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Abstract: Nanoparticles have presented various hurdles to the scientific community during the past
decade. The nanoparticles dispersed in diverse base fluids can alter the properties of fluid flow and
heat transmission. In the current examination, a mathematical model for the 2D magnetohydro-
dynamic (MHD) Darcy–Forchheimer nanofluid flow across an exponentially contracting sheet is
presented. In this mathematical model, the effects of viscous dissipation, joule heating, first-order
velocity, and thermal slip conditions are also examined. Using similarity transformations, a system
of partial differential equations (PDEs) is converted into a set of ordinary differential equations
(ODEs). The problem is quantitatively solved using the three-step Lobatto-three formula. This
research studied the effects of the dimensionlessness, magnetic field, ratio of rates, porosity, Eckert
number, Prandtl number, and coefficient of inertia characteristics on fluid flow. Multiple solutions
were observed. In the first solution, the increased magnetic field, porosity parameter, slip effect, and
volume percentage of the copper parameters reduce the velocity field along the η-direction. In the
second solution, the magnetic field, porosity parameter, slip effect, and volume percentage of the
copper parameters increase the η-direction velocity field. For engineering purposes, the graphs show
the impacts of factors on the Nusselt number and skin friction. Finally, the stability analysis was
performed to determine which solution was the more stable of the two.

Keywords: Darcy–Forchheimer; nanofluid; viscous dissipation; joule heating; duality; stability

1. Introduction

Flow across a Darcy-medium has extensive uses and considerable value in medicinal,
chemical, and contemporary ecological frameworks. Numerous processes, including oil
applications in different processes, thermal management in geothermal exchange formats,
atomic head waste processes, water development, and water purification, are included. The
classic model of Darcy is comprise the non-Darcian porous medium, which is a constrained
form of this medium for the aforementioned applications and operations. The term Darcy’s
Law clarifies the fluid movement through a porous medium. This rule is applicable in
scenarios with low porosity and low velocity. Forchheimer showed the velocity square
factor in Darcy’s velocity equation to analyze the boundary and inertia features. Muskat
and Meres [1] referred to this as the Forchheimer word using Maxwell nanofluid flow
through an isothermally heated stretching sheet. Rasool et al. [2] explained the effect of of
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compressibility and uniform porosity affect heat transfer in Maxwell nanofluid flow through
an isothermally heated stretching sheet. Seddeek [3] studied the flow of Darcy–Forchheimer
under the impact of thermophoresis and dissipation over a vertical surface. Ahmed et al. [4]
demonstrate the behavior of magnetized gyrotactic microorganisms in the flow of Eyring–
Powell nanofluid with Darcy–Forchheimer and a thermal radiation effect. They found
that “motile density profiles are deprecated by higher values of the bioconvective Lewis
number and Peclet number”. Hydromagnetic flow with variable nonuniform source/sink
and viscosity on a porous surface has been studied by Pal and Mondal [5], who advocated
for the theory of Darcy–Forchheimer. Turkyilmazoglu [6] investigated the properties of
time-dependent magnetized flow using a revolving permeable disk with varying viscosity.
Khan and Alzahrani [7] offer modeling and numerical simulation for convective radiative
flow using the Darcy–Forchheimer and second-order velocity slip equations. According to
Nagaraju et al. [8], an impulsive porous unsteady flow of liquid flow was seen to occupy
the space over a stretched surface.

