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Abstract: Nanofiltration processes for the removal of emerging contaminants such as nitrate are
a focus of attention of research works as an efficient technique for providing drinking water for
people. Polysulfone (PSF) nanofiltration membranes containing graphene oxide (GO)/Pt (0, 0.25, 0.5,
0.75, 1 wt%) nanoparticles were generated with the phase inversion pathway. The as-synthesized
samples were characterized by FTIR, SEM, AFM, and contact angle tests to study the effect of
GO/Pt on hydrophilicity and antibacterial characteristics. The results conveyed that insertion of
GO/Pt dramatically improved the biofouling resistance of the membranes. Permeation experiments
indicated that PSF membrane embracing 0.75 wt% GO/Pt nanoparticles had the highest nitrate flux
and rejection ability. The membrane’s configuration was simulated using OPEN-MX simulating
software indicating membranes maintaining 0.75 wt% of GO/Pt nanoparticles revealed the highest
stability, which is well in accordance with experimental outcomes.

Keywords: nanoparticle; water treatment; ultrafiltration; environmental engineering; nitrate removal;
antibacterial; anti-biofouling

1. Introduction

Groundwater pollution by inorganic salts has been the focus of attention since ground-
water is one of the main resources of drinking water in the world [1,2]. Due to the ongoing
utilization of nitrogenous fertilizers in the agricultural sector and continuing discharge
of effluents which introduce nitrate pollution to groundwater, elimination and control of
nitrate in drinking water has been studied to produce clean water for human usage [3].
Nitrate, as a highly soluble contaminant in water, is so toxic to human health at very low
concentrations that it can lead to a variety of severe disorders and even death [4]. There-
fore, with the aim of protecting human and environmental safety, nitrate contamination
in drinking water should be kept to safe levels [5]. A lot of research has been carried
out on reducing water pollution from sources of energy, especially nitrate ions, including
membrane-based processes, ion exchange, and chemical and biological denitrification [6,7].
Membrane processes, in comparison to other abovementioned processes, are the most
promising technique due to having multitudinous benefits in terms of operation, envi-
ronment, economy, and energy [8]. Membrane technology (specially nanofiltration or
NF) as a the high-potential process for removal and separation of inorganic substrates, is
categorized as reverse osmosis (RO) or ultrafiltration (UF) membranes, with low affinity
for removal of monovalent ions and high capability for removal of multivalent ions [9].
Meanwhile, polysulfone (PSF) is a commercially available polymeric material used in NF
membranes [10]. Although PSF polymer offers convenient features like significant thermal,
mechanical, and chemical stabilities along with an affordable price, it is susceptible to
biofouling owing to its hydrophobic nature [11]. Hydrophobic surfaces of PSF membranes
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interact with proteins and other foulants [12], whereby a bacterial film forms on the mem-
brane surfaces. In the long run, membrane efficiency reduces and can lead to undesirable
results, for example, reduction of water permeability, a decrease of separation efficiency,
and the detriment of membrane structure [13]. One of the proposed strategies for solving
the biofouling problem is physical and chemical pretreatment of feed solution to exclude
bacterial existence. Physical treatment such as UV irradiation is expensive and cannot
adjust biofouling in the membrane texture, and chemical treatments including oxidizing
and non-oxidizing biocides damage the membrane surfaces, reduce their lifetime, and
finally increase operating costs. Moreover, due to the rapid proliferation of microorganisms
on the surface of membranes, especially when highly needed due to the amount of nutrient
in the feed stream, the complete exclusion of biofouling phenomenon cannot be guaranteed.
A long-established effective strategy for reduction of biofouling is a donation of cytotoxicity
properties to the membrane through surface adjustment via improving the membrane’s
hydrophilicity. Hydrophilic membranes have less interaction with microorganisms because
of the membranes’ tendency to form hydrogen bonds with water molecules contacting
their surface, developing a thin water film around the membrane. The formed film can
inhibit attachment of hydrophobic foulants on the membrane surface [14–16].

