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Abstract: This study optimized the field plate (FP) design (i.e., the number and positions of FP layers)
of p-GaN power high-electron-mobility transistors (HEMTs) on the basic of simulations conducted
using the technology computer-aided design software of Silvaco. Devices with zero, two, and three
FP layers were designed. The FP layers of the HEMTs dispersed the electric field between the gate
and drain regions. The device with two FP layers exhibited a high off-state breakdown voltage of
1549 V because of the long distance between its first FP layer and the channel. The devices were
subjected to high-temperature reverse bias and high-temperature gate bias measurements to examine
their characteristics, which satisfied the reliability specifications of JEDEC.

Keywords: dynamic on-state resistance (Ron); field plate (FP); high-temperature gate bias (HTGB);
high-temperature reverse bias (HTRB); normally off operation; off-state breakdown voltage; p-GaN
high-electron-mobility transistor (HEMT)

1. Introduction

GaN power transistors have become key devices in high-power and high-efficiency
power conversion systems because of their suitable material properties, such as a wide
band gap, high electron mobility, and high critical breakdown field. Various approaches—
such as using a gate-recessed structure [1–3], fluorine ion treatment [4], and adopting a
p-type GaN cap layer—have been reported for enabling these devices to exhibit normally
off operation [5–7]. Next-generation, high-power, and high-frequency switching systems
are expected to be used in GaN power devices because of the superior characteristics
of these systems. In particular, p-GaN power devices could be accepted in the market
because the normally off operation offers a fail-safe requirement [8]. However, device
reliability is a crucial factor that must be considered when GaN power devices are applied
in high-power circuits. Many studies have examined the reliability of p-GaN high-electron-
mobility transistors (HEMTs), using methods such as the high-thermal reverse bias test
(HTRB) [9–11], high-temperature gate bias (HTGB)-stress-induced instability [12–14], hard-
switching robustness [15], and short-circuit safe operating area [16–18]; however, further
comprehensive research is still required on the long-term reliability of GaN HEMTs. The
reliability of p-GaN HEMTs depends on their VTH shifts [19], gate stress [20], and dynamic
performance [21] as well as temperature [22].

In power switching applications, the devices are repetitively switched between ON
and OFF states at high frequency. When the device is operated in OFF states, a high drain
bias stress might affect the device breakdown voltage and VTH shifts [23]. These shifts are
caused by a strong electric field, electron trapping and detrapping, and hole deficiencies.
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This can be explained by the existence of a charge storage mechanism. When a high drain
bias VDSQ is applied to a p-GaN gate HEMT, the gate-to-drain capacitance (CGD) is charged
to QGD (VDSQ). The net-positive charges at the drain-side access region are provided by the
depletion of a two-dimensional electron gas. Therefore, drain-induced VTH instability and
large VTH shifts are observed for p-GaN gate HEMTs when they are operated under a high
drain voltage [24]. Another problem observed when p-GaN power devices are used for
power switching is the dynamic on-state resistance (Ron), which is measured immediately
after the device is switched from the off state to the on state under a high drain stress.
However, when a high drain stress is applied during the off state of the device, an electric
field peak occurs at the gate edge, and some electrons might be accelerated and trapped in
the surface or epitaxial layer of the device [25].

Some researchers have explored the failure mechanisms of normally off p-GaN
HEMTs [26]. However, further research is required on this topic. According to Li, the
VTH shifts of a p-GaN gate HEMT under high-temperature reverse bias (HTRB) and NBTI
stress occur because of hole emission in the p-GaN layer induced by the reverse bias. Li
speculated that high temperatures can suppress the emission of holes or accelerate the
detrapping of holes in experiments conducted under HTRB [27].

This study designed p-GaN power devices with different field plate (FP) setups (in
terms of the number and positions of FP layers) and simulated the operation of these
devices by using the technology computer-aided design (TCAD) software of Silvaco to
examine their electric field between the gate and drain regions. The devices were then
subjected to DC, off-state breakdown voltage, pulse, HTRB, and HTGB measurements.