Choi [9] initially established the concept of nanofluids after conducting observational
studies on various nanoparticle suspensions in carrier fluids. Nanofluids may be pro-
duced by suspending nanoparticles such as metallic oxides, metals, nitrides, metal carbides,
and carbon nanotubes in working fluids such as ethylene, oils, glycol, and water. The
incorporation of nanoparticles into carrier liquids improves their thermophysical character-
istics. Nanofluids have essential uses in a variety of scientific and technological domains,
including mechanical cooling, illness treatment, diagnostic testing, chemical processes,
heat exchangers, atomic reactors, microfluidics, and others [10]. Alotaibi and Eid [11]
examined the MHD Brownian diffusion and thermophoresis effects on nanofluid flow and
heat transmission on a stretching surface and found that “the velocity profile dwindled
with augmented values of the magnetic and Forchheimer parameters”. Qayyum et al. [12]
investigate how joule heating, activation energy, and dissipation affect the slip flow of a
Prandtl–Eyring nanofluid. Bang and Chang [13] looked at how heat transfer increased
when water-based nanofluids passed over a simple surface in fresh water. Khan et al. [14]
looked at a nanofluid made of silver and water and found that the silver nanofluid was
a better conductor and moved heat well. Several noteworthy works on nanofluids are
provided in the following references [15–19]. Daniel et al. [20] investigated a solution for
nanofluid flow stretching when the MHD electrical effect is executed with ohmic heating.

The theory of magnetohydrodynamics (MHD) outlines how magnetic fields affect
the way that nanofluids flow. MHD has several practical uses, including in nuclear
reactor cooling, MHD generators, cancer treatment, plasma research, oil exploration,
crystal fiber manufacture, paper production, geothermal energy extraction, and bound-
ary layer flow management. The impact of chemical reactions on heat transfer perfor-
mance in Williamson nanofluid MHD flows within a porous medium is investigated by
Alrihieli et al. [21]. Kumaran et al. [22] described the chemically reactive MHD flow of
Maxwell and Casson nanoliquids with a heat source/sink. Turkyilmazoglu [23,24] revealed
the unsteady 2D flow behavior of MHD nano liquid flow by impulsively rotating permeable
disks. This behavior was seen in the flow of the nanoliquid. The MHD flow of a micropolar
nanofluid on a stretched surface with joule, dissipation, and convection heating taking
place at the convective boundary was examined by Waqas et al. [25]. The boundary slip
mechanisms in the MHD flow of chemically reactive nanomaterials with dissipation were
explored by [26]. Nayak et al. [27] scrutinized the characteristics of a three-dimensional
MHD nanofluid flow across an exponentially porous stretched surface with convective
boundary conditions (BCs). The characteristics of the MHD flow of a non-Newtonian fluid
were explored by Sarada et al. [28], who conducted their research across a stretching sheet.
Anuar et al. [29] used a stability analysis to investigate the flow of MHD carbon nan-
otubes across a nonlinearly deforming sheet. The melting effects on the MHD incom-
pressible unsteady Casson flow of a nanoliquid on a stretching plate were considered by
Mabood et al. [30]. MHD flow issues in a variety of flow fields have been an interesting
subject of discussion by scholars and scientists [31–34].
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The influence of slip conditions on fluid flow have not received a lot of attention,
particularly when it comes to nanofluids, as shown by a comprehensive review of the
research that has been published. A great number of important fluid applications exhibit
slip boundary circumstances, such as the improvement of valves of the heart and cavity
interiors, as well as the cleaning of prosthetic valves of the heart [35]. It is important to
note that the condition of there being no slippage does not always hold in actual practice.
It is possible to provide a straightforward explanation for the slip velocity condition by
pointing out that flowing liquids do not have nil velocity with respect to their interaction
with the barrier of a solid. Andersson [36] was likely the first person to present the idea of
slip impact having an impact on the flow of a boundary layer. Wang et al. [37] looked at
what happened to a Maxwell nanofluid when it slipped over a stretch that grew longer and
longer at an exponential rate. The researchers discovered that as the slip parameter velocity
component was increased, a diminishing behavior was seen in both directions. According
to the findings of Saleem and Abd El-Aziz [38], the effect of fluid friction irreversibility
decreases near to a surface as the slip parameter increases; nevertheless, farther away in
the flow system, the irreversibility of heat transfer has been shown to be a more prominent
factor. The unsteady flow on an exponential sheet was examined by Haider et al. [39],
who discovered that the slip condition had a diminishing influence on the skin friction
coefficient. Imran et al. [40] examined the behavior of an MHD generalized Maxwell fluid
when it was applied to an exponentially accelerating infinite vertical surface along with a
slip condition. According to Reddy et al. [41], a rise in the slip condition causes the velocity
profiles to increase as well.