Incorporation of graphene oxide (GO), one of the high-hydrophilic carbonous mate-
rials, into the PSF matrix ameliorates membrane fouling resistance. The abundant oxy-
genated functional groups, including hydroxyl, ketones, carboxyl, and epoxide groups,
cohere a large negative zeta potential on the surface of membrane, which can reduce
biofouling. In addition to introducing better anti-fouling and antibacterial properties,
GO reinforces thermal and mechanical stability as well as the surface area of the PSF
membrane [17]. Accordingly, due to the unique properties of GO, it easily combines with
polymeric materials and inorganic particles, which can enhance the overall performance
of the membrane [18,19]. Polyvinylpyrrolidone (PVP), as a class of hydrophilic polymer,
forms uniform pores on the membrane and could improve the antifouling property of
PSF/GO membranes [20].

Application of antimicrobial nanomaterials in polymeric matrices, as a recently devel-
oped approach to the fouling challenge, has gained considerable attention since they not
only address biofouling by improving the hydrophilicity of membranes but also promote
the overall proficiency of membranes, i.e., their permeability, selectivity, and mechanical
strength. Incorporation of metallic nanoparticles such as zero-valent metals (Ag, Pt, Fe, Zn,
Cu) and metal oxides (TiO2, ZnO, SiO2, ZrO2, Al2O3) is proven to develop the hydrophilic-
ity of polysulfone membranes besides giving morphological, permeability, antifouling
characteristics, and mechanical strength to the produced membrane [21–24]. Although
aggregation of nanoparticles, especially in their high concentration, on the polymeric
membrane’s surface is problematic and leads to undesirable consequences such as pore
blockage, GO-based membranes can overcome this drawback due to the unique properties
they own [25].

A number of research projects were carried out to develop PSF/GO membranes, but
to our knowledge, no research has been carried out to provide a precise investigation of the
combination of Pt nanoparticles in NF membranes for water treatment.

In the present research, a novel nanohybrid membrane was fabricated using blends
of PSF and GO-infused Pt via the phase inversion method. The use of GO-infused Pt as a
surface modifier offers significant improvement in hydrophilicity, which would guarantee
high penetration of the permeate and reduction of membrane biofouling via the low
interfacial interaction between the surface of the membrane and foulants. Various loading
amounts of GO/Pt modifier were studied to investigate their influence on the properties
of the membranes, and various analyzing instruments were employed to characterize the
prepared membranes in detail. Additionally, the structure of the membrane was simulated
using OPEN-MX software, which is based on density functional theory (DFT).
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2. Materials and Method
2.1. Material

In this research, polysulfone p-3500 (MW = 35,000), the polymeric support, and
polyvinylpyrrolidone (PVP), the hydrophilic Udel polymers were supplied by Solvay
(Bernburg, Germany) and Scharlau (Barcelona, Spain), respectively. The high purity NaCl
was from Dr. Mojallali Co. (Tehran, Iran). Natural graphite, platinum salt (H2PtCl6),
sulfuric acid (H2SO4), hydrogen peroxide (H2O2), hydrochloric acid (HCl), potassium
permanganate (KMnO4), and N-methyl pyrollidone were purchased from Sigma-Aldrich.
Type 1 agar was purchased from HiMedia (Mumbai, India) and Luria–Bertani (LB) was
provided by Merck (Darmstadt, Germany). The nonwoven polyester was obtained from
Viledon (Weinheim, Germany).

2.2. Synthesis of GO/Pt Nanoparticles

The hummers procedure was used to synthesize GO from natural graphite [26,27].
GO/Pt nanoparticles were prepared according to a previous procedure [28]. First, 0.025 g
of H2PtCl6 was cast in 25 ml ethylene glycol and stirred vigorously for 30 min. Then, 0.04 g
of GO was added to the solution under constant stirring for 1 h at ambient temperature.
The well-mixed solution was kept under reflux condition using an oil bath at 160 ◦C for 3 h.
The resultant suspension was cooled to ambient temperature in 2 h. Sulfuric acid (0.1 M)
was used to adjust the solution’s pH at 3. Then, the solution was shaken for another 24 h.
The blended GO/Pt nanoparticles were rinsed several times with water and then filtered to
ensure about the particle size distribution. The final sample was desiccated at 160 ◦C for
1 h in an air oven.

