
Citation: Zhang, J.; Bai, C.; Wang, Z.;

Liu, X.; Li, X.; Cui, X. Low-Grade

Thermal Energy Harvesting and

Self-Powered Sensing Based on

Thermogalvanic Hydrogels.

Micromachines 2023, 14, 155.

https://doi.org/10.3390/

mi14010155

Academic Editor: Erwin Peiner

Received: 21 December 2022

Revised: 3 January 2023

Accepted: 4 January 2023

Published: 7 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Review

Low-Grade Thermal Energy Harvesting and Self-Powered
Sensing Based on Thermogalvanic Hydrogels
Jiedong Zhang 1,*, Chenhui Bai 2, Zhaosu Wang 2, Xiao Liu 3, Xiangyu Li 4 and Xiaojing Cui 3,4,5,*

1 Qiushi College, Taiyuan University of Technology, Taiyuan 030024, China
2 College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
3 Shanxi Transport Information Communication Company Limited, Taiyuan 030006, China
4 College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China
5 College of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China
* Correspondence: zhangjiedong@tyut.edu.cn (J.Z.); 20210084@sxnu.edu.cn (X.C.)

Abstract: Thermoelectric cells (TEC) directly convert heat into electricity via the Seebeck effect.
Known as one TEC, thermogalvanic hydrogels are promising for harvesting low-grade thermal
energy for sustainable energy production. In recent years, research on thermogalvanic hydrogels
has increased dramatically due to their capacity to continuously convert heat into electricity with or
without consuming the material. Until recently, the commercial viability of thermogalvanic hydrogels
was limited by their low power output and the difficulty of packaging. In this review, we summarize
the advances in electrode materials, redox pairs, polymer network integration approaches, and
applications of thermogalvanic hydrogels. Then, we highlight the key challenges, that is, low-cost
preparation, high thermoelectric power, long-time stable operation of thermogalvanic hydrogels, and
broader applications in heat harvesting and thermoelectric sensing.
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1. Introduction

The world has been meeting an ever-increasing electricity demand by burning more
fossil fuels since the second Industrial Revolution [1–6]. Therefore, the accelerating con-
sumption of non-renewable resources for energy production has led to an urgent need for
increased energy production from renewable resources [7–11]. On the other hand, heat
can be considered renewable in that it is ubiquitous and inevitable. A vast amount of
low-grade heat (<200 ◦C) is distributed in the environment (solar-thermal and geothermal
energy), produced as by-product waste heat from industrial processes and dissipated from
the human epidermis and electronic equipment [1,12–14]. In parallel, thermoelectrics is
the most straightforward technology applicable to direct heat-to-electricity energy con-
version [15–18]. However, low-grade heat is rarely commercially utilized because of its
intrinsic low temperature and inefficiency [19]. To this end, technologies to convert low-
grade heat to electricity must be efficient, scalable, and cost-effective [20,21]. Among them,
applications of inorganic semiconductive thermoelectric generators are expensive, have
mechanical brittleness, and are challenging to synthesize. Their thermoelectric efficiency
is limited not only by the small Seebeck coefficient (thermodynamic quantity, determined
by the change in the electron chemical potential caused by temperature changes) of about
100–200 µV K−1 but also by the electrical and thermal conductivity [22–24].

Nevertheless, thermogalvanic technologies provide an approach to directly convert
heat to electrical energy without complex synthesis procedures, greenhouse gas emis-
sions, or unsatisfactory long-term reliability. Another advantage of thermogalvanics for
low-grade heat harvesting is their high thermopower on the order of mV K−1. This sim-
plifies device design and assembly to generate high voltages, despite a slight temperature
difference [25–29].
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In recent years, significant progress has been made in liquid thermogalvanics by
improving electrodes, electrolytes, and redox species [30–34]. In particular, studies on
quasi-solid thermogalvanics have eliminated the leakage risk of liquid electrolytes by in-
troducing physically crosslinked networks [15]. Hydrogels (a three-dimensional network
structured gel that can absorb large amounts of water) are preferred for quasi-solid-state
thermoelectric cells that convert heat to electricity through a temperature-dependent elec-
trochemical process, with a conversion efficiency (ZT) determined primarily by electrical
conductivity, thermal conductivity, and the Seebeck coefficient, which is hundreds of times
higher than that of semiconductor flexible thermoelectrics. In addition, some flexible
devices based on thermogalvanic hydrogels have been developed for human thermal
energy generation, body temperature monitoring, and solar energy harvesting [16,35,36].
Inexpensive and environmentally friendly electrode and electrolyte materials form sim-
ple device structures, as well as excellent thermoelectric power performance [30–32]. As
shown in Figure 1, the number of publications and citations using hydrogels to harvest
and sense thermal energy has increased from 2000 to 2022 [18–140]. This has increased
interest in flexible thermogalvanics for low-level heat harvesting [37–39]. Although all
flexible thermogalvanics have the same basic configuration of two electrodes sandwiched
by an electrolyte, multiple classifications exist, defined by different electrolytes, electrode
materials, solvents, and redox pairs [40,41].
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In this mini-review, we aim to systematically sort through the latest research on
thermogalvanic hydrogels to give the reader as comprehensive an overview as possible of
the multiple roles of polymer networks, redox pairs, and thermogalvanic electrode materials
in hydrogel formation and to give the reader a complete picture of flexible thermogalvanic
hydrogels. The content was divided into six parts: in the first part, we provided an overview
of how low-grade thermal energy harvested and introduced the emerging thermogalvanic
hydrogels; in the second part, we investigated ways and characterization methods to
improve the efficiency of individual thermogalvanic hydrogels; in the third part, we
presented the selection of polymers and encapsulation methods; in the fourth part, we
exhibited the integration method of thermogalvanic hydrogels; in the fifth part, we gave an
introduction to the potential applications of thermogalvanic hydrogels; and in the end, a
brief summary of the research on thermogalvanic hydrogels was provided and an outlook
on the development of thermogalvanic hydrogels was given.

2. Improving the Efficiency of Single Thermocell
2.1. The Basic Principle of the Thermogalvanic Effect

Based on the thermogalvanic effect, quasi-solid thermal cells convert thermal energy
into electrical energy through two fundamental processes: redox reactions at the electrodes
and mass transfer in the electrolyte [42–47]. When a temperature gradient is applied to
the entire thermogalvanic cell, the temperature dependence of the redox reaction leads



Micromachines 2023, 14, 155 3 of 31

to oxidation at the anode and reduction at the cathode of the redox couple. The reduced
material is transported through the electrolyte by convection, diffusion, and migration to
the anode, which is oxidized. Then, the eroded material is transported back to the cathode,
resulting in a continuous reaction, as shown in Figure 2a. Therefore, a constant current
is generated in the thermogalvanic cell. As long as there is no degradation of the cell
components, this reaction can theoretically continue indefinitely [16].
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2.2. Reaction Thermodynamics

The conversion efficiency of a thermogalvanic cell depends on three interdependent
parameters: the Seebeck coefficient (Se), the electrical conductivity (σ), and the thermal
conductivity (k), as shown in Figure 2b [15,16,42–44]:

ZT =
(Se)2 × σ

k
(1)

According to thermodynamic theory, the Se is given by:

Se = (
∂E
∂T

)
t=∞

=

[(
SB + ŜB

)
−

(
SA + ŜA

)
− n

=
Se

]
nF

(2)

where n is the number of electrons transferred, F is Faraday’s constant, SA and SB are the

partial molar entropies of species A and B, ŜA and ŜB are their Eastman entropies, and
=
Se is

the transported entropy of the electrons in the external circuit [48–51]. Eastman transport
entropy is explained by the interaction of the ion and its solvated shell layer with the
solution. In most calculation schemes, the values of A and B are much smaller than SA
and SB and can be ignored, and the order of magnitude of Se is µV K−1, which can also be
ignored in most calculations. As such, Equation (1) can be written as:

Se = (
∂E
∂T

)
t=∞

=
SB − SA

nF
(3)

Among these parameters, the change in entropy is influenced by various factors,
including structural changes in the redox species, the effect of the solvent shell layer, and
its interaction with the solvent [52–54]. Whether in aqueous or non-aqueous solvents,
the positive or negative value of the entropy change is related to the difference between
the absolute charges of the oxidizing and reducing substances, and the magnitude of the
value reflects the strength of the main Coulomb interaction between the charged redox
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species and their solventized shells; if the absolute charge of the oxidizing agent is greater
than that of the reducing agent, the Seebeck coefficient is positive, and vice versa. In
general, redox species with a high absolute charge and complicated complex structure
possess a large strength of the Coulomb interaction and thus have a high Se. For example,
the Se of [Fe(ClO4)3/Fe(ClO4)2) (~1.46 mV K−1) is much higher than that of Fe2+/Fe3+

(~1.0 mV K−1) [55,56]. As a result, when increasing the Seebeck coefficient, the potential
difference between cells increases, leading to a consequent increase in the current that can
be generated.

