listed in Table 3.
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Table 3. Three-dimensional surface roughness parameters.

Symbols Descriptions Expressions Meaning of Parameters

Sa Surface arithmetic mean deviation Sa = 1
A
s

A
|η(x, y)|dxdy A is the sampling area, and η (x, y) is the

height difference between the sampling
surface and the datum surface.Sq Surface root mean square deviation Sq =

√
1
A
s

A
η2(x, y)dxdy

The range analysis method can directly show the influence of each factor of the
orthogonal test on the test results and select the optimized combination of factors in the
test [20]. The range analysis expression is shown in Equation (1):

R = max(K i)−min(K i) (1)

where the corresponding indexes of main effect Ki are the sum of test results at i (i = 1, 2, 3)
under each factor. The range R is the maximum difference of the corresponding indexes of
the main effect under each factor.

3. Results and Discussion
3.1. The Effect of Milling Processing Parameters on Surface Roughness
3.1.1. Orthogonal Milling Test

The orthogonal milling test is designed preferentially in this study to determine the
influence degree of milling processing parameters on the roughness of the machined sur-
faces and to provide a receivable reference for the subsequent single-factor test. The cutting
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speed v, axial cutting depth ap, and feed rate f are selected as orthogonal factors. Then,
an orthogonal milling experiment with three factors and three levels is designed. The
specific experiment contents and results are shown in Table 4. A VMC-850E vertical milling
machine (Shenyang No.1 machine tool works, Shenyang, China) is used to finish milling
T2 pure copper in orthogonal and single-factor tests. After milling, the topography features
of the machined surfaces are collected and recorded using a white-light topography instru-
ment (STIL, Aix-en-Provence, France). Lastly, the 3D surface roughness of the workpiece is
calculated using Gwyddion software.

Table 4. Experimental designs and results of orthogonal milling.

Levels
Milling Parameters Indexes

Cutting Speeds
v (m/min)

Axial Cutting
Depths ap (mm)

Feed Rates f
(mm/r)

Blank
Column

Sa
(µm)

Sq
(µm)

Testnum
bers

1 400 0.5 0.1 (1) 3.25 3.66
2 400 0.7 0.15 (2) 3.76 4.42
3 400 0.9 0.2 (3) 4.33 5.27
4 600 0.5 0.15 (3) 2.21 2.8
5 600 0.7 0.2 (1) 2.89 3.58
6 600 0.9 0.1 (2) 2.59 3.21
7 800 0.5 0.2 (2) 3.35 3.93
8 800 0.7 0.1 (3) 2.88 3.47
9 800 0.9 0.15 (1) 3.17 3.71

Table 5 shows the range of calculation results of Sa. The value of R is positively
correlated with the ability of the factor to affect the test results. According to Table 5, the
range order of each factor is Ra > Rc > Rb, i.e., the influence order of each factor is v > f > ap.
Therefore, in the milling processing parameters designed in the experiment, the cutting
speed v has the strongest influence on Sa, followed by the feed rate f and the axial cutting
depth ap. In the factor a column, the primary and secondary corresponding indexes are
K2 < K3 < K1; in the b factor column, they are K1 < K2 < K3; in the c factor column, they are
K1 < K2 < K3. Therefore, the scheme for obtaining the minimum value of Sa is a2b1c1, i.e.,
the cutting speed is 600 m/min, the milling depth is 0.5 mm, and the feed rate is 0.1 mm/r.

Table 5. Sa range calculation of orthogonal test.

Main Effect Corresponding to
the Indexes

Cutting
Speeds v (a)

Axial Cutting
Depths ap (b)

Feed Rates
f (c)

Blank
Column

K1 11.34 8.82 8.73 9.30
K2 7.68 9.54 9.15 9.69
K3 9.39 10.08 10.56 9.42

Range (R) 3.66 1.26 1.83 0.39
Primary and secondary

factors order v > f > ap

According to Table 6, the influence order list of each factor is v > f > ap, i.e., the cutting
speed v has the strongest influence on Sq, followed by the feed rate f, and the axial cutting
depth ap. In the factor column, the primary and secondary corresponding indexes are
K2 < K3 < K1; in the b factor column, they are K1 < K2 < K3; in the c factor column, they are
K1 < K2 < K3. Therefore, the scheme for obtaining the minimum value of Sq is a2b1c1, i.e.,
the cutting speed is 600 m/min, the milling depth is 0.5 mm, and the feed rate is 0.1 mm/r.
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Table 6. Sq range calculation of orthogonal test.