2.3. Synthesis of PSF Support Layer

The asymmetric PSF membrane was synthesized according to the common phase
inversion method. PSF (1.5 g) and PVP (0.1 g) were added to NMP solvent and blended
under constant magnetic stirring at 200 rpm for 12 h at ambient temperature. The prepared
sample was left stable for 3–4 h to become free of bubbles, and then was cast on a nonwoven
polyester with the casting knife with 150 µm thickness. The resultant film was immediately
submerged in a coagulation bath of deionized (DI) water at 25 ◦C. At the final stage, the
fabricated membranes were washed 3 times to remove remaining solvents and non-attached
polymers. Then, they were left in DI water for 12 h [29].

2.4. Synthesis of Modified PSF Membrane

PSF membranes infused with GO/Pt nanoparticles were synthesized via phase-
inversion technique. Various amounts of GO/Pt (0.25, 0.5, 0.75, and 1 wt%) nanoparticles
were added to PSF solution. The solution was stirred for 12 h to achieve a homogeneous
mixture. Afterward, the prepared mixture was sonicated for 1 h, and subsequently, left
overnight for bubble removal. The prepared solution was then cast on nonwoven polyester
according to the abovementioned procedure.

2.5. Membrane Simulation

Density functional theory or DFT is a famous modeling tool that predicts the structures
and molecular properties of materials. DFT provides a relation between theory and experi-
mental study which can identify the geometric, electronic, and spectroscopic properties of
the analyzing systems [30]. OPEN-MX is a well-known software package for simulations
of nanomaterials based on DFT [31]. In the current work, we employed OPEN-MX as a
powerful theoretical software to find structural features of the fabricated membranes.
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2.6. Characterization

The spectroscopic investigation of the prepared membranes was via the FTIR method
using a Bruker-IFS48 (Ettlingen, Germany) in the range of 400–4000 cm−1. In order to ana-
lyze the hydrophobicity of the neat and GO/Pt nanoparticle-containing PSF membranes in
the form of water contact angle, a Canon camera furnished with DorpImage (Tokyo, Japan)
was employed. To reduce the experiment errors, all measurements were taken at three
random points or three times (for instance, in water flux and nitrate rejection) for each
sample and the standard deviation value was applied. Scanning electron microscopy (SEM)
was used to investigate the membrane morphology using Philips-X130 apparatus. For this
test, the samples were dried in a vacuum stove at 80 ◦C and then covered with the gold
sneeze to improve electrical conductivity. To acquire a cross-sectional surface, the mem-
brane was submerged in the liquid nitrogen ambiance. The frozen sample was broken by a
hit so the membrane structure was kept undamaged. The atomic force microscopy (AFM)
technique was employed to scrutinize the membrane’s surface roughness using a Nanosurf
checking probe-optical microscope lens (EasyScan II, Liestal, Swiss). A sample size of four
squares of each of the fabricated membranes (1 cm2) was placed onto the glass substrate.
The membrane surfaces were scanned within the range of 5 × 5 µm and surface parameters
including Sa, the mean roughness parameter, Sq, root-mean-squared roughness, and Sy,
the mean difference between the highest peaks and lowest valleys, were characterized.
Additionally, inductively coupled plasma mass spectroscopy (AZ instruments, Taichung
City, Taiwan) was used to determine the solution concentration [32].

2.7. Membranes’ Performance

A dead-end stirred cell, as described in our previous works [33], was applied to
calculate the membranes’ water flux and nitrate rejection ability under pressure of 3 bar
over 30 cm2 effective area of the membranes. The membrane coupons were soaked in
deionized water and pre-compressed for 15 min at 3 bar before being used in the main
experiments. The permeate water flux calculation was performed by:

J =
m

A∆t
(1)

where m (Kg) is the overall permeate weight in ∆t (min) period on surface of A (m2) and J
(L.m−2.h−1), the effective area of the membrane and pure water flux, respectively.

The nitrate rejection capability of the samples was calculated as a function of the
concentration differences between the feed and permeate solutions, as is given below:

R(%) =

(
1 −

Cp

C f

)
× 100 (2)

where Cp and Cf, respectively, are permeate and feed concentrations.
For this purpose, the nitrate concentration of feed was fixed at 50 mgL−1 via adding

the NaNO3 salt to the DI water.

2.8. Preparation of Model Bacteria and Antibacterial Performance of the Membrane

Escherichia coli (E. coli) cells were harvested on LB broth medium in a shaking incubator
(Velp-ZX3, Usmate, Italy) under speed of 180 rpm for 10 h at 37 ◦C, after dilution of the cell
suspensions to 106 colony forming units per milliliter or CFU/mL. The resultant suspension
was autoclaved (Reihan Teb autoclave, Tehran, Iran) for 20 minutes at 121 ◦C and then
cooled down in a sterilized Petri dish.