Joule heating has also been one of the most intriguing impacts to be implemented since
joule heating has a significant impact on the MHD flow of fluids. Ohmic or joule heating
is the process of converting electrical energy into thermal energy via material resistive
losses. In addition, the heating of joule impact is used extensively and experimentally in
the majority of electrical and electronic equipment. Reddy et al. [42] described the effect of
ohmic heating on the flow of nanofluids along elastic barriers. They explained that the exis-
tence of ohmic heating might result in a temperature rise. Maskeen et al. [43] investigated
the MHD flow in a Cu-Al2O3/water hybrid nanofluid via a vertically extending cylinder.
Sajid et al. [44] reported a computational solution for the MHD flow of a ferrofluid in a
curved channel with semi-porosity and ohmic heating. Patel and Singh [45] considered
joule heating in their study of Walters-B liquid flow. Furthermore, Kamran et al. [46],
Gholinia et al. [47], and Khan et al. [48] investigated the joule heating effect numerically in
the analysis of micropolar fluid, Williamson fluid, and Casson fluid. Khan et al. [49] and
Hussain et al. [50] independently examined the application of joule heating to a stretching
cylinder for MHD Carreau and MHD Sisko nanofluid flows. Yan et al. [51] examined the
MHD Cu-Al2O3/water flow of a hybrid nanofluid via an exponentially reducing permeable
sheet and discovered binary solutions. Khan et al. [52] recently investigated the Eyring–
Powell flow of fluids along with ohmic heating and the variable viscosity impacts for the
material of the wire coating application.

The current work theoretically studies the MHD Darcy–Forchheimer flow of a water-
based nanofluid across an exponentially diminishing surface in the presence of ohmic heat-
ing, viscous dissipation, and first-order slip conditions, as inspired by the aforementioned
literature. Nanofluids have been thoroughly discussed in the aforementioned literature;
thus, a Cu–water-based nanofluid was selected as an example to explore the influences of
the different physically applied factors. Four aspects of the heat transfer concert of nanoflu-
ids are called into question. (i) If no suction is applied, are double solutions of similarity
conceivable for flow caused by an exponentially contracting sheet? (ii) Does an increase in
the Forchheimer parameter and Eckert (ohmic heating) number cause an interruption in the
separation of the boundary layer and a decrease in the rate of heat transfer? (iii) Does the
use of a Cu–water nanofluid increase the rate of heat transfer compared to a conventional
fluid? (iv) Does the increasing volume fraction of copper nanoparticles in a fluid based on
water increase the rate of heat transfer? Consequently, this paper will provide answers to
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each of the preceding questions. Using exponential transformations, the governing model
is transformed into ODEs. All computations are performed with a bvp4c solver, and, in
a few instances, it is attempted to compare the numerical outcomes with the previously
published literature. The authors are assured that the current piece of research is novel and
will have a substantial impact on future researchers in the field of fluid dynamics.

2. Mathematical Description of the Problem

Let us take into account the effects of viscous dissipations, joule heating, and slip
conditions in the context of the steady two-dimensional incompressible flow of an electri-
cally conducting nanofluid across a diminishing surface in a porous medium along with
Darcy–Forchheimer. The physical model of the considered problem can be seen in Figure 1.
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Figure 1. Model of nanofluid flow.

The assumption of a system of cartesian coordinates, in which the x-axis is parallel to
the contracting surface and the y-axis is perpendicular to it, is also taken into account. To
the perpendicular of the shrinking sheet, a uniform magnetic field B(x) = B0e

x
2l is applied

with strength, where B0 is a constant magnetic resilience. The properties of the nanofluid
and solid along with water are given in Tables 1 and 2.