Nevertheless, the maximum power output is also governed by various overpotentials
within the system during cell operation [57–60]. Theoretically, the performance of a given
cell is also determined by three major overpotentials within the thermogalvanic cell: ohmic
overpotential, charge transfer overpotential, and mass transfer overpotential [61–63]. The
further complexity in the thermogalvanic arises from the temperature dependence of each of
these overpotentials. The thermal gradient serves as an essential factor in the performance
of the cell [64–66]. A gel with low thermal conductivity can maintain a high-temperature
difference between the electrodes, and the reduction of the temperature gradient will also
reduce the thermogalvanic potential. Reaction kinetics is used to explain conductivity; the
reaction resistance of redox substances at the electrode and the transport resistance in the
electrolyte is related to the magnitude of conductivity [67–70].

Most of the reported thermogalvanic elements have energy conversion efficiencies
(relative to the Carnot engine) of less than 1% [71–73]. However, some recent studies
have reported record conversion efficiencies of 11% by establishing high concentration
ratios at the cold and hot ends [74]. The Seebeck coefficient, conductivity, power density,
and number of charge/discharge cycles of some thermogalvanic hydrogels is shown in
Table 1 [21,23,45,56,75]. Despite these low efficiencies, since the primary use of thermogal-
vanic hydrogels is to harvest wasted energy, the efficiency requirements for commercial
viability are relatively low. Some estimates suggest that 2–5% conversion is sufficient for
practical energy harvesting applications [76,77].Nevertheless, this depends on the mancien-
cies of effiufacturing and installation costs as well as the device’s lifetime.

Table 1. Comparison of the Seebeck coefficient, electrical conductivity, power density, and number of
charge–discharge cycles.

Redox Couple Matrix Se
(mV K−1) σ (S m−1) Pmax/(∆T)2

(mW m−2K−2)

Number of Charging–
Discharging

Cycles
Ref.

Fe3+/Fe2+ PVA/Gelatin 1.63 0.75 0.03 30 [21]
Fe3+/Fe2+ HCl/PVA 1.02 1 0.01 / [56]

[Fe(CN)6]3−/[Fe(CN)6]4− KCl/Gelatin 17 1 0.66 50 [23]
[Fe(CN)6]3/[Fe(CN)6]4− PVA 1.21 0.6 0.04 / [56]

I3−/I−
Cyclodextrins/

aqueous 1.9 2.4 / / [75]

I3−/I− PVA/Gelation 0.63 0.06 / 5 [45]

To improve the thermal efficiency as well as the long-term stability of thermogal-
vanic hydrogels, there are two main target areas of research: (1) increase the potential
difference and current density that may be generated in the thermogalvanic cell; (2) op-
timize the equipment design in cooperation with the polymer network to improve the
mechanical properties, long-term operating performance, thermoelectric properties and
other capabilities of the thermogalvanic hydrogel [78,79]. The potential can be increased
by developing and optimizing the basic thermodynamic principle, i.e., applying a redox
couple and electrolyte combination with a high Se. In addition to increasing the potential
of individual thermogalvanic cells, another hot research area focuses on device integration
and applications [80,81]. The output voltage of thermogalvanic-integrated devices can be
increased by optimizing the polymer network or using different bridging methods. Current
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density can be increased by using high specific surface area electrodes with good quality.
The environmental stability of the device can be improved by using suitable packaging
methods. As described below, these aspects are currently being investigated as potential
strategies to improve thermogalvanic element integration.

2.3. Thermopower Measurement and Calculation

The measurement and calculation of Se will generally be determined employing
simple devices. G et al. [82] measured the thermal potential of thermogalvanic cells using a
homemade temperature gradient platform, as shown in Figure 3. Two commercial Peltier
chips were used as a thermal and cold stage to generate the temperature difference. A
glass substrate was used for electrical insulation. Platinum wires with a diameter of about
0.3 mm were used as electrodes. The two electrodes are connected to the hot and cold
ends of the thermogalvanic. To prevent moisture loss during long-term electrochemical
measurements, the samples were wrapped with polyacrylate tape. The open-circuit voltage
was recorded on an electrochemical station (CHI 660E, Chenhua). Commercial platinum
wires with a diameter of about 0.3 mm were used as electrodes. The sample’s location was
symmetrical about the center of the temperature field. The temperatures were recorded
by thermocouples (Sheffield YET-720L). The thermopower was calculated according to
the equation:

Se = −
Vh −Vc

Th − Tc

d2

d1
(4)
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Figure 3. Schematic and digital images of the platform for thermopower measurements. (Reproduced
with permission from [82]. Copyright 2021 Elsevier Inc.).

2.4. Reaction Kinetics

Typically, due to the addition of redox substances, thermogalvanic cells require special
electrodes to prevent the oxidation of the electrodes or the interaction of the electrodes
with the electrolyte [83,84]. Han et al. found that electrode optimization can increase
the output power density of gelatinized thermoelectrochemical cells [85], as shown in
Figure 4a,b. Because of the electrode corrosion problem, they coated copper foil (10 mm
thick) with gold (40 nm). Since the gold (40 nm) coated copper foil electrode has an
expanded surface area, the total energy density for the initial 50 cycles is much higher than
that of pure copper foil, as shown in Figure 4c. In most thermogalvanic studies, electrode
materials with a high catalytic activity that reduces the charge transfer overpotential are
often welcomed, making them ideal tools for checking the performance of a given device. In
this work, the researchers found that the thermal power reached 7.1 mV K−1 with platinum
electrodes compared to copper foil electrodes, which is slightly higher than copper foil
electrodes (6.5 mV K−1), benefiting from the superior electrical conductivity of platinum
electrodes (Figure 4d–f). However, the high cost of platinum makes the exploration of
more commercially viable electrode materials an unavoidable option. Almost all recent
developments of new thermogalvanic electrode materials are used for aqueous hydrogels
based on ferrous cyanide, ferric ions, and iodide ions [86,87]. Thus, using high specific
surface area electrodes can significantly increase power.
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Figure 4. Effect of electrode on the thermopower. (a) Thermopower measurement for the as-fabricated
i-TE cells Cu|i-TE|Cu and Cu|Au|i-TE|Au|Cu (15× 15× 1.8 mm), where i-TE represented Gelatin-
0.8 M KCl-0.42/0.25 M FeCN4−/3− (rv = 2.0). Au (40 nm) was coated on the Cu foil with smooth
surface by ion sputtering. (b) The corresponding total energy density of the initial 50 cycles for i-TE
cell with rough Cu|Au (40 nm) and smooth Cu as electrodes. Normalized output power Pmax/(DT)2
and maximum output current of 100 cycles in an i-TE cell (Cu|Au|i-TE|Au|Cu, 15 × 15 × 1.8 mm)
are shown in the inset. (c) Corresponding Pmax/(∆T)2 and maximum output current varying with
the cycle number. Thermopower measurement of i-TE material of Gelatin-0.8 M KCl with (d) Pt
electrode (Pt|i-TE|Pt, 5 × 5 × 1.8 mm) and (e) Cu foil electrode (Cu|i-TE|Cu, 5 × 5 × 1.8 mm).
(f) Thermopower measurement of the i-TE material (Gelatin-0.8 M KCl) with different electrodes,
showing the 7.1 and 6.5 mV K−1 for the Pt electrode and Cu electrode, respectively. This suggests that
the thermopower is relatively independent of the choice of electrode. The V(TC)-V(TH) is the voltage
difference, while the TH-TC is the temperature difference. (Reproduced with permission from [85].
Copyright 2020, AAAS.).