With the aim of investigating the bacteriostatic capability of the neat and developed
PSF membranes with GO/Pt nanoparticles, the inhibition zone experiment was performed.
All the membranes were maintained under ultraviolet radiation for 30 min to kill any
unwanted existing bacteria. Membrane sheets were applied on agar plates that consisted of
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dilute E. coli and cultured at 37 ◦C. After 24 h, the bacterial inhibition zones were recorded
for qualitative assessment of the antibacterial behavior of the membranes.

Moreover, SEM study was performed for quantitative assessment of the bacterial activity
of the membrane. In this regard, membranes were covered with E. coli suspension (25 mL,
3 × 105 CFU/mL) for 8 h at 37 ◦C, and the dried samples were analyzed through SEM.

3. Results and Discussions
3.1. Membrane Model

An OPEN-MX simulator was used to simulate and predict the membrane structure.
Figure 1a,b depicts side and top views of the predicted optimum state of Pt nanoparticles’
position on GO, respectively, and Figure 1c shows the optimized structure of nitrate
adsorption on a GO/Pt surface.
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optimized nitrate interaction with the surface of GO/Pt. The bond lengths are represented in Å
(angstrom) units.

3.2. Characterization
3.2.1. FTIR Test

The chemical bonds on the surface of PSF membranes with embedded GO/Pt (0.75
wt%) nanoparticles were considered via FTIR spectroscopy to confirm deposition of GO/Pt
nanoparticle on the PSF matrix. Figure 2 illustrates a broad peak at 3600 cm−1 associated
with the stretching vibration of (–OH) groups. Peaks around 1581, 1485, and 1105 were
attributed to C–C bonds of PSF aromatic rings [34]. The peaks at 1150 and 1250 cm−1

were related to the S=O stretching vibration and symmetric C–O–C stretching of PSF,
respectively [35]. A 1650 cm−1 peak was attributed to the carbonyl stretching vibration
of PVP [36]. These functional groups confirm the formation of a hydrophilic membrane
due to the insertion of GO/Pt. The possible route of membrane synthesis was through
hydrogen bonds between O=S=O polysulfone groups and –COOH groups of GO/Pt, as
can be seen in the new peak around 1700 cm−1 [37].



Micromachines 2023, 14, 128 6 of 13

Micromachines 2023, 12, x 6 of 14 
 

 

tion of PVP [36]. These functional groups confirm the formation of a hydrophilic mem-
brane due to the insertion of GO/Pt. The possible route of membrane synthesis was 
through hydrogen bonds between O=S=O polysulfone groups and –COOH groups of 
GO/Pt, as can be seen in the new peak around 1700 cm−1 [37]. 

 
(a) 

 
(b) 

Figure 2. FTIR spectra of (a) PSF and (b) modified membrane with GO/Pt (0.75 wt%) nanoparticles. 

3.2.2. SEM Analysis 
SEM images of the synthesized samples are presented in Figure 3 to represent more 

accurately the influence of GO/Pt nanoparticles on the physical properties of the mem-
branes. A general well-known consequence in regards to the morphology of polysulfone 
membranes is the asymmetric structure of PSF membranes forming in the phase inver-
sion method. The pores’ morphology is affected by the solvent/nonsolvent diffusion rate 
in the coagulation bath. Upon immersion of the casting solution in the coagulation bath, 
the interfacial surface is exposed to the coagulant. The exchange rate of solvent and co-
agulant is so high that the polymer precipitation and solidifying happen almost concur-
rently, which leads to the generation of a dense skin layer on the top surface [38,39]. On 
the other hand, the weak affinity of the PSF to water as the nonsolvent results in a shorter 
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3.2.2. SEM Analysis

SEM images of the synthesized samples are presented in Figure 3 to represent more
accurately the influence of GO/Pt nanoparticles on the physical properties of the mem-
branes. A general well-known consequence in regards to the morphology of polysulfone
membranes is the asymmetric structure of PSF membranes forming in the phase inversion
method. The pores’ morphology is affected by the solvent/nonsolvent diffusion rate in
the coagulation bath. Upon immersion of the casting solution in the coagulation bath, the
interfacial surface is exposed to the coagulant. The exchange rate of solvent and coagulant
is so high that the polymer precipitation and solidifying happen almost concurrently, which
leads to the generation of a dense skin layer on the top surface [38,39]. On the other hand,
the weak affinity of the PSF to water as the nonsolvent results in a shorter time of solvent
exchange and a greater exchange rate caused by the larger finger-shape pores [40].