Table 1. Thermophysical properties of nanofluid [44].

Properties Nanofluid

Dynamic viscosity µn f =
µ f

(1−φ)2.5

Density ρn f = (1− φ)ρ f + φρs, where subscript s indicates the solid
properties of the copper.

Thermal conductivity kn f =
ks+2k f−2φ(k f−ks)
ks+2k f +φs(k f−ks)

×
(

k f

)
Heat capacity

(
ρcp
)

n f = (1− φ)
(
ρcp
)

f + φ
(
ρcp
)

s

Table 2. Water and copper thermo-physical characteristics [11].

Material ρ/(kg·m−1) Cp/(J·kg−1·m−1) k/(W·m−1·K−1)

Copper 8933 385 401
Water 997.1 4179 0.613
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We disregard the induced magnetic field, and, subsequently, the Reynolds number is
so very low. The governing equations for a steady nanofluid flow under these conditions
are as follows [40,51]:

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

=
µn f

ρn f

∂2u
∂y2 −

µn f

ρn f

1
K

u− b√
K

u2 − σB2(x)u
ρn f

, (2)

u
∂T
∂x

+ v
∂T
∂y

=
kn f(

ρCp
)

n f

∂2T
∂y2 +

µn f(
ρCp

)
n f

(
∂u
∂y

)2
+

σB2u2(
ρCp

)
n f

. (3)

The associated BCs related to (1–3) are{
v = vw , u = uw + Bϑ f

∂u
∂y , T = Tw(x) + D ∂T

∂y , at y = 0
u → 0, T → T∞, as y → ∞

. (4)

In these equations v and u represent components of velocity in the y- and x-directions,
correspondingly, ρ denotes the density of the fluid, σ is the electrical conductivity of the
fluid, b is the local inertia coefficient, K is the porous medium permeability, T is the fluid
temperature, and subscript nf shows the properties of the nanofluid explained in Table 1.
Tw = T∞ + T0e

2x
` is the wall temperature, and T∞ is the ambient temperature. In addition,

vw = −
√

ϑa
2l ex/2l S, where S is the injunction/suction parameter, uw = −a ex/l is the surface

velocity, B = B1e− x/2l is the velocity slip factor, and D = D1 e− x/2l is the thermal slip factor.
These transformations of similarity are used to obtain the corresponding simila-

rity solutions:

ψ =
√

2ϑ f laex/2l f (η) , θ(η) =
(T − T∞)

(Tw − T∞)
, η = y

√
a

2ϑ f l
ex/2l. (5)

The stream function ψ is expressed in components of velocity as

u =
∂ψ

∂y
, v = − ∂ψ

∂x
. (6)

K = 2K0 e− x/l is used to represent the porous media permeability. By applying
Equations (5)–(6) to Equations (1)–(3), the equation of continuity is fulfilled, and the
equations of momentum and energy can be expressed as

( f ′′′ − K1 f ′)

{(1−∅) +∅(ρs/ρ f )}(1−∅)2 + f f ′′ − (2 + FS) f ′2 − M f ′

{(1−∅) +∅(ρs/ρ f )}
= 0, (7)

kn f
k f

Pr

{
(1−∅)+∅

(
(ρCp)s
(ρCp) f

)} θ′′ + f θ′ − 4 f ′θ + Ec{
(1−∅)+∅

(
(ρCp)s
(ρCp) f

)}
(1−∅)2

( f ′′ )2

+ EcM{
(1−∅)+∅

(
(ρCp)s
(ρCp) f

)} ( f ′)2 = 0,
(8)

along with the BCs:{
S− f (0) = 0 , θ(0) = 1 + δTθ′(0), f ′(0) + 1 = δ f ′′ (0)

θ(η)→ 0, f ′(η) → 0 as η → ∞
, (9)
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where M = 2lσ(B0)
2

ρa is the Hartmann number, K1 =
lϑ f
aK0

is the permeability parameter,

FS = 2lb√
K

is the Forchheimmer parameter, Pr =
ϑ f
α f

denotes the Prandtl number, and

Ec = a2

T0(Cp) f
is the Eckert number. Furthermore, δ = B1

√
ϑ f a
2l is the velocity slip, and

δT = D1
√

a
2ϑ f l is the thermal slip parameter.