There are few studies on new thermogalvanics for non-aqueous systems because mass
transport is the main limiting factor rather than the charge transfer on the electrode [88,89].
Carbon-based electrodes are gaining increasing attention as a convenient and low-cost
alternative to precious metal electrodes [90–93]. Nanostructured carbon materials, because
of their high specific surface area, can increase the number of reaction sites, for example,
nanotubes and graphene [94–97]. In addition, they can have fast electron transfer kinetics
for ferricyanide redox pair-based thermogalvanic. Both characteristics can increase the
power density of thermogalvanic cells. Hu et al. described a carbon nanotube-based
thermogalvanic that utilizes ferricyanide redox coupling and electrodes made of carbon
multi-walled nanotube (MWNT) hard paper and vertically aligned MWNT arrays [98], as
shown in Figure 5a–c. MWNT was used as the electrode for the thermogalvanic replac-
ing conventional electrode materials, including platinum foil and graphite sheets. The
maximum output power of the stagnant cell was 1.8 W m−2 at a hot-side temperature
of 65 ◦C and a temperature difference of 60 ◦C, with an efficiency of 1.4% relative to the
Carnot cycle efficiency. Experiments have shown that the performance of MWNT-based
thermogalvanics is scalable and that reducing the contact resistance at the MWNT elec-
trode/substrate junction can significantly improve efficiency. This is three times more
efficient than conventional thermogalvanic elements using platinum electrodes. As the
cost of MWNT decreases, MWNT-based thermogalvanics may become a commercially
viable method for obtaining low-level thermal energy. V Shpekina et al. showed that using
MWCNT-based polymer composites with improved thermal and electrical conductivity
can increase the actual temperature difference between electrodes inside the cell and thus
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increase the output open-circuit voltage [99], as shown in Figure 5f–h. Thermoelectrochemi-
cal cells using polymer electrodes coated with oxidized multi-walled carbon nanotubes and
[Fe(CN)6]4−/[Fe(CN)6]3− based electrolytes were developed with current density values
exceeding 13 A m−2 and with a specific power of 140 mW m−2. Calculations based on the
temperature dependence of the open-circuit voltage revealed a Seebeck coefficient equal to
0.7 mV K−1. This study aimed to measure the thermal conductivity of a flexible, thermally
conductive polymer electrode based on an oxidized multi-walled carbon nanotube coating.
This study aimed to measure the performance indicators (open circuit voltage, short circuit
current, and power output) of a thermoelectric chemical cell based on a flexible thermally
conductive polymer electrode coated with oxidized multi-walled carbon nanotubes. Flexi-
ble cell bodies with good performance metrics have potential applications as commercial
batteries based on thermoelectrochemical cells for harvesting waste heat from various
sources such as industrial or geothermal heat, solar heaters or collectors, biomass fermen-
tation, human heat, heating reactors, pipes, or vessels [100–102]. In addition, Zhou et al.
prepared carbon nanotube graphene (CNT-Gr) hybrids on a stainless steel substrate using
the electrophoretic deposition (EPD) technique to prepare thermoelectric chemical cell
electrodes, as shown in Figure 6a–f [103]. The TEC performance of these hybrid electrodes
was significantly improved compared to the pristine CNT electrodes. These hybrid elec-
trodes were optimized by adjusting the graphene content in the hybrid compounds. The
CNT-Gr-0.1 hybrid electrode exhibited the best TEC performance at a current density of
62.8 A m−2 and a power density of 1.15 W m−2, 30.4% higher than the CNT electrode. The
improved TEC performance was attributed to improved electrical and thermal conductivity
and the adhesion between the CNT-Gr hybrid material and the substrate. Meanwhile, the
relative conversion efficiency of TEC can reach 1.35%. It is shown that the growth of CNT-
Gr composite electrodes by the EPD technique may provide a promising method for the
practical application of TEC electrodes based on carbon nanomaterials. Hyeongwook et al.
devised a method using CNT aerogel sheets as electrodes, removing low-activity carbon
impurities that limit electron transfer kinetics, decorating the CNT sheets with catalytic Pt
nanoparticles and mechanically compressing the nanotube sheets to adjust conductivity
and porosity. The thermogalvanics produced an output power density of 6.6 W m−2 at a
temperature difference of 51 K, corresponding to a Carnot relative efficiency of 3.95% [104],
as shown in Figure 6g,h. The importance of electrode purity, engineered porosity, and
catalytic surface in improving thermogalvanic performance is illustrated.

In the electrophoretic deposition (EPD) method, the contact of carbon nanotubes
(CNTs) with the substrate is weak, so commercialization as electrodes for thermoelectric
chemical cells (TECs) remains challenging. Qian et al. successfully prepared Ag-MgO-
CNT nanocomposites on stainless steel (SS) substrates by doping Mg2+ and Ag powders in
carbon nanotube suspensions using the electrophoretic deposition (EPD) method. Ag-MgO-
CNT nanocomposite electrodes showed significantly improved TEC performance due to
their higher electrical conductivity, thermal conductivity, and improved adhesion between
the composite film and the SS substrate [105], as shown in Figure 6i. The results indicate
that the construction of Ag-MgO-CNTs nanocomposite electrodes can effectively enhance
the performance of thermochemical cells based on carbon nanotubes (CNTs), which may
be a promising approach for energy harvesting using CNT-based thermocells prepared by
EPD technology.

However, carbon nanotubes are still limited in industrial production, are extremely
expensive, and require the use of polymer binders to fabricate electrode materials [106–108].
In contrast, carbon fiber (CF) materials offer significant advantages over polymer addi-
tives for carbon nanotubes and carbon black-based electrodes, as they do not require the
addition of binding components during electrode fabrication. CF materials are mainly
prepared from polyacrylonitrile (PAN) asphalt and rayon [109–112]. Isotropic bitumen and
viscose-based carbon fibers are excellent materials for producing activated carbon fibers
with a high specific surface area (>1500 m2 g−1). They may become the primary materials
for liquid and gas adsorption and environmental protection. Therefore, Denis et al. in-
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vestigated the modification of carbon fiber electrode surfaces using magnetron sputtering
by depositing silver and titanium or infiltration injection of titanium oxide nanoparticles
to improve the electrodes and its effect on the output power and impedance equivalent
scheme parameters of thermoelectric cells [113], as shown in Figure 7a–f. It was found that
the nature of the electrode surface modification can increase the internal resistance of the
cell by three orders of magnitude. Equivalent scheme parameters and output power den-
sity of thermoelectric cells are given as a function of electrode material type. A maximum
power of 25.2 mW m−2 and an efficiency of 1.37% were observed for titanium and titanium
oxide-modified carbon fibers.
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Figure 5. (a) Schematic of a thermocell with nanostructured electrodes showing concentration
gradients of the ferri-ferrocyanide redox ions during power generation. (b) SEM micrograph of
vertical MWNT forest. The average MWNT diameter is approximately 20 nm. The inset shows
coinlike stainless steel substrates fully coated with vertical MWNTs. Each substrate has a diameter
of 2 cm. (c) SEM micrograph of MWNT buckypaper. The average MWNT diameter is 10 nm. TEC
response in 0.1 M equimolar solution of K3Fe(CN)6/K4Fe(CN)6. (Reproduced with permission
from [98]. Copyright 2010 American Chemical Society). SEM image of components of the cell:
(d) electrode structure; (e) cover oxidized MWCNTs layer; (f) separator; (g) fracture of polymer
nanocomposite. (Reproduced with permission from [99]. Copyright 2019 IOP Conf. Ser.).

Due to the restricted ion migration, gel cells have high intrinsic impedance and low
short-circuit current density, which leads to low output power density. Therefore, the
practical application of thermoelectric chemical cells is greatly limited. H et al. investigated
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a new method to increase the selenium content of ferrous cyanide electrolytes by shortening
the diffusion length and accelerating the electron transfer, which was achieved by adding
micro Bi0.4Sb1.6Te3 powder to [Fe(CN)6

3−\Fe(CN)6
4−] redox couple solution to form a

semi-solid gel electrolyte [114], as shown in Figure 7g–i. The BST in the electrolyte acts
as a microelectrode and accelerates the electrolyte circulation between the electrodes,
leading to a Seebeck coefficient of −4.11 mV K−1 and a maximum output power density of
0.99 W m−2 when the temperature difference is 30 K. This work provides a novel approach
to increase the thermoelectric power and output power density of thermoelectric chemical
cells, allowing them to be better used for low-grade thermal energy recovery.
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Figure 6. SEM images of the pristine CNTs and CNT–Graphene hybrids. (a) The pristine CNTs.
(b–e) The hybrids obtained by adding 0.04, 0.1, 0.2, and 0.4 g·L−1 graphenes in the suspension,
respectively. (f) Cross-section of the CNT–Graphene hybrid. Note: The concentrations of CNTs
and Mg2+ were kept certain values of 0.1 and 0.03 g·L−1, respectively. Carbon nanotube aerogel
sheets as high-performance electrodes. (Reproduced with permission from [103]. Copyright 2019
MDPI). (g,h) Illustrations and SEM micrographs (insets) comparing CNT buckypaper and CNT
aerogel electrodes and the relationship of these morphologies to ion transport (scale bars in the insets,
1 mm). MWNT bundling is not shown and only MWNT outer walls are pictured (Reproduced with
permission from [104]. Copyright 2016 Springer Nature.). (i) SEM images of pristine CNTs and the
Ag–MgO–CNTs formed with different concentrations of Ag powder. Pristine CNTs, samples obtained
by doping 0.002, 0.005, 0.01, 0.02, and 0.04 g L−1 of Ag in the suspension, respectively. Note: the
concentration of CNTs and Mg2+ were kept constant at 0.1 and 0.03 g L−1, respectively (Reproduced
with permission from [105]. Copyright 2011 Royal Society of Chemistry).
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Figure 7. SEM images of the Busofit materials: (a) basic; (b) with Ag spraying; (c) with Ti spraying;
(d) with infiltrated dispersion of TiO2 nanoparticles. Plots of maximum power density versus
temperature difference between the hot and cold sides of the cell (e) for cells with a salt bridge and
(f) for cells in the coin cell CR2025. (Reproduced with permission from [113]. Copyright 2021 MDPI).
Prototype for BST/FeCN3-/4- thermo–electrochemical cells; (g) The prototype consists of 16 cells in
series, (h) the test system for prototype, and (i) thermo–electrochemical performance of the prototype.
(Reproduced with permission from [114]. Copyright 2022 Elsevier Ltd.).