As may be seen from the surface SEM results (Figure 3a,b), insertion of GO/Pt nanopar-
ticles in the PSF polymer matrix brought about a nodular morphology that was clearly
observable on the surface of the membrane. The cross-sectional analysis of neat PSF and
that infused with GO/Pt (0.75 wt%) (Figure 3c,d) revealed the irregular structure expected
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according to the above discussion. The images convey that membranes were constructed
by three well-known layers: a dense thin skin layer that controlled the solutes’ permeation,
a porous finger-like sublayer, and a macro-void structure at the bottom layer that acted
as mechanical support. The stabilized GO/Pt nanoparticles on PSF polymer gave rise to
the thinner skin layer in the upper layer and larger finger-like pores in the sublayer. These
results were related to the combination of highly hydrophilic GO/Pt nanoparticles, which
increased the solvent/nonsolvent exchange rate throughout the phase inversion. Generally,
higher mutual affinity between the solvent (water) and nonsolvent (GO/Pt) causes a more
porous membrane [41,42].
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Figure 3. SEM images of prepared membranes’ surface: (a) PSF/and (b) PSF modified with GO/Pt
(0.75 wt%) nanoparticles; cross-sectional SEM images of (c) PSF and (d) PSF modified with GO/Pt
(0.75 wt%) nanoparticles.

3.2.3. AFM Analysis

AFM analysis was performed for scrutiny of the physiochemical characteristics of PSF
and hybrid PSF membrane embedded with GO/Pt (0.75 wt%) nanoparticles (Figure 4).
AFM images comprise the light and dark areas which represent the high or ridge posi-
tions and low or valley positions of the membrane surfaces, respectively [43]. The figure
illustrates the ridge and valley structure in both membranes. The incorporation of GO/Pt
nanoparticles in a neat polymeric base resulted in the formation of the rougher surface mem-
brane. This phenomenon is probably related to adding hydrophilic GO/Pt in the casting
solution, thereby causing fast diffusion of solvent/nonsolvent within the phase-inversion
stage [44]. In addition to this reason, the inequality upsurge in the membrane surface
via insertion of hydrophilic GO/Pt nanoparticles could give rise to the formation of the
rougher surface [45,46]. Surface roughness characteristics are summarized in Table 1. The
rougher surface of the modified membrane containing hydrophilic GO/Pt nanoparticles
suggests that it may have had a more highly porous structure than the neat PSF membrane.
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Figure 4. Two-dimensional and three-dimensional AFM images of membranes: (a) PSF and (b) PSF-GO/Pt
(0.75 wt%) nanoparticles.

Table 1. AFM parameters and water contact angles of PSF and PSF-GO/Pt (0.75 wt%) membranes.

Membrane Sa (nm) Sq (nm) Sy (nm)

PSF 16.756 22.218 148.12
PSF/GO/Pt (0.75 %) 21.481 25.863 178.36

3.2.4. Contact Angle Measurement

Another method of judging the hydrophilicity feature of the modified membrane is
the measurement of the contact angle (Figure 5).
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The modified PSF membrane with GO/Pt nanoparticles demonstrated a lower contact
angle than the unmodified one. This is due to the hydrophilic character of GO/Pt, which
eases establishing of hydrogen bonds of hydroxyl groups on the membrane surface and
water molecules; therefore, water has a better ability to moisten the membrane. Basically,
GO/Pt nanoparticles grafted on the PSF polymer surface increase the wettability of the
resultant membrane, which can facilitate the biofouling resistance of the membrane [35,47].