The coefficient of skin friction and the local Nusselt number are all relevant physical
quantities, and they can be written as

C f =

[
µn f

∂u
∂y

]
y=0

ρa2 , Nu =
−xkn f

(
∂T
∂y

)
y=0

k f (Tw − T∞)
. (10)

By applying Equations (5)–(6) in Equation (10), we obtain

C f (Rex)
1
2 =

1

(1−∅)2 f ′′ (0), Nu(Rex)
− 1

2 = −(kn f/k f )θ
′(0). (11)

3. Linear Stability Analysis

Recently, numerous scholars have examined multiple fluid solutions for various fluid
kinds and flow circumstances. From an experimental standpoint, it is worthwhile to deter-
mine which solution is physically dependable and applicable. Therefore, linear stability is
necessary for validating the dependability of solutions. Merkin [53] and Weidman et al. [54]
suggested reducing the controlling boundary layer of Equations (3)–(5) to the following
unsteady forms for the stability analysis:

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

=
µn f

ρn f

∂2u
∂y2 −

µn f

ρn f

1
K

u− b√
K

u2 − σB2u
ρn f

, (12)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
kn f(

ρCp
)

n f

∂2T
∂y2 +

µn f(
ρCp

)
n f

(
∂u
∂y

)2
+

σB2u2(
ρCp

)
n f

, (13)

where t represents time. Additionally, a novel similarity transformation is presented as

ψ =
√

2ϑ f laex/2l f (η, τ), θ(η, τ) =
(T − T∞)

(Tw − T∞)
, η = y

√
a

2ϑ f l
ex/2l , τ =

a
2l

ex/l·t. (14)

Using Equation (14), Equations (12)–(13) can be written as follows:
(

∂3 f (η, τ)

∂η3 −K1
∂ f (η, τ)

∂η

)
{(1−∅)+∅(ρs/ρ f )}(1−∅)2 + f (η, τ)

∂2 f (η, τ)
∂η2 − (2 + FS)

(
∂ f (η, τ)

∂η

)2

−
M ∂ f (η, τ)

∂η

{(1−∅)+∅(ρs/ρ f )} −
∂2 f (η, τ)

∂τ∂η = 0,

(15)

(
kn f
k f

)
∂2θ(η,τ)

∂η2

Pr

{
(1−∅)+∅

(
(ρCp)s
(ρCp) f

)} + ∂θ(η,τ)
∂η f (η, τ)− 4θ(η, τ)

∂ f (η, τ)
∂η

+
Ec
(

∂2 f (η, τ)

∂η2

)2

{
(1−∅)+∅

(
(ρCp)s
(ρCp) f

)}
(1−∅)2

+
EcM

(
∂ f (η, τ)

∂η

)2{
(1−∅)+∅

(
(ρCp)s
(ρCp) f

)}− ∂θ(η,τ)
∂τ = 0,

(16)
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along with the new BCs:
∂ f (0, τ)

∂η = −1 + δ
∂2 f (0, τ)

∂η2 , f (0, τ) = S, θ(0, τ)− δT
∂θ(0, τ)

∂η = 1
∂ f (η, τ)

∂η → 0, θ(η, τ) → 0, as η → ∞
. (17)

To test the stability of the steady flow solutions solving the boundary value problem (7–9),
where θ(η) = θ0(η) and f (η) = f0(η), one can express{

f (η, τ)− e−ετ F(η, τ) = f0(η)
θ(η, τ)− e−ετG(η, τ) = θ0(η)