2.5. Thermal Transport in Hydrogels

Besides electrical properties, heat transfer in hydrogel thermoelectric devices largely
remains to be explored because the hydrogels used in the above fields usually achieve
simple action based on ambient temperature sensitivity without the significant involve-
ment of electronic components. Tang et al. reported an experimental study on the thermal
conductivity of hydrogels. Polyacrylamide (PAAm) hydrogels were selected as model
hydrogels because PAAm is widely used in wearable electronic and thermogalvanic cells.
Both experimental and simulation results showed that the cross-linker concentration was
a key factor affecting the mechanical properties of the hydrogels, and their thermal con-
ductivity was significantly related to the cross-linker concentration [115]. The 3ω method
was used in the study to measure the thermal conductivity of the gels [116], as shown in
Figure 8a,b. When an AC with an angular frequency of 1ω is applied to the two input
electrodes, a small voltage signal can be detected across the heater to the other two output
electrodes. The voltage with a frequency of 3ω is selected and extracted as the signal
carrying the thermal effect. Combining the relationship between frequency, voltage, and
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temperature enhancement, the thermal properties of the hydrogel can be extracted. The
thermal conductivity calculated from the 3Ω voltage and frequency is as follows:

k =
αV3

1ω

8πlR
1

dV3ω/d ln ω
(5)

where k is the thermal conductivity of the sample and α is the temperature coefficient of
the heater. V3ω is the 3ω voltage of the heater, l is the length of the heater, and R is the
resistance of the gel before heating by the heater. The feasibility of the measurement device
was also verified by testing deionized water at room temperature. The measured thermal
conductivity of deionized water was 0.60 Wm−1K−1, which was in good agreement with
the data in the NIST database REFPROP.
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Figure 8. PAAm hydrogel and its experimental setup for thermal conductivity measurement.
(a) Schematic of 3ω method setup for thermal conductivity measurement of hydrogels. A plat-
inum wire is deeply immersed in hydrogels and wired out with four copper probes for applied
current and voltage measurements. The four brown rods are copper probes and the white line
in hydrogel is the Pt wire. (b) Schematic of 3ω method for thermal conductivity measurement of
hydrogels at different water contents and temperatures. The four Au squares (2 mm in length) on a
1 mm thick glass substrate serve as both the heater and thermometer. (Reproduced with permission
from [116]. Copyright 2017 MDPI). (c) Thermal conductivities of the thermogalvanic gels at room
temperature. (Reproduced with permission from [56]. Copyright 2016 WILEY-VCH Verlag GmbH &
Co., KGaA, Weinheim). (d) Variation of the thermal conductivity of the gel with temperature by
changing different media. (Reproduced with permission from [117]. Copyright 2022 Elsevier Ltd.).

There is more than one way to measure thermal conductivity. Yang et al. measured the
thermal conductivity of PVA-based gels using the transient hot-wire method [56], as shown
in Figure 8c. In our previous study, the thermal conductivity of the gel was determined
by the steady-state method [117], as shown in Figure 8d. The equation for calculating the
thermal conductivity used in the experiment is as follows:

k =
c×m× Ttop

∆t
× l

A× ∆T
(6)
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where c is the specific heat (J g−1 K−1), m is the mass of the gel (g), Ttop is the initial
temperature of the upper surface (K), ∆t is the heat transfer time to reach the steady state
(s), A is the surface area of the heat sink end of the gel, and ∆T is the temperature change of
the upper surface area (Tend-Ttop, K).

3. Selection of Polymer Networks and Encapsulation Methods

From the previous research, existing thermoelectric materials encounter limited me-
chanical adaptability, unsustainable operation, and concerns about environmental safety.
To this end, the researchers propose a gel device for low-grade heat harvesting that achieves
excellent quasi-solid-state properties through the cooperation of polymer networks. With
the research on gels, the attention on hydrogels has gradually shifted from basic research
to rich functionalization. The current hydrogels still have relatively simple structures and
poor environmental adaptability, which greatly limit their practical applications in complex
environments. Using the complementary organic solvents, thermoelectric gels have gained
more excellent environmental adaptability. Furthermore, the heat resistance, switchable
mechanics, adaptive wettability, and compatibility of opposite components of the organohy-
drogel clearly emphasize its promising applications. For example, Gao et al. chose the
commonly used acrylamide (AM) as the primary polymer monomer by introducing an
azeotropic effect in aqueous thermogalvanics to interfere with the strong hydrogen bonding
that the polymer chains remain entropically elastic below zero degrees [82], as shown in
Figure 9a–c. It remains more than 110% when the temperature decreases to −30 °C. This
is the first generation of soft-stretch thermogalvanics that can operate in extremely cold
environments. The operating mechanisms and chaotic effects studied in this research will
also inspire solving the challenges faced by stretchable, wearable, and portable devices that
require continuous power at high altitudes, at the North and South Poles, and even in outer
space. In addition, Han et al. demonstrated a huge thermoelectric effect in gelatin-based
thermogalvanic materials, thoroughly combining the thermogalvanic effect of redox ion
pairs (FeCN4–/3–) and the thermodiffusion effect of ion providers (KCl) to obtain thermal
powers up to 12.7~17.0 mV K−1 [85], as shown in Figure 9d–f. Due to the excellent quasi-
solid state nature of gelatin, the concept of scaled integration of 25 P-type components was
quickly implemented, validating a flexible thermoelectric wearable, integratable device,
resulting in an output of high voltage up to 2.2 V. This thermoelectric cell can work for
long periods of time in a quasi-continuous thermal charge/discharge mode and also in a
continuous mode, providing a maximum energy density of 12.8 J m−2. This work provides
an extremely promising approach to achieve a wireless and passive supply of flexible
sensors for the Internet of Things, demonstrating the promise of using ions with synergistic
effects as energy carriers in gelatinized thermoelectric energy conversion.

Unfortunately, while the polymer network fit effectively binds the electrolyte, water
dissipation from the aqueous hydrogel is still an unavoidable problem. Therefore, further
encapsulation of the thermogalvanic cell plays a key role. Our previous work described
a wear-resistant thermogalvanic hydrogel with a polyvinyl alcohol hydrogel electrolyte
encapsulated in a Polyurethane (PU) film [118], as shown in Figure 9g–i. PU is a non-toxic
and harmless environmental protection material because it is harmless to human skin and is
widely used in clothing fabrics, medical and health practices, leather, etc. In addition, while
effectively transferring heat from human skin, it has the advantages of good elasticity, high
lightness, and free penetration of human sweat through the film. Although the thickness of
the film is extremely thin (0.012–0.035 mm), it has physical properties unmatched by other
materials. The use of PU film effectively prevents water loss from PVA hydrogel, which is
conducive to the long-term work of thermogalvanic devices. Xu et al. used commercial
VHB tape from the 3M Company for encapsulating Π-type thermogalvanic machines to
prevent performance degradation due to dehydration [55], as shown in Figure 9j–l. VHB
tape is composed entirely of polyacrylate, which is highly resistant to heat, UV light, and
chemical reagent damage due to the C-C bonding of the polyacrylate backbone, a carbon–
carbon single-bonded backbone. The researchers found that potassium hexacyanoferrate in
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P-type hydrogels will generate Prussian blue precipitation after it encounters ferrous ions in
N-type hydrogels. The VHB tape also acts as a spacer to prevent mixing the two electrolytes.
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Figure 9. (a) Schematic illustration of the organohydrogel thermocell containing crosslinked networks,
EG, and water upon a temperature gradient. The additional EG can disrupt the ice crystal lattice to
expand the working temperature at subzero temperatures. (b) A photograph of the organohydrogel
thermocell being stretched on an ice surface of 20 ◦C). (c) The tensile curves of the organohydrogel
thermocell in ambient (25 ◦C) and cold (−30 ◦C) environments. Giant thermopower of i-TE materials
(Reproduced with permission from [82]. Copyright 2021 Wiley-VCH GmbH). (d) Schematic figure of
the diffusion, redox reaction, and interaction of the ions in the as-fabricated i-TE materials of Gelatin-x
KCl−m/n FeCN4–/3– under the temperature gradient. (e) The voltage generated from a proof-of-
concept flexible i-TE wearable device with 25 unipolar elements (Cu | i-TE | Cu, 5 × 5 × 1.8 mm,
smooth Cu foil) in series worn on the back of the human hand. (f) Tensile test of the i-TE material
of Gelatin-0.8 M KCl-0.42/0.25 M FeCN4–/3– (rv = 2.0) compared with pure gelatin. (Reproduced
with permission from [85]. Copyright 2020, AAAS.). (g,h) Photographs of the gel patch that was
twisted and bent. (i) Dehydration of the gel thermoelectric patch (Black)and commercial fever-
reducing patch (Red). (Reproduced with permission from [118]. Copyright 2021 American Chemical
Society). (j,k) Photos of graphite electrode connected p-n cell in original (left) and stretchable
(right) state. (l) The water retention rate and Seebeck coefficient retention rate of p- and n-type
hydrogel encapsulated by VHB tape. (Reproduced with permission from [55]. Copyright 2022
Wiley-VCH GmbH).
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Furthermore, the matched stretchability of the VHB tape and hydrogel ensures de-
formability and prevents the possibility of delamination during deformation. The com-
bination of the hydrogel, electrode, and spacer bar did not slide relative to each other in
the horizontal stretching test, thus proving the deformation resistance of the device. This
work demonstrates the potential of hydrogel-based thermogenic cells in everyday wearable
power systems.