Main Effect Corresponding to
the Indexes

Cutting
Speeds v (a)

Axial Cutting
Depths ap (b)

Feed Rates
f (c)

Blank
Column

K1 13.35 10.38 10.35 10.95
K2 9.60 11.46 10.92 11.56
K3 11.10 12.18 12.78 11.54

Range (R) 3.75 1.80 2.43 0.61
Primary and secondary

factors order v > f > ap

Based on the above analysis of the range results, the primary and secondary order of
each factor in the orthogonal test is the same regardless of Sa or Sq, i.e., v > f > ap. Zhang
et al. [21] compared the trend of surface roughness under different processing parameters
and concluded that higher cutting speed and lower cutting depth can optimize the surface
quality of workpiece. During T2 pure copper milling, the cutting speed has the highest
influence on the surface roughness of the machined surfaces, followed by the feed rate
and the axial cutting depth. The optimal parameters for the surface quality are the cutting
speed of 600 m/min, the axial cutting depth of 0.5 mm, and the feed rate of 0.1 mm/r, while
the values of Sa and Sq are 1.80 and 2.25 µm, respectively.

3.1.2. Single-Factor Milling Test

Based on the optimal orthogonal test results, the cutting speed v, the axial cutting
depth ap, and the feed rate f are selected as independent variables of the single-factor
test. The influence rules of each processing parameter on the surface morphologies of T2
pure copper are explored by measuring the machined surface roughness under different
processing parameters. The parameters of the single-factor milling test are shown in Table 1.

Figure 6 shows the variation trend of the roughness parameters Sa and Sq of the
machined surface at different cutting speeds. The values of Sa and Sq change significantly
at different cutting speeds and behave similarly, indicating that the cutting speed is an
important factor affecting surface roughness [22]. As the cutting speed increases, the overall
surface roughness value of the machined surfaces decreases. When the cutting speed is
at lower levels (200 and 400 m/min), the values of Sa and Sq are relatively high, and the
surface quality of the workpieces is poor. However, when the cutting speed is high, the
surface roughness of the machined surfaces is relatively low. Moreover, the surface quality
is improved when the cutting speed is 600 m/min. This is because an increase in the cutting
speed reduces the cutting force during cutting, weakening the extrusion friction between
the tool and the workpiece, stabilizing the machining process, and reducing the roughness
of the machined surface [23].

Figure 7 represents the variation trend of surface roughness parameters Sa and Sq of
the machined surfaces at different feed rates. Parameters Sa and Sq demonstrate an upward
trend as the feed rate increases. Based on the principle of metal cutting, the relationship
between the feed velocity Vf, the feed rate fz per tooth, and the number of cutter teeth z is
shown in Equation (2):

Vf= n· fz·z (2)

According to Equation (2), when the cutting speed remains unchanged and the spindle
speed remains constant, increasing the feed rate will increase the feed speed per unit of time,
increasing the instantaneous cutting area during cutting. As a result, the instantaneous
deformation range of the workpiece surface is further increased when milling T2 pure
copper. Therefore, the tool must absorb the reaction force of the machined material to resist
deformation during milling, gradually increasing the cutting force and affecting the surface
quality of the workpieces.
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Figure 7. The variation trend of feed rate on the roughness of the machined surfaces.

Figure 8 shows the variation trend of surface roughness parameters Sa and Sq at
different axial cutting depths. The surface roughness gradually increases with the axial
cutting depth. The values of Sa and Sq are significantly increased when the milling depth is
increased from 0.5 to 0.9 mm. However, when the milling thickness exceeds 0.9 mm, the
surface roughness increases at a relatively low level.