, (18)

where f 0(η) and θ0(η) are minor relatives of F(η) and G(η), respectively. Moreover, ε
represents the unknown eigenvalues. When the eigenvalue problem (16–18) is solved, an
endless collection of eigenvalues is obtained. We must choose the least eigenvalue from
this set. If the smallest eigenvalue (ε) is negative, this shows that the flow is unstable
and demonstrates the growth of disruptions and physical impossibility. If the smallest
eigenvalue is positive, on the other hand, this indicates that the solution is physically
reliable and stable. The following equations result from applying Equation (18) in (15–16):(

F′′′0 − K1F′0
)

{(1−∅) +∅(ρs/ρ f )}(1−∅)2 + f0F′′0 + F0 f ′′0 − 2(2 + FS) f ′0F′0 −
MF′0

{(1−∅) +∅(ρs/ρ f )}
+ εF′0 = 0, (19)

(
kn f
k f

)
G′′0

Pr

{
(1−∅)+∅

(
(ρCp)s
(ρCp) f

)} + f0G′0 + F0θ′0 − 4 f ′0G0 − 4F′0θ0

+
2Ec f ′′0 F′′0{

(1−∅)+∅
(
(ρCp)s
(ρCp) f

)}
(1−∅)2

+
2EcM f ′0 F′0{

(1−∅)+∅
(
(ρCp)s
(ρCp) f

)}+εG0 = 0,
(20)

Subject to the BCs,{
F0(0) = 0, F′0(0) = δF′′0 (0), G0(0) = δTG′0(0)

F′0(η)→ 0, G0(η)→ 0, as η → ∞
. (21)

Conferring with Haris et al. [55], in order to find the stability of (19–21), one boundary
condition on F′0(η) and G0(η) must be relaxed. In this case, it is important to note that
we relaxed F′0(η)→ 0 as η → ∞ into F′′0 (0) = 1. In addition, we fixed all parameters,
including FS = 0.5, K1 = 0.5, Pr = 6.2, Ec = 0.2, δ = δT = 0.1, and varied values of S
and ∅.

4. Result and Discussion

The system of PDEs (2–3) is transformed into ODEs (7–8) using exponential transforma-
tions (5). The converted ODEs (7–8) are then resolved by employing the bvp4c function along
with the BCs (9) in MATLAB. A water-based nanofluid along with Darcy–Forchheimer
phenomena over an exponentially shrunk sheet under the influence of different physical
effects, parameters, the Hartmann number, the Prandtl number, the Eckert number, thermal
slip, suction, Forchheimer, velocity slip, and porosity were studied. Before beginning to
analyze the outcomes of the problem at hand, it is necessary to validate that the numer-
ical coding is functioning effectively; in this regard, Table 3 is built for comparison with
the previously published data by Waini et al. [56] when Pr = 6.2, φ = 0 (regular fluid),
K1 = FS = M = Ec = δ = δT = 0, for a stretching surface (i.e., f ′(0) = 1), and a great
agreement is observed. Therefore, the existing numerical method and its MATLAB coding
are used with full sureness to solve the problem at hand. In addition, we considered fluids
at a temperature of 25 ◦C; therefore, the researchers recommended that the Prandtl number
for water at 25 ◦C be equal to 6.2.
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Table 3. Magnitude of f ′′(0) and −θ(0) under various estimates of S.