4. Integration of Thermoelectric Hydrogels

As aforementioned, theoretically, quasi-solid thermogalvanic hydrogels have infinite
possibilities by combining different polymer networks and redox species. Polymer net-
works assist in the formation of hydrogels in several ways and modulate their structure
and properties, such as hydrogen bonding interactions, micro crystallization, and the cross-
linking method. In this section, we provide a comprehensive introduction to the integration
of thermogalvanic hydrogels and application scenarios.

Cell Connection Methods

In practical applications, the voltage output of a single cell is limited by the thermo-
electric power and temperature difference; therefore, integrating multiple thermogalvanics
in a single device by connecting them in series to produce a real voltage (>1 v) is the most
common method. There are two kinds of integration methods: one is the Z-shaped connec-
tion for a cell containing only one type of thermogalvanic (n-type or p-type) (Figure 10a),
and the other is the Π-shaped connection for a cell containing two types of thermogalvanic
(n-type and p-type) (Figure 10b). For the thermogalvanic, one which loses electrons at the
hot electrode is usually defined as p-type. Otherwise, a thermogalvanic that gains electrons
at the hot electrode is defined as n-type. In simple terms, the hot electrode is higher than
the cold electrode for a p-type thermogalvanic and vice versa for an n-type thermogalvanic.

Micromachines 2023, 14, 155 15 of 32 
 

 

cross-linking method. In this section, we provide a comprehensive introduction to the in-

tegration of thermogalvanic hydrogels and application scenarios. 

Cell Connection Methods 

In practical applications, the voltage output of a single cell is limited by the thermo-

electric power and temperature difference; therefore, integrating multiple thermogalvan-

ics in a single device by connecting them in series to produce a real voltage (>1v) is the 

most common method. There are two kinds of integration methods: one is the Z-shaped 

connection for a cell containing only one type of thermogalvanic (n-type or p-type) (Figure 

10a), and the other is the Π-shaped connection for a cell containing two types of ther-

mogalvanic (n-type and p-type) (Figure 10b). For the thermogalvanic, one which loses 

electrons at the hot electrode is usually defined as p-type. Otherwise, a thermogalvanic 

that gains electrons at the hot electrode is defined as n-type. In simple terms, the hot elec-

trode is higher than the cold electrode for a p-type thermogalvanic and vice versa for an 

n-type thermogalvanic.  

 

Figure 10. (a) Z-shaped connection for a cell. (b) Π-shaped connection for a cell. 

One of the benefits of the Z-shaped connection is that by using the highest conversion 

efficiency thermoelectric cells, the integrated device can achieve maximum power output. 

Our current research demonstrated a module based on a Z-shaped connection of 25 units 

(PVDF thermal barrier enhanced thermogalvanic, boosted Se from 0.58 to 0.79 mV K−1) 

[118], as shown in Figure 11. This PVA-based hydrogel thermoelectric part has excellent 

flexibility, which can be readily pasted on the body to obtain low-grade body heat. Due 

to the good biocompatibility and mechanical strength of the PVA gel, the gel thermoelec-

tric cell is non-toxic and has excellent flexibility; due to this excellent performance, the 

device can be easily attached to the human body for obtaining low-grade body heat. How-

ever, Z-shaped connections complicate the device integration process, leading to unstable 

contacts that can introduce considerable contact resistance between the electrodes and the 

Z-conductor.  

Figure 10. (a) Z-shaped connection for a cell. (b) Π-shaped connection for a cell.

One of the benefits of the Z-shaped connection is that by using the highest conver-
sion efficiency thermoelectric cells, the integrated device can achieve maximum power
output. Our current research demonstrated a module based on a Z-shaped connection
of 25 units (PVDF thermal barrier enhanced thermogalvanic, boosted Se from 0.58 to
0.79 mV K−1) [118], as shown in Figure 11. This PVA-based hydrogel thermoelectric part
has excellent flexibility, which can be readily pasted on the body to obtain low-grade body
heat. Due to the good biocompatibility and mechanical strength of the PVA gel, the gel
thermoelectric cell is non-toxic and has excellent flexibility; due to this excellent perfor-
mance, the device can be easily attached to the human body for obtaining low-grade body



Micromachines 2023, 14, 155 15 of 31

heat. However, Z-shaped connections complicate the device integration process, leading to
unstable contacts that can introduce considerable contact resistance between the electrodes
and the Z-conductor.
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Figure 11. Thermocell working principle. (a) Integrated gel-based thermocell. The PVA gel was
sandwiched between two flexible substrates (polyimide, PI), the porous PVDF diaphragm is inserted
into the two gels, and the device is bridged by a tandem structure. The top right inset is a photograph
of the integrated device (scale bar: 10 mm). (b) SEM photograph of the porous PVDF diaphragm.
(c) Schematic representation of the partial contribution of the thermal potential in a complex system
containing the structures of iron ions, ferrous ions, chloride ions, hydrogen ions, water molecules,
and polyvinyl alcohol molecules. (d) Schematic diagram of the operating mechanism of a single
thermoelectric gel and a physical photograph of the individual gel (scale bar: 10 mm). (Reproduced
with permission from [118]. Copyright 2021 American Chemical Society).

In contrast, Π-shaped connections simplify manufacturing and make wire connections
between multiple cells simpler and more reliable in favor of large-scale integration. Zhou
et al. demonstrated a PVA-based thermoelectric module integrating 59 p-type cells and
59 n-type cells connected by Π-shaped [56], as shown in Figure 12. The integrated wearable
device produces an open-circuit voltage of about 0.7 V and a short-circuit current of about
2 µA using body heat, reaching a maximum output power of about 0.3 µW. Recently, Xu et al.
have established a flexible, stretchable wear-resistant thermogalvanic of AAM hydrogel. It
can be used for heat harvesting at joints during human movement and is capable of charging
a 330 µF commercial capacitor, as shown in Figure 13 [55]. In this work, PAAm hydrogels
were selected as the intrinsic hydrogel matrix for thermogalvanics because of their excellent
mechanical properties. In contrast, classical redox pairs K4[Fe(CN)6]/K3[Fe(CN)6] and
Fe(ClO4)3/Fe(ClO4)2) with similar thermoelectric properties were selected as n/p-type ion
pairs, respectively. The authors captured a temperature difference of 4.1 K by attaching
a device with 14 pairs of p-n thermogalvanics to a human joint; this minor temperature
difference allows the device to have a voltage output of 0.16 V. This work demonstrates
the potential of hydrogel-based thermogenic cells in everyday wearable power systems, in
which low cost, good output performance, structural simplicity, stretchability, and skin-like
appearance are advantages. Note that due to the lack of high thermal efficiency n-type
cells, devices integrated by Π-shaped connection remain low performance.
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Figure 13. Wearable hydrogel thermocell for energy harvest. (a) Illustration of the integration of 

stretchable thermocell device. (b–d) Photos of the thermocell device attached to the human body 

undergoing different deformation states: (b) original state, (c) stretch-and-bend deformation, (d) fit 

to the curved surface. (e) The thermoelectric performances of a device integrating 14 pairs of p-n 

Figure 12. The integrated gel-based thermocell. Both the PFC and PPF gels were sandwiched between
two flexible substrates (polyimide, PI). With alternating top and bottom interconnections, the PFC
and PPF gels are connected sequentially in series. The magnified insets illustrate the operation
mechanism of the gel-based thermocell. At a certain temperature difference, the thermo–voltage
polarity of PFC and PPF is exactly reversed. The top right inset is a photograph of the integrated
device (scale bar: 2 cm). (Reproduced with permission from [56]. Copyright 2016 WILEY-VCH Verlag
GmbH & Co., KGaA, Weinheim).
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Figure 13. Wearable hydrogel thermocell for energy harvest. (a) Illustration of the integration of
stretchable thermocell device. (b–d) Photos of the thermocell device attached to the human body
undergoing different deformation states: (b) original state, (c) stretch-and-bend deformation, (d) fit to
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the curved surface. (e) The thermoelectric performances of a device integrating 14 pairs of p-n cells.
(f) Voltage-time curve of thermocell attached to the wrist during deformation. (g) Voltage-time curve
of a capacitor of 330 µF charged by the thermocell utilizing human body heat while the ambient
temperature is 15.5 ◦C and the hot end temperature is 35.1 ◦C. (Reproduced with permission from [55].
Copyright 2022 Wiley-VCH GmbH).