Since the cutting speed and feed rate remained constant during the milling test, a
higher cutting depth increased the volume of removed material per unit of time. Simultane-
ously, an increase in the volume of removed material means that the tool needs to overcome
the reaction force generated by the deformation of the pure copper during milling, increas-
ing the instability of the milling process and surface roughness [10]. During the finishing
process, when the axial cutting depth is low, the material removal is relatively high due to
an increase in the independent variable. Consequently, the surface roughness values of the
machined surfaces are significantly increased.
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3.2. The Effect of Milling Processing Parameters on Cutting Force of Tools

In the previous sections, orthogonal and single-factor milling tests were performed
to analyze the degree and regularity of the influence of each process parameter on the
surface morphologies of T2 pure copper. To further investigate the formation process of the
machined surfaces, the variation trends of cutting force and tool displacement acceleration
under different processing parameters are combined in Sections 3.2 and 3.3 to investigate
the relationships between the displacement acceleration states of the tools and the surface
topographies during milling.

3.2.1. The Effect of Cutting Speeds

Figure 9 shows the variation trend of three-way cutting forces at different cutting
speeds when milling T2 pure copper. The values of the cutting force Fx are the highest in
the tool-moving direction, and they significantly vary with an increase in the cutting speed.
Cutting forces negatively correlate with the cutting speed, especially when the cutting speed
is 600 m/min. Here, the value of Fx is the lowest, but it slightly increases when the cutting
speeds exceed 600 m/min. In the remaining two directions, the relationships between
cutting forces and the cutting speeds do not significantly vary. Regarding numerical
magnitude, Fy and Fz are close to each other and are much lower than Fx. Based on
the variation tendency perspective, the magnitude of Fy is nearly constant at different
cutting speeds. At the same time, Fz and Fx have a similar variation tendency, reaching the
minimum value at 600 m/min.

Based on the principle of metal cutting, shear force Fs can be expressed by the shear
stress τ and the shear area S as follows:

Fs= τ·S (3)

and the shear area S can be expressed as follows:

S =
bh

sin φ
(4)

where b is the cutting width, h is the actual cutting depth, and φ is the angle between the
shear surface and the machining plane.
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The force required for the shear deformation of workpiece material during cutting
mainly consists of the shear force Fs and the chip inertia force Fm, as shown in Figure 10a.
Parameter Fm can be expressed by Equation (5) [24]:

Fm =
ρbhv2cos αr

cos(φ− αr)
(5)

where ρ is the machined material density, and αr is the tool rake angle. Parameter Fm can
be considered zero if the cutting speed is low due to the low chip mass.
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Figure 10b illustrates the influence of cutting speed on the shear angle. With an
increase in the cutting speed, the flow speed of workpiece material is higher than the
plastic deformation speed, which would make the original shear deformation area AOM
move back to the A’OM’ area as a whole, resulting in a shear angle φ’ > φ, as shown in
Figure 10b. According to Equation (4), an increase in the shear angle leads to a decrease
in shear force. Thus, the cutting force tends to decrease as the cutting speed increases.
Meanwhile, the increase in the cutting speed will also increase the cutting temperature,
decreasing the friction coefficient µ [24] and the thermal softening phenomena of the
workpiece materials [25], further reducing the cutting force. When the cutting speed
exceeds 600 m/min, it can be deduced from Equation (5) that the higher cutting speed may
cause an increase in the inertia force Fm, resulting in a slight increase in the cutting force.
However, in terms of the overall trend, the cutting force still shows a decreasing trend.
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3.2.2. The Effect of Feed Rates

Figure 11 represents the variation law of three-way cutting forces at different feed
rates. The three-way cutting forces Fx, Fy, and Fz show a positive correlation trend with
an increase in the feed rate. This is because the increase in the feed rate will increase the
cutting thickness in the feed direction of the tools, which results in additional workpiece
material cut by the tools per unit of time, improving the reaction forces generated during
plastic deformation of the workpieces. Finally, the three-way cutting forces are increased.
Compared with the trend of the three-dot plots, an increase in cutting force is mainly
concentrated in the tool moving direction X, which is also the predominant direction of
the workpiece material deformation during milling and which is consistent with the actual
machining conditions. Since material deformation and friction between the workpieces and
the tools in the Y and Z directions are low, an increase in the cutting forces is relatively low.
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3.2.3. The Effect of Axial Cutting Depths