Waini et al. [56] Current Results

S f ′′(0) −θ(0) f ′′(0) −θ(0)

0 −1.28181 4.97911 −1.28181 4.97911
0.2 −1.37889 5.65473 −1.37889 5.65473
0.6 −1.59824 7.22487 −1.59824 7.22487
1 −1.84983 9.03715 −1.84983 9.03715

Figure 2 depicts the variation of the velocity profile f ′(η) for changed values of the
volume fraction parameter: φ = 0.01, 0.05, and 0.1 along different physical parameters. It is
observed that the first solution is decreasing; this is because a nanofluid with a high-volume
fraction has a lower velocity because a higher number of particles per unit volume means
the fluid is more viscous or heavier, requiring more energy to move. On the other hand,
the second solution is increasing near the surface for the high-volume fraction. Figure 3
illustrates the results of temperature variations θ(η) for different values of φ = 0.01, 0.05, and
0.1. It is observed from the figure that the temperature variation increases for both solutions.
In practice, the nanoparticles disperse energy as heat. More nanoparticles produce more
energy, raising the temperature and thickness of the thermal boundary layer. Figure 4
presents the variation of f ′(η) for changed estimates of the Hartmann number = 0, 0.3, and
0.5. It is observed that the first solution decreases; it is believed that the application of a
transverse magnetic field results in a Lorentz force similar to a drag force, which tends
to resist the fluid flow and thus reduces its velocity in the profiles of the first solution.
Meanwhile, the second solution has an increasing nature with an increase in the values of
M. In Figure 5, the temperature variation for different values of M = 0, 0.3, and 0.5 is shown.
It is noted that the estimates of θ(η) increase for both solutions with enhancing estimates of
M. Due to the fact that a Lorentz force can enhance mass transport, which easily induces
convective motions and energy transport, the thermal boundary layer thickness increases
in both solutions.
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Figures 6 and 7 depict the variation of f ′(η) and θ(η) for various values of permeability
K1. In Figure 6, estimates of f ′(η) are reduced in the first solution; this is because effective
density and permeability are directly proportional to each other, and, as shown in Equation (2),
high permeability causes the velocity and momentum thickness of the boundary layer to
decrease. On the other hand, profiles of velocity are increased in the second solution as the
values of K1 = 0.1, 0.5, and 0.7 rise. In Figure 7, the variation of θ(η) increases in the first
solution and reduces in the second solution. The variation of f ′(η) is presented in Figure 8
for different estimates of the slip parameter: δ = 0, 0.2, and 0.5. Here, it shows that the
behavior of the first solution is decreasing, but the second solution is increasing initially
and then decreasing as the value of δ rises. This decreasing behavior of the velocity profiles
is due to the velocity slip, which is the difference between the particle velocity and the
undisturbed nanofluid velocity at the particle location. The variation of θ(η) is illustrated
in Figure 9 and shows an increase in temperature for both the first and second solutions as
δT = 0.1, 0.2, and 0.3.