2. Simulation Results

Three devices with different numbers of FP layers (zero, two, and three) located at
different distances from the channel were designed. In this paper, the terms FP1, FP2,
and FP3 denote the first, second, and third FP layers, respectively. The distributions of
the electric fields of the devices under high drain bias were simulated using the TCAD
software of Silvaco (Figure 1a–c). For the p-GaN HEMT without an FP (Figure 1a), most of
the potential lines were concentrated around the drain side of the gate, which indicates that
a high electric field peak can form for this device. For the p-GaN HEMTs with FP layers,
high potential line density was observed at the drain side of the gate edge and the edges
of FP1, FP2, and FP3. These results can be attributed to the modulation effect of the FPs,
which disperse the electric field peak between the gate and drain regions.
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Figure 1. Electric field simulation results for a (a) p-GaN HEMT without an FP, (b) p-GaN HEMT
with three FP layers, and (c) p-GaN HEMT with two FP layers.
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3. Device Structure

p-GaN HEMTs were grown on 6-inch-diameter (15.24 cm-dia.) Si substrates through
metal–organic chemical vapor deposition (MOCVD). A 300-nm-thick undoped GaN channel
was deposited on top of a 4-µm-thick undoped GaN buffer transition layer. A 12-nm-thick
Al0.17Ga0.83N layer, 1-nm-thick AlN etching stop layer, and 70-nm-thick p-GaN layer were
then deposited in the channel. Finally, the wafer was annealed in an MOCVD chamber at
720 ◦C for 10 min in a N2 atmosphere, and the activated Mg concentration was determined
to be 1 × 1018 cm−3 through Hall effect measurement.

First, p-GaN island etching was achieved through ICP with Cl2/BCl3/SF6, and the
device was isolated through Ar+ ion implantation. Subsequently, a Ti/Al/Ni/Au layer
was deposited as an ohmic metal and then annealed at 875 ◦C for 30 s in a N2 atmosphere.
A SiN layer was then deposited on the device as a passivation layer, and a Mo/Au layer
was stacked as the gate metal after the gate through etching. To disperse the electric field
between the gate and drain regions, the first FP layer was deposited after the stacking of
SiN. The second and third FP layers were then stacked on the device (Figure 2a,b). Table 1
presents the distances from FP1 to the gate, from FP1 to the channel, from FP2 to the gate,
from FP2 to the channel, from FP3 to the gate, and from FP3 to the channel. The p-GaN
power devices with FP layers had LGS, LG, LGD, and WG values of 1.5 µm, 2 µm, 17.5 µm,
and 100 mm, respectively.
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Figure 2. Cross-sectional schematics of the devices with (a) two and (b) three FP layers.

Table 1. Distances in the devices with two and three FP layers.

(Unit=µm) LSD LGD LGS FP1~Gate FP1~Channel FP2~Gate FP2~Channel FP3~Gate FP3~Channel
Device with 2

FP layers 21 17.5 1.5
3 0.5 7 1.2 × ×

Device with 3
FP layers 2 0.3 4.75 0.7 10.5 1.7

4. Experimental Results and Discussion

The IDS–VGS, IDS–VDS, and IGS–VGS characteristics of the devices with two and three
FP layers are presented in Figure 3a–c, respectively. These characteristics were measured
using the Agilent B1505A power device analyzer at room temperature, and the maximum
current compliance was set to 20 A. No large differences were observed in the DC charac-
teristics of the devices under a low gate bias and drain bias because the epitaxial structure
of the devices was the same. Both devices exhibited a VTH value of 2.2 V and an IDS_Leakage

value of 1 × 10−6 A (Figure 3a). They exhibited a dynamic on-state resistance (Ron) of
200 mΩ, an IDS_saturation value of 15 A (@VDS = 10 V, VGS = 6 V), and an IGS_Leakage value
of 600 µA (@VGS = 6 V) (Figure 3b,c). To demonstrate the function of the FPs, the off-state
breakdown voltage was measured (Figure 3d). The devices with two and three FP layers
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exhibited off-state breakdown voltages of 1549 and 1353 V, respectively. Thus, both devices
exhibited the same leakage level between 0 and 1000 V, and the device with two FP layers
exhibited a lower leakage current than the device with three FP layers when the VDS bias
was higher than 1000 V. The highest off-state breakdown voltage can be attributed to the
electric field in the vertical direction, which was highly dispersed at the gate edges. In
general, FPs disperse the electric field at the gate edge effectively; thus, they can be used
to improve the horizontal electric potential line. However, the vertical electric potential
line is always ignored. As displayed in Figure 1b, when FP1 was closer to the channel,
the potential line density between FP1 and the channel was higher. By contrast, when the
distance between FP1 and the channel was longer, the potential line density between FP1
and the channel was sparser, which resulted in an increase in the device breakdown voltage
under a high drain bias (Figure 1c).
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Figure 3. (a) IDS-VGS, (b) IDS-VDS, (c) IGS-VGS, and (d) off-state breakdown voltage characteristics of
the devices with two and three FP layers.