Figure 12 shows the variation law of three-way cutting forces with different axial
cutting depths in the milling process. With an increase in the axial cutting depth, the three-
way cutting forces Fx, Fy, and Fz show an upward trend. Similar to the factor of the feed
rate, an increase in the cutting depth directly leads to an increase in the material volume of
the cut workpiece per unit of time. Hence, the generated reaction forces during the plastic
deformation of the materials are improved, and three-way cutting forces are increased.
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In general, the cutting force shows a downward trend with increasing cutting speed,
while increasing the feed rate and axial cutting depth can cause a sharp increase in the
cutting force. Hence, an increase in the cutting force will affect the displacement acceleration
states of the tools, increase the tool wear degree and damage the surface quality of the
workpieces [26].

3.3. The Effect of Milling Processing Parameters on the Tool Displacement Acceleration and the
Machined Surface Morphologies
3.3.1. The Effect of Cutting Speeds

Figure 13a illustrates the variation trends of displacement acceleration of the machine
spindle in X and Y directions at different cutting speeds. In terms of numerical magnitude,
the X acceleration in the tool-moving direction is much higher than that in the Y direction,
similar to the cutting force case. However, the acceleration in both X and Y directions is
increased with the cutting speed, which is exactly opposite to the variation trend of the
cutting force. This could be explained as follows. When the milling speed is at a high level,
with an increase in the feed rate, the tools need to cut into the workpieces with a higher
frequency, causing the milling process to have a higher processing frequency. Moreover,
the cutting force fluctuation frequency is higher than those at low-speed conditions, which
aggravates the milling process instability, resulting in the machining tool vibration [27].

The frequency domain distributions of tool displacement acceleration under different
cutting speeds are then obtained via the Fast Fourier Transform of the measured displace-
ment acceleration signal in the tool-moving direction, as shown in Figure 13b–f. In the
frequency range from 800 to 1000 Hz, there is the maximum amplitude of displacement ac-
celeration, namely the natural frequency of the machine spindle. At low cutting speeds (200
and 400 m/min), the amplitudes are mainly concentrated at the main frequency position,
indicating that the tool displacement acceleration mainly results from the forced vibration
of the machine spindle, as shown in Figure 13b,c. However, at high cutting speeds (600,
800, and 1000 m/min), the amplitudes of the main frequency are significantly increased
compared to those at the low-speed conditions, indicating that the process is in a relatively
unstable condition under the influence of short-term and high-frequency cutting force
fluctuation. In particular, at cutting speeds of 800 and 1000 m/min, the rapid rotation of the
spindle causes severe vibration of the tool clamping structure, causing the middle spectrum
positions to have a high amplitude, as shown in Figure 13e,f.

Figure 14 illustrates the micro-morphologies of the machined surfaces with a cutting
speed v = 600 m/min. In addition, the micro-morphologies of the machined surfaces with
a low cutting speed (v = 200 m/min) and a high cutting speed (v = 1000 m/min) were
reported in a previous work conducted by the authors [28]. Under the same milling feed
rate and axial cutting depth, the residual height of the machined surfaces presents highly
regular peak-valley morphologies. Comparison of the surface residual height profiles
shows that the height difference between the peak valleys of the machined surfaces is
lower at high cutting speed levels than those at low cutting speed levels. Hence, increasing
the cutting speed may improve the surface quality of the workpieces. When the cutting
speed is 600 m/min, the height difference of the workpiece surfaces is the lowest. The
above-conducted analysis of tool displacement acceleration at different cutting speeds has
shown that an increase in the cutting speed leads to the displacement acceleration of the
machine spindle, triggering a deviation of the tool path during milling, superimposing a
layer of periodic relative motions in the conventional milling path [29], and finally resulting
in a variation of the surface morphologies.