The variation of θ(η) is shown in Figure 10 for various estimates of the Eckert number:
Ec = 0, 0.3, and 0.7. An increase in temperature is noticeable for both the second and first
solutions, as the Ec values increase. Physically, Ec describes the enthalpy and kinetic energy
connection. Consequently, it minimizes viscous fluid stress by converting kinetic energy
into internal energy. A rise in internal energy causes fluid enhancement. The effect of the
Prandtl number Pr is discussed in Figure 11. It is noticed that as the values of Pr = 1, 3,
and 6.2 increase, the variations of θ(η) decrease for both the first and second solutions.
The Prandtl parameter has an opposite relationship with the diffusivity of thermal energy.
Greater values of Pr cause a lower diffusivity of thermal energy. The lower diffusivity of
thermal energy brings a decrement in the temperature profiles and is connected with the
thermal layer thickness.
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Figure 12 depicts the variation of f ′(η) for various values of Forchheimer Fs. It is noted
that the increase in Fs = 0, 0.5, and 1 causes a decrease/increase in the variation of f ′(η)
for both the first and second solutions. Physically, an initial drag force is produced due to
a rise in Fs, which acts as a barrier for f ′(η) which causes the velocity profile to dissipate.
Figure 13 depicts the effect of the skin friction f ′′(0) coefficient against S for different values
of φ = 0.01, 0.05, and 0.1. The critical values are Sci = 1.8718, 1.7913, and 1.7354, respectively,
where i = 1, 2, and 3. It is noticed that f ′′(0) values rise in the first solution but decrease in
the second solution as the values of φ increase. As the estimates of φ increase, the critical
values decrease. The effect of the Nusselt number, that is, the heat transfer rate −θ′(0)
against the magnitudes of S for various values of φ = 0.01, 0.05, and 0.1 is depicted in
Figure 14. As the value of φ increases, the value of both solutions decreases. The critical
values of Sci = 1.8718, 1.7913, and 1.7354, where i = 1, 2, and 3. The values of Sci become
smaller with increasing values of φ. Physically, it causes the extension of boundary layer
separation. The multiple solutions of −θ′(0) are observed for numerous magnitudes of Sci.
The values of−θ′(0) decrease with the values of φ for both solutions. The dual solutions are
obtained only as the value of S is larger than the critical value of Sci. There are no similarity
solutions outside these critical values (S < Sci).
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The fluctuations of the smallest eigenvalues ε1 against S and ∅ are displayed in Table 4
for FS = 0.5, K1 = 0.5, Pr = 6.2, δ = δT = 0.1, and Ec = 0.2. As explained by Equation (18),
the flow is steady when the initial disturbance declines with time. This will be the case
for ε1 > 0. In the meantime, the flow for ε1 < 0 is unstable due to the beginning rise of
disturbance as time progresses, e−ετ → ∞ as ε1 < 0 and τ → ∞ . According to Table 4, the
values of ε1 for the first solution are positive, whereas they are negative for the second
solution. Consequently, this result demonstrates that the first solutions are physically stable
and dependable while the second solutions are not.
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Table 4. Smallest eigenvalues for different values of S and ∅.

1st Solution 2nd Solution

S ∅ ε1

2.5 0.01 0.78456 −0.94592
0.1 0.64948 −0.89248

3 0.05 0.85310 −0.894601
0.1 0.68092 −0.87253

5. Conclusions

The present study analyzed the effect of Darcy–Forchheimer on nanofluid flow through
an exponentially shrinking surface. The governing boundary layer system of the partial
equations was reduced into ODEs before solving them by the bvp4c technique in MATLAB
software. The presence of duality is shown by the numerical results. The stability analysis
is conducted to check the stability of the first and second solutions. The numerical value of
the smallest eigenvalue in the stability table showed that only the first solution is stable.
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The coefficient of skin friction increases for the first solution while reducing for the second
solution as the values of volume fraction enhance. The rate of heat transfer decreases
for the first and second solutions with the increase in the volume fraction values. The
variation of the velocity profile decreases/increases in both solutions as the magnitude of
the Forchheimer parameter values increases.
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Nomenclature

FS Forchheimmer parameter
K1 permeability parameter
Nu Nusselt number
lT∞ ambient temperature (Kelvin)
Rex Reynolds number
vw suction/injection velocity (m/s)
δT thermal slip
µnf dynamic viscosity of nanofluid (kg/ms)
ρnf density of nanofluid(kg/m3)
′ differentiation with respect to η

M Hartmann number
B(x) magnetic field (Tesla)
Pr Prandtl number
T temperature (Kelvin)
S suction/blowing parameter
K permeability of the porous medium
u,v velocity components (m/s)
φ volume fraction of copper
ε unknown eigenvalue
τ stability transformed variable
Tw variable temperature of sheet (Kelvin)
ε1 smallest eigenvalue
T0 a constant
uw shrinking velocity of surface (m/s)
η transformed variable
D thermal slip factor
σ electrical conductivity (S/m)
t time (s)
B velocity slip factor
ψ stream function
δ velocity slip
Cf skin-friction coefficient
B0 constant magnetic strength
b local inertia coefficient
Ec Eckert number
knf nanofluid thermal conductivity (W/mK)
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