In addition, the current can be effectively enhanced by connecting the devices in
parallel. In our current study, we have displayed the parallel and series integration of 1,
2, 4, 6, 8, and 10 gel components, which provides a feasible pathway for the large-scale
integration of thermal cells. The output currents and voltages of the integrated devices
composed of different numbers of cells in series are shown in Figure 14a. The voltage
remains relatively stable, while the current shows a linear increase with the increasing cells.
The device can deliver an output current of about 31 µA in parallel when the integration
number of units is 10. To further improve the output performance, 25 gel cells (2 mm
high and 6 mm diameter) were integrated into the parallel, as shown in Figure 14b. At a
temperature difference of 30◦C, the parallel output current is up to 100 µA. As a sensor,
when the gel patch is close to the heat source, the current output reaches 80% of the
maximum value within 2 s and drops to 20% of the maximum value within 20 s after
leaving the heat source. The inset of Figure 14c indicates a temperature detection limit of
0.1 K. As shown in Figure 14d, when the integrated device is affixed to the arm, a short-
circuit current of about 20 µA is generated at an ambient temperature of 25 ◦C. This work
provides a new avenue for body heat harvesting and smart medicine based on wearable or
implantable electronic devices.
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5. Potential Applications for Thermogalvanic Hydrogel Devices 

Figure 14. Thermoelectric performance of the integrated device under certain temperature difference
conditions. (a) Output current and voltage of an integrated device consisting of different numbers
of thermocells connected in parallel. (b) Current and voltage versus temperature difference for
25 parallel units. The illustration is a schematic diagram of 25 batteries in parallel. (c) Magnified
current response curve vs. time. Inset: current−time curve under a temperature difference of 0.1 K.
(d) Current output when the integrated patch device is pasted on the arm. Inset: photograph of the
wearable thermocell on the arm. (Reproduced with permission from [118]. Copyright 2021 American
Chemical Society).
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5. Potential Applications for Thermogalvanic Hydrogel Devices

Hydrogels are known to be a newly emerging soft material, and researchers have been
working to expand the potential applications of polymer network hydrogels in flexible
electronic devices. Hydrogels with excellent mechanical toughness and elasticity have
been developed as a versatile platform for integrating various micro-devices, such as body
temperature sensors, skin pressure sensors, and other biologically relevant aspects, without
additional support substrates [119]. Sensors, in general, are devices that are used to simulate
the detection and response to external stimulus signals, an inherent function contained in
human sensory organs. The critical role of a sensor is to convert a physical or chemical
stimulus into another form of energy. The hydrogels used in traditional sensors are mainly
used to detect signals from the human body. The extremely high water content makes
the physical properties of the thermogalvanic hydrogels similar to those of skin tissue,
offering good biocompatibility and excellent prospects for thermal sensor applications [120].
Wearable electronic devices based on thermogalvanic hydrogels are considered to play an
important role in medical diagnostics, biosignal detection, and other related aspects.

5.1. Body Temperature Sensors

Regarding applications, in order for a thermogalvanic hydrogel to function as a
self-driven sensor, the hydrogel must respond to an external stimulus and generate a
voltage or current signal. Recently, we have developed a gel electrolyte-based thermo-
current generator prepared using Fe3+/Fe2+ as a redox pair, which has not only moderate
thermoelectric properties but also excellent flexibility. Considering that the gel has a
good temperature response, a self-powered body temperature monitoring system was
established by conformally attaching it to the forehead [118], as shown in Figure 15a–c.
Due to its excellent flexibility, our gel patch can withstand bending and twisting. When the
patch is applied to the forehead, the receiving terminal, including the computer and cell
phone, can display the temperature in real-time. We also monitored the current profile and
temperature displayed on the terminal in three body temperature states. In addition, we
made a self-driven body temperature monitoring device with a fast response rate; when the
gel patch is close to the heat source, the current output reaches 80% of the maximum value
within 2 s, and the output drops to 20% of the maximum value within 20 s after leaving
the heat source. Meanwhile, gel patches with high specific heat capacity can effectively
cool fever patients. This work provides a new avenue for body heat harvesting and smart
medicine based on wearable or implantable electronic devices.

Aqueous dispersion media inevitably freeze at sub-zero temperatures due to strong
hydrogen bonding, and conventional gel electrolyte thermal cells are limited in their
applications. The polymer network is limited by the reduced entropic elasticity, which
severely affects the mechanical and thermoelectric properties of the thermal cell. As a result,
there are only very few cases where stretchable power sources can operate in extreme
environments, such as outdoors in extreme weather. Li et al. weakened the hydrogen
bonds in the hydrogels by introducing a chaotropic agent, which not only made the
polymer chains entropically elastic at temperatures below zero degrees but also increased
the solubility of the electrolyte by using H2O/GL (glycerol) as a binary solvent, thereby
increasing the thermal potential [121], as shown in Figure 15d–f. As a result, the prepared
thermogalvanic hydrogel can exhibit a wide operating temperature range (−20 to 80 ◦C) as
well as excellent resistance to desiccation, which can potentially adapt to harsh temperature
environments. Based on its sensitive response to temperature changes, this self-powered
temperature monitoring system has been shown to be able to actively monitor abnormal
temperatures in the human body.
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Figure 15. Application demonstration of wearable medical electronics. (a) Panoramic view of
the gel-based thermoelectric patch for body temperature monitoring. (b) Relationship between
current and body temperature in the three typical regions. (c) Body temperature monitoring and the
corresponding temperature signal displayed on terminals. Inset: photographs of the gel patch that
was twisted and bent (scale bar: 1 cm). (Reproduced with permission from [118]. Copyright 2021
American Chemical Society). Application demonstration of self-powered temperature monitoring
using the PVA/GL thermogalvanic hydrogel. Application demonstration of self-powered temperature
monitoring using the PVA/GL thermogalvanic hydrogel. (d) Panoramic view of the gel-based patch
for ambient temperature monitoring. (e) Photograph of a gel patch worn on the back of the hand. Scale
bar (5 cm). (f) Schematic diagram of PVA/GL gel patch. (Reproduced with permission from [121].
Copyright 2022 Royal Society of Chemistry).

5.2. Environmental Temperature Monitoring

In addition, ambient temperature monitoring is also a suitable application [121].
LI et al. also constructed a smart window by embedding a micro PVA/GL hydrogel and
placing it at −20 ◦C, as shown in Figure 16a. Since the size of the implanted hydrogel
is negligible, the window still works properly. Assuming a relatively constant room
temperature, the hydrogel can generate a voltage signal corresponding to the outdoor
temperature. In this practical application, the output voltage signal of the window is plotted
over 24 h. The voltage profile shows an almost identical waveform to the temperature
difference, indicating that the output voltage can accurately track the outdoor temperature.

Based on this, the authors also demonstrate two additional simulation scenarios. The
temperature inside a conventional refrigerated warehouse is typically maintained in the
−18 ◦C range. Using this smart window to track the temperature difference between
the internal and external temperatures, it is determined whether the freezer is operating
properly based on the voltage signal generated. If the voltage exceeds 8 mV, it indicates
that the internal temperature of the reefer has risen above 0 ◦C (assuming the outdoor
temperature remains around 20 ◦C), resulting in a warning, as shown in Figure 16b. In
addition, the smart window can track the room temperature in daily life. If the sensed
voltage exceeds 8 mV, it indicates an abnormally high indoor temperature and can activate
a fire alarm, as shown in Figure 16c. Overall, the smart window can be widely used
for self-powered temperature monitoring in various scenarios. With a wide operating
temperature range, thermogalvanic hydrogel is a solid step toward practical self-powered
temperature monitoring.
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Figure 16. Application demonstration of self-powered temperature monitoring using the PVA/GL
thermogalvanic hydrogel. (a) The response time of the H-window. Voltage response and DT (Tin–
Tout) of a refrigeration storage unit (b) and house (c). (Reproduced with permission from [121].
Copyright 2022 Royal Society of Chemistry).