Micromachines 2023, 14, 224 13 of 19Micromachines 2023, 14, x FOR PEER REVIEW 13 of 19 
 

 

  

  

  

Figure 13. (a) Variation trends of displacement acceleration at different cutting speeds. The fre-

quency domain distribution of tool-moving direction: (b) v = 200 m/min; (c) v = 400 m/min; (d) v = 

600 m/min; (e) v = 800 m/min; (f) v = 1000 m/min. 

Figure 14 illustrates the micro-morphologies of the machined surfaces with a cutting 

speed v = 600 m/min. In addition, the micro-morphologies of the machined surfaces with 

a low cutting speed (v = 200 m/min) and a high cutting speed (v = 1000 m/min) were re-

ported in a previous work conducted by the authors [28]. Under the same milling feed 

rate and axial cutting depth, the residual height of the machined surfaces presents highly 

regular peak-valley morphologies. Comparison of the surface residual height profiles 

shows that the height difference between the peak valleys of the machined surfaces is 

lower at high cutting speed levels than those at low cutting speed levels. Hence, increasing 

the cutting speed may improve the surface quality of the workpieces. When the cutting 

speed is 600 m/min, the height difference of the workpiece surfaces is the lowest. The 

above-conducted analysis of tool displacement acceleration at different cutting speeds has 

shown that an increase in the cutting speed leads to the displacement acceleration of the 

machine spindle, triggering a deviation of the tool path during milling, superimposing a 

Figure 13. (a) Variation trends of displacement acceleration at different cutting speeds. The fre-
quency domain distribution of tool-moving direction: (b) v = 200 m/min; (c) v = 400 m/min;
(d) v = 600 m/min; (e) v = 800 m/min; (f) v = 1000 m/min.

Micromachines 2023, 14, x FOR PEER REVIEW 14 of 19 
 

 

layer of periodic relative motions in the conventional milling path [29], and finally result-

ing in a variation of the surface morphologies. 

 

Figure 14. Micro-morphologies of machined surfaces with a cutting speed at v = 600 m/min. 

3.3.2. The Effect of Feed Rates 

Figure 15a shows the variation trends of displacement acceleration of the machine 

spindle in the X and Y directions. The displacement acceleration increases with the feed 

rate. Moreover, the acceleration of X in the tool-moving direction is significantly in-

creased, which is also consistent with the upward trend of the cutting force mentioned 

above, indicating that the increase in the cutting force may increase the displacement ac-

celeration. To further confirm the source of the vibration, a frequency domain analysis is 

performed on the lowest and highest groups of feed rate in the milling tests, as shown in 

Figure 15b,c. When the feed rate increases, only the amplitudes are increased significantly 

in the main frequency band but not in the middle- and low-frequency bands. This is fur-

ther evidence that an increase in the cutting force is the key factor causing an increase in 

displacement acceleration during milling when the feed rate is changed. However, other 

displacement acceleration sources, such as clamping vibration, have a relatively minor 

effect on milling [30]. 

  

Figure 14. Micro-morphologies of machined surfaces with a cutting speed at v = 600 m/min.



Micromachines 2023, 14, 224 14 of 19

3.3.2. The Effect of Feed Rates

Figure 15a shows the variation trends of displacement acceleration of the machine
spindle in the X and Y directions. The displacement acceleration increases with the feed rate.
Moreover, the acceleration of X in the tool-moving direction is significantly increased, which
is also consistent with the upward trend of the cutting force mentioned above, indicating
that the increase in the cutting force may increase the displacement acceleration. To further
confirm the source of the vibration, a frequency domain analysis is performed on the lowest
and highest groups of feed rate in the milling tests, as shown in Figure 15b,c. When the feed
rate increases, only the amplitudes are increased significantly in the main frequency band
but not in the middle- and low-frequency bands. This is further evidence that an increase in
the cutting force is the key factor causing an increase in displacement acceleration during
milling when the feed rate is changed. However, other displacement acceleration sources,
such as clamping vibration, have a relatively minor effect on milling [30].
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Figure 16 shows the micro-morphologies of the machined surfaces at different feed
rates. It can be seen that with an increase in the feed rate, the spacings of the profile periods
of the machined surfaces are also gradually increased. Based on the influence of feed
rate on the tool displacement acceleration conditions during the abovementioned milling,
the height difference between the peak valleys in the surface profile periods is increased
significantly due to an increase in the cutting force. Moreover, with the influence of the tool
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displacement acceleration deviation, the spacings between the profiles produce more dense
tool marks, leading to a continuous increase in the surface roughness.
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3.3.3. The Effect of Axial Cutting Depths