3.2.5. Membrane Performance

Membrane permeability has been considered for neat and developed membranes as
a function of various GO/Pt nanoparticle loadings (Figure 6). The nitrate solution flux
increased with the content of GO/Pt up to 0.75% wt. The probable reason for this behavior
was the presence of more hydrophilic sites due to the increasing trend of GO/Pt doping,
which can increase the permeability. As was also observed from SEM results, the prepara-
tion of a more porous structure, and larger pores, as the GO/Pt hydrophilic nanoparticles
increased was responsible for this phenomenon [48]. However, a further increase in GO/Pt
(1 wt%) content decreased the nitrate flux. A high amount of hydrophilic additive (GO/Pt)
eventuated in a high-viscose casting solution that slows down the solvent/nonsolvent
penetration during the phase-inversion process; following this, smaller pores were formed.
Moreover, pore blockage by a high content of GO/Pt could be influential. The ruffled
position of GO/Pt on the membrane surface reduced the number of accessible hydrophilic
functional groups for the permeate.

Another test for evaluation of hydrophilicity by adding GO/Pt nanoparticles in the
casting solution was the nitrate rejection ability of the fabricated membranes. It is clear from
results shown in Figure 7 that the rejection capacity of the improved membrane improved
as the weight percentage of GO/Pt increased up to 0.75, and then decreased as the weight
percentage of GO/Pt increased to 1. The increasing trend can be explained by establishing
strong bonds of hydrophilic functional groups of GO/Pt and water molecules that deter
passage of nitrate molecules. The decreased performance of membranes for nitrate rejection at
higher loading of GO/Pt can be explained by the disordered location of GO/Pt on the PSF
matrix giving rise to the less hydrophilic functional groups on the surface [49]. As the results
convey, the membrane modified with GO/Pt (0.75 wt%) was the highest-yielding membrane.
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3.2.6. The Antibacterial Behaviors of Modified and Neat Membranes

In this part, results of antibacterial/anti-biofouling tests are given. In these exper-
iments, E. coli was employed as a bacteria sample and its interaction with a neat PSF
membrane and hybrid PSF membrane modified with GO/Pt (0.75 wt%) were investigated.
The results of the bacteriostatic activity of both membranes are presented in Figure 8. The
presence of a high density of E. coli cells surrounding the pristine PSF membrane showed
less antifouling activity of the membrane. In contrast, the modified membrane revealed
bacteria-killing ability due to the low accumulation of E. coli cells around the membrane,
which was due to the insertion of hydrophilic properties via incorporation of GO/Pt
nanoparticles. Four kinds of forces determine the adsorption tendency of microorganism
on the membrane surface: electrostatic, hydrogen bonding, hydrophobic, and Van der
Waals forces [50].
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Biofouling persistence of the membranes was assessed using the SEM method. Attach-
ment of E. coli to the membrane surfaces was scanned with an SEM tool that could define
the biofouling property of the membranes. The SEM image of the naive PSF membrane
(Figure 9a) depicts a high agglomeration of E. coli on the surface of the membrane, which
shows the biofouling characteristic of the PSF membrane. Nevertheless, the SEM image of
the modified membrane (Figure 9b) reveals no dense existence of E. coli on the membrane
surface that is associated with the hydrophilicity of GO/Pt modifiers. The hydrophilic
surface formed a film layer of water on its surface that could prevent bacterial growth and
reproduction, resulting in great antibacterial and anti-biofouling results [51,52].
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4. Conclusions

The present study focused on the nanofiltration of nitrate from aqueous solution
in order to achieve fresh water. Polysulfone (PSF) support doped with graphene oxide
(GO)/Pt (0, 0.25, 0.5, 0.75, 1 wt%) nanoparticles were developed via the phase inversion
technique. The modified membranes were studied with analyzing instruments. FTIR
analysis showed the development of a hydrophilic layer of GO/Pt on the membrane
surface via the interaction among groups of O=S=O from polysulfone and the –COOH of
GO/Pt. The fast solvent/nonsolvent interaction in the inversion phase and generation
of a rough surface was confirmed by SEM and AFM analyses. The contact-angle test
revealed that the as-prepared membrane consisting of 0.75 wt% GO/Pt nanoparticles
was more hydrophilic than the simple membrane. High antibacterial and antifouling
properties are the characteristics of the improved membrane. In addition, maximum flux
and rejection performance were observed for PSF- GO/Pt (0.75 wt%). The simulation of
membrane designs by OPEN-MX simulating software established the optimum deposition
of nanoparticles on the PSF membrane’s surface. The findings of this study showed a
promising performance of the PSF membranes developed with GO/Pt nanoparticles as
modifiers in water treatment applications.
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