5.3. Solar Energy Collection

Solar energy is an inexhaustible energy source for developing environmentally friendly
energy technologies. Solar thermal technology is a direct solar energy acquisition strategy
that allows for the highest conversion efficiency and a wide range of applications. In
our previous work, strong hydrogen bonding was inhibited by inducing DMSO solvent,
which not only makes the polymer chains tropically elastic at temperatures below zero
degrees, effectively improving the conductivity in the low-temperature state, but also forms
microcrystalline regions in the cross-linked structure, which facilitates the transparency
of the thermal cell. To demonstrate the potential application of low-level harvesting heat
induced by solar radiation, we established a PG gel-based thermal energy harvesting
window [117], as shown in Figure 17a–f. The temperature difference between the two ends
of the gel is generated by an implanted light-absorbing sponge. A PG gel electrolyte with
a porous structure and a solar absorber sponge are assembled into a cell called PGP. The
prepared PDMS sponge with an interconnected network structure, and a built-in rough
surface provides an ideal framework for immobilizing photothermal nanomaterials and
light scattering. Thanks to the carbon black, the PDMS sponge (thickness of 3 mm) exhibits
very small optical transmittance and reflectance (<0.1%) in the visible and near-infrared
spectra, indicating that the PDMS sponge has significant light absorption. The temperature
difference at the PG thermogalvanic interface with and without the light-absorbing sponge
confirms a significant solar thermal conversion (Figure 17d). The PDMS sponge is heated to
340 K for ≈ 60 s. With exposure to sunlight for more than 12 h, the maximum temperature
difference was about 11.2 K, the open-circuit voltage was up to 16.6 mV, and the short-circuit
current exceeded 100 µA. With the outstanding features of easy mass preparation, excellent
flexibility/modularity, and high transparency, we constructed a true thermoelectric window
with outdoor solar radiation of about 600 W m−2 (∆T ≈ 10 k). The solar absorber and heat
sink are mounted on both sides of the window frame so that the whole thermoelectric
device does not interfere with the light-harvesting. Due to its good photovoltaic conversion
capability, the PGP can be used for self-powered solar intensity monitoring. The output
voltage of the device is converted to real-time solar intensity and fed back to the simulation
platform. Overall, this PGP device offers the possibility to power the sensor with the
required voltage in a sunny environment, thus improving the overall combined utilization
of solar energy. This integrated recyclable thermogenic cell and a deformable component
may open new avenues for the joint production of low-level thermal energy harvesting
and power, readily utilizing widely available waste heat and green energy sources. In the
work of Liu et al., wearable photothermal electrochemical (PTEC) cells were investigated,
in which p- and n-type single PTEC devices were optimized and successively realized the
effective series connection of p-n device arrays for solar energy collection applications [122],
as shown in Figure 17g–k. First, the flexible PT material PEDOT: PSS was selected as
the solar absorber and thermal electrode for PTEC. Second, the PEDOT: PSS/PET fPT
electrode/SubFT combination was assembled into a PTEC device, and the performance
was tested in p-type and n-type gel electrolytes, which provided the best performance
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among devices with other fPT electrode/SubFT combinations. Meanwhile, a pair of p-type
and n-type PTECs with comparable output currents (p-n cells) was coupled to achieve
a power density equal to the sum of the p-type and n-type half-cells, indicating the low
internal resistance of the electrode materials and the effective matching of the p-n cells.
Subsequently, an array of 18 pairs of p-n cells was fabricated that could achieve high
voltages under solar simulator illumination and charge the supercapacitor to more than
250 mV. To enable wearable applications, flexible PTEC devices are preferred. Although the
electrodes and electrolytes are highly bendable, the large deformation (mainly stretching) of
the top electrode compared to the bottom electrode makes it difficult to conform to the bent
surface. For this reason, PTECs have a strap shape that conforms to previously developed
designs. Meanwhile, the flexible PTEC array device is affixed to a 3D-printed thermally
conductive aluminum bracelet to maintain relatively the same temperature of all bottom
electrodes. We demonstrate that the flexible strap-shaped PTEC array device can be easily
worn on the human arm and that the device can be charged up to approximately 160 mV
(eight pairs in series) once exposed to light. The demonstration shows the promise of flexible
PTEC arrays for wearable applications. The recorded solar-driven voltage output suggests
that the device may be suitable for practical applications. Furthermore, it is noteworthy
that the materials used in this work (including fPT electrodes, cold electrodes, and gel
electrolytes) are readily available and the fabrication process can be easily implemented,
which makes it promising for large-scale commercialization. Thus, the wearable PTECs
developed in this work will provide new insights into the future use of solar energy to
power next-generation wearable electronics at the commercial level.

5.4. Body Heat Harvesting

Zhou et al. described the fabrication process of K3/4[Fe(CN)6] porous gel electrolytes
combined with Pt electrodes as p-type thermogalvanic (PAM-K3/4Fe(CN)6), as shown
in Figure 18a–c [123]. The optimized lyophilized porous gel electrolyte was selected for
further study. The researchers also introduced GdmCl into the K3/4[Fe(CN)6] thermocell
and measured the thermoelectrochemical performance at different GdmCl concentrations,
temperature differences, and electrode temperatures. Finally, the lyophilized porous ther-
mogalvanic hydrogel was also combined in series with a PAM-Fe2+/Fe3+ thermogalvanic,
which was integrated with a Pt electrode to form an n-type cell (PAM-FeCl2/3-HCl). To
achieve higher voltage output, paired p-type and n-type TECs (p-n cells) were fabricated
as a demonstration device. To collect body heat through wearable thermogalvanic, a
flexible band design conforming to the skin surface is ideal and was therefore designed
and prepared. The ambient air electrodes were slightly separated from the body heat-
ing electrodes to achieve the required curvature for fabricating the device. To demon-
strate the fabricated device, one researcher wore a single-band thermogalvanic array
(9 pairs of p-n thermogalvanic) on his wrist, which can charge a 100 µF supercapaci-
tor during long-term wear and power a LED when combined with a voltage intensifier.
This demonstration illustrates the potential effectiveness of body heat to power certain
self-powered epidermal electronics. Zhang et al. designed a polyacrylamide/(sodium
alginate) (PAAm SA) dual network stretchable thermoelectric flowing gel thermal cell
(STHTC) for a ferrous/ferricyanide [Fe(CN)6]4−/[Fe(CN)6]3−ion redox couple based on
ferrous/ferricyanide [Fe(CN)6]4−/[Fe(CN)6]3− ions [123], as shown in Figure 18. With
guanidinium that was ion-induced [Fe(CN)6]4− in order to enhance the thermo-current
effect, STHTC exhibited an average thermal power, conductivity, and stretching of about
4.4 mV K−1, 10.5 S m−1, and 540%, respectively. A record 1780 µW m−2 K−2 of Pmax ∆T−2.
This is approximately three times the highest reported value based on individual thermo–
current effects. As a stable heat source, the human body can continuously output low-level
thermal energy, and it is expected to develop self-powered wearable devices by harvesting
human thermal energy. To illustrate the practical value of STHTC, the researchers designed
a 5×5 STHTC array device based on 25 STHTC cubic blocks. The STHTC blocks are con-
nected in series and integrated into a silicone mold, which demonstrates the good flexibility



Micromachines 2023, 14, 155 22 of 31

and bendability of the STHTC array device. The output voltage of the array device fixed
on the arm for collecting human thermal energy can be stabilized at 0.42 V. For practical
applications, the STHTC array device is placed on the surface of a refrigerator (~0 ◦C) for
simulating a winter environment, and a square heating plate with a stable temperature of
~36.5 ◦C is placed on top of the device for simulating human body temperature. At a steady
state, the device can provide a high voltage of ~2.3 V. Five green LEDs can be lit when
the voltage exceeds 2.1 V, which shows the potential application of STHTC in daily life
by harvesting low-level heat energy. In addition, the heat generated by the rapid increase
in the total power consumption of electronic devices significantly reduces operational
performance and exacerbates electronic device failures.
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Figure 17. Demonstration of harnessing solar energy. (a) Panoramic view of a PG gel-based window
for thermal energy harvesting. (b) Schematic diagram of light absorption by the porous PDMS
sponge. The inset shows the temperature distribution under the simulated sunlight illumination
(scale bar: 1 cm). (c) Output current (red), output voltage (blue), and temperature difference (black)
between the two ends of the gel. Inset: the PG gel with the surface covered by a light-absorbing
sponge, front view (left), top view (right) (scale bar: 10 mm). (d) The temperature distribution of a
PG gel device with an optical density of 1 kW m-2 under 1 min and 10 min of light. (e) The operating
open circuit voltage for a real window model. Inset: a photo of a thermoelectric window placed
in outdoor sunshine (left) and the corresponding infrared image at a light intensity of 600 W m2