According to Figure 17a–c, the variation trends of the displacement acceleration
of the machine spindle in X and Y directions at different axial cutting depths and the
frequency domain distributions of the tool moving direction are similar to the variation
trends influenced by the feed rate. Moreover, the results conform to the abovementioned
variation trends in the cutting force. The experimental results indicate that an increase in
the cutting force caused by the change in the axial cutting depth is the predominant reason
for an increase in tool displacement acceleration during milling.

Figure 18 illustrates the micro-morphologies of the machined surfaces at different
axial cutting depths. Since the cutting speed and feed rate remain constant, the spacings
of the profile periods of the machined surfaces are consistent. According to the influence
of the axial cutting depth on the tool displacement acceleration conditions during milling,
the stability of the milling process is remarkably influenced by an increase in the cutting
force and tool displacement acceleration. Hirose et al. [31] established a dynamic cutting
layer model and concluded that the variation of cutting thickness will further aggravate
the change of cutting force, which in turn affects the surface quality of the workpiece. Thus,
when the axial cutting depth is at a high level, the height difference between the peak
valleys of the machined surfaces is high, and the surface fluctuation is obvious. As a result,
the surface roughness of the machined surfaces increases with the axial cutting depth.
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4. Conclusions

In this paper, the effects of the T2 pure copper milling processing parameters on
the tool cutting forces and tool displacement acceleration were studied by series milling
experiments. Moreover, the surface quality of machined surfaces was evaluated and
analyzed via surface roughness parameters. The conclusions can be drawn as follows:

(1) Based on the results of orthogonal milling tests of T2 pure copper, the cutting speed
v had the highest degree of influence on surface roughness parameters of Sa and
Sq, followed by the feed rate f and axial cutting depth ap. When v = 600 m/min,
ap = 0.5 mm, f = 0.1 mm/r, Sa and Sq are 1.80 and 2.25 µm, respectively. The single-
factor experiments showed that the values of Sa and Sq were relatively high, and the
surface quality of the workpieces was poor at a low cutting speed. With an increase in
the feed rate and axial cutting depth, Sa and Sq showed an upward trend.

(2) The cutting force Fx in the tool-motion direction negatively correlate with the cutting
speed. At a cutting speed of 600 m/min, Fx reached the lowest value, and the value
of Fx was much higher than Fy and Fz. The three cutting forces showed a positive
correlation with an increase in the feed rate and axial cutting depth. An increase in
the cutting force was mainly observed in the X cutting direction, while the increase in
the Y and Z directions was relatively low.

(3) The tool displacement acceleration amplitudes showed an upward trend with an
increase in each milling processing parameter. The height difference between the peak
valleys of the machined surfaces was lower when the cutting speed was at a high
level than when the cutting speed was at a low level. When the feed rate was taken as
a single factor, the spacing variation of the profile periods of the machined surfaces
was more significant than when the axial cutting depth was taken as a single factor.
It can be inferred that the cutting force and tool displacement acceleration seriously
influenced the stability of milling machining.

(4) Combined with the orthogonal and single-factor test results, the optimized process-
ing parameters for T2 pure copper milling were v = 600 m/min, ap = 0.5 mm, and
f = 0.1 mm/r.

The variation in displacement acceleration states of the tools causes the machined
surfaces to behave in different 3D morphologies. Furthermore, the wear degree of the
tool is an important factor affecting the surface quality, which has been investigated and
discussed in the previous research carried out by the authors [28]. In future work, internal
relationships between the tool wear degree and the machined surface quality will be studied
based on the tool displacement acceleration state.
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