(right) (scale bar: 20 mm). (f) Output voltage and light intensity change throughout a day. Inset:
light intensity detection system and physical photos of the device (scale bar: 1 cm). (Reproduced
with permission from [117]. Copyright 2022 Elsevier Ltd.). (g) Structural illustration of the integrated
wearable PTEC device, where p-type and n-type devices are connected in series to form a pair of p–n
cells and then multiple repeat p–n unit cells were connected in series. Flexible and wearable p–n cells.
(h) Schematic illustration; (i,j) photos and (k) open circuit voltage of the flexible watch-strap shaped
PTEC array harvesting solar energy [122]. (Reproduced with permission from [120]. Copyright 2022
Wiley-VCH Gmbh).
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Figure 18. Practical applications of the STHTC. (a,b) The optical image of the 5 × 5 STHTC array
device being fixed on an arm for harvesting human thermal energy (a) and corresponding voltage
output (b). (c) The output voltage of the array device with the ice-box surface as the cold source
and a square heating plate with a stable temperature of ~36.5 ◦C as the hot source for simulating
human temperature, and the inset indicates that the produced electricity can directly light up five
green LEDs. (d) The optical image of a normal working CPU (I) and corresponding infrared image
with the maximum temperature of 76.2 °C (II), a STHTC placed on the surface of the CPU for device
cooling and power generation (III). (e) The temperature curves of the CPU and corresponding output
voltage, indicate the obvious temperature reduction of ~15.1 K when the CPU was covered with the
STHTC. (Reproduced with permission from [123]. Copyright 2011 Royal Society of Chemistry).

5.5. Heat Generation Device Heat Harvesting

The central processing unit (CPU) generates a lot of heat during normal operation,
which severely reduces the stability and operating speed of the computer. When the
operating temperature is above 70 degrees Celsius, CPU performance decreases by 10%
for every increase of 2 degrees Celsius. The temperature of a normal operating CPU can
be as high as 76.2 ◦C. Achieving effective device cooling to improve device performance
is critical. STHTC contains a large amount of water, which can carry away heat through
evaporation. Therefore, it is feasible to use STHTC to cool electronic devices and even
generate electricity. To demonstrate the practicality of cooling CPUs, researchers placed
STHTCs with dimensions of 30 mm × 30 mm × 2 mm on the CPU surface, resulting in a
reduction in CPU temperature from 76.2 ◦C to 61.1 ◦C (Figure 18d,e), a reduction of 15.1 K.
At the same time, stretchable thermoelectric flowing gel thermal cells can output voltages
up to ~43.5mV, which confirms the potential of cooling devices and power generation
applications, providing the opportunity to conduct thermal management simultaneously.

5.6. Integration with Other Systems

Current research shows that thermogalvanic hydrogel can not only collect heat inde-
pendently but can also be integrated with other systems to achieve synergistic enhance-
ments. Fu et al. proposed a scalable self-powered temperature–pressure dual sensing skin
based on thermogalvanic hydrogel (TGHs) [124], as shown in Figure 19. TGHs are obtained
by introducing the redox coupling agent K4[Fe(CN)6]/[K3Fe(CN)6] into polyacrylamide
hydrogels and, by combining the thermo–current and piezoresistive effects of TGHs, tem-
perature, and pressure stimuli, can be converted into voltage and current signals, thus
enabling the simultaneous monitoring of these two indicators.
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Figure 19. Design and performance of the TGH sensor array. (a) Schematic of a 3 × 3 pixel TGH
sensor array. (b) Tensile properties of the TGH sensor array. (c) Response of output thermal voltage
and relative current change of adjacent pixels on a TGH sensor array when one of them is pressed
by a finger. (d) Photographs of the TGH sensor array as a secondary i-skin on the human wrist
with relaxed and bending (strain: ∼25%) states. Output voltage (e) and relative current change
(f) response curves generated by objects with different temperature and pressure. (g) Schematic
of simultaneous measurement of temperature and pressure stimuli when a weight is placed in the
center of a TGH sensor array. Output voltage (h) and relative current change (i) of the TGH sensor
array in (g). All scale bars represent 1 cm. (Reproduced with permission from [124]. Copyright 2022
American Chemical Society).

6. Opportunities, Challenges, and Future Directions

In the past hundred years, human society has been plagued by the energy crisis and
environmental problems. However, the energy shortage will become even more severe,
and the environment will become worse in the future [125–128]. Due to the limitation
of technology, a large amount of energy is wasted in the form of waste heat [129,130].
Thermogalvanic hydrogels, due to their thermal–electrical conversion capability, have been
widely studied in recent years [131–136]. In a thermogalvanic hydrogel, the temperature
dependence of the redox pair results in a massive amount of thermal energy capable of pro-
viding the conditions for continuous energy conversion. Moreover, optimizing the coupling
of enhanced entropy values with electrodes can greatly improve their performance [137].
Additionally, it is possible to increase the thermoelectric energy by optimizing the way
they contact with the environment. The functional design of thermogalvanic hydrogels
makes them more suitable for future heat harvesting and wearable self-powered electronic
devices. Combining the advantages, disadvantages, and current situation, some ideas are
presented below for the further development of thermogalvanic hydrogels.

6.1. Opportunities

In the past few years, thermogalvanic hydrogels have made significant advances in
both thermoelectric conversion and thermoelectric sensing [138–141]. Compared with
other energy devices, such as chemical batteries, supercapacitors, and solar cells, first of all,
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thermogalvanic hydrogels can directly convert heat into electricity, enabling the recovery
and utilization of applied waste heat, thus contributing to the development of green energy.
In addition, many forms of heat energy sources are abundant and inexhaustible, such
as solar energy, geothermal heat, industrial waste heat, and human body heat. There is
no need to worry about the consumption of fossil fuels and the emission of toxic gases.
Secondly, the utilization of water in thermogalvanic hydrogels provides the advantage of
low cost and mass production, providing a convenient way for commercialization. More
importantly, by using different gel electrolytes, transparent, flexible, stretchable, recyclable,
and tough thermogalvanic hydrogels can be fabricated, which shows excellent potential
in wearable and self-powered electronics. Thus, thermogalvanic hydrogels will be one of
the most promising green energy applications, including waste heat harvesting, power
generation, wearable and self-powered electronics, self-powered heat sensing, etc.

6.2. Challenges

Although thermogalvanic hydrogels show great potential for thermoelectric conver-
sion and other applications, various challenges remain. While using water gives thermogal-
vanic hydrogels an advantage, it also has a detrimental effect on their practical application.
One of the biggest challenges is that the water in water-based thermogalvanic hydrogel
freezes at low temperatures or evaporates violently at high temperatures, resulting in a
narrow operating temperature for thermogalvanic hydrogels. Therefore, it is essential
to broaden the operating temperature of the thermoelectric conversion. Although the
addition of antifreeze (e.g., LiCl and propanetriol) can expand the operating temperature,
we especially hope it will expand to high temperatures.

In addition, lower energy conversion efficiency and thermoelectric figures of merit are
among the challenges of thermogalvanic hydrogels. Therefore, great efforts are still needed
to explore promising technologies. In addition to improving the Seebeck coefficient (Se)
by the strategies mentioned above, efforts should be made to improve the conductivity (σ)
because σ, in gel electrolytes, is only at the mS cm−1 level. This seriously hinders the per-
formance of thermogalvanic hydrogels. Researchers should improve σ without sacrificing
Se and k. Therefore, effective strategies can be investigated from electrode optimization
since σ responds to the kinetics of chemical reactions. In terms of k suppression, other
strategies should be proposed not only by creating thermal barriers and using low thermal
conductivity electrolytes but also for promising gel electrolytes. In addition, discovering
new redox pairs with good performance is also a good strategy.

The output thermogalvanic hydrogels have achieved is relatively long and stable
production compared to semiconductor thermocouples, but it is still a challenge to achieve
sound power output for days on end. Therefore, the packaging of the gel device has become
one of the key factors affecting the performance of thermogalvanic hydrogel. It makes
sense to use better packaging materials to broaden their applications beyond just charging
capacitors and sensing heat signals for short periods of time.

6.3. Future Directions

Considering the advantages as well as the disadvantages of thermogalvanic hy-
drogels, the potential applications of thermogalvanics in the field of temperature de-
tection and cooling deserve further investigation. In terms of temperature detection,
hydrogel-based thermogalvanics have broad prospects as flexible temperature passive
sensors in the fields of electronic skin, human body sign monitoring, human motion, and
human-machine interface.
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