For comparison with the international company, the measurement conditions were a
pulse width of 10 µs and a period of 2000 µs. The time waveform of the device under a
VDSQ value of 600 V is displayed in Figure 4a. As displayed in Figure 4b, Ron was measured
under different VDSQ values from 0 to 600 V in 100 V increments. The Ron values of the
devices with two and three FP layers were 1.36 and 1.31 times (@VDSQ = 600 V), respectively.
The Ron values of these devices increased as VDSQ was increased from 0 to 400 V. As VDSQ
was further increased from 400 to 600 V, Ron values of the devices decreased. The aim of this
study was to design an FP setup that can suppress the hot electron injection behavior at the
gate edge under a high drain stress bias [28]. The results can be attributed to the electron
trapping and detrapping as well as the two-dimensional hole gas (2DHG) in the devices
when they were operated at different VDSQ values. Therefore, the increase in Ron was
caused by hot electron injection and the trapping and detrapping of electrons at the device
surface or epitaxial interface during off-state operation, and then it could not be released
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when the device was turned on in the extremely short switching time. However, enhanced
vertical leakage was observed in the entire area between the source and the drain [29,30],
electron trapping was observed at donor defects [31], and the 2DHG formed at the interface
of C-doped GaN. The formation of a strain relief layer [32] under a high VDSQ value results
in a decrease in the number of trapped electrons, which causes a reduction in Ron [33].
The energy band diagram for the substrate region under a high VDSQ bias is displayed in
Figure 4c.
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under different VDSQ values, and (c) energy band diagram for the substrate region under a high
VDSQ bias.

The devices with two and three FP layers were subjected to HTRB and HTGB mea-
surements. For commercial GaN power devices, the stress bias in HTRB measurement is
set to 80% of the off-state breakdown voltage, and the stress bias in HTGB measurement is
set to 100% of the gate turn-on voltage (reference from JEDEC). In this study, during the
HTGB measurement, the drain and source were always grounded, the gate stress bias was
5 V, the chamber temperature was 150 ◦C, and the devices were under bias stress for 168 h.
Figure 5a presents the time tracks of the gate leakage currents (@VGS = 5 V) of both devices.
The results indicate that the gate leakage currents of both devices were distributed between
200 and 600 µA, and the devices did not break down after 168 h under bias stress. During
the HTRB measurement, the gate and source were always grounded, the drain stress bias
was 600 V, the chamber temperature was 150 ◦C, and the devices were under bias stress
for 168 h. Figure 5b displays time tracks of the drain leakage currents of both devices. The
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drain leakage currents of both devices were distributed between 50 and 200 µA, and the
devices did not break down after 168 h under bias stress.
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Figure 5. Time tracks of IDS for the devices with two and three FP layers in the (a) HTGB measurement
and (b) HTRB measurement.

After HTGB measurement, the IDS–VGS, IDS–VGS, and IGS–VGS characteristics of the
devices with two and three FP layers were measured again to observe the changes in these
parameters. After HTGB measurement, the device with two FP layers exhibited a VTH
shift of 15%, a 7% increase in Ron, and a 15% increase in the gate leakage current. The
device with three FP layers exhibited a VTH shift of 14%, a 4% increase in Ron, and a 6%
increase in the gate leakage current. After HTRB measurement, the DC characteristics of
the devices with two and three FP layers were remeasured to observe the changes in these
characteristics. After HTRB measurement, the device with two FP layers exhibited a VTH
shift of 4%, a 4% increase in Ron, and a 4% increase in the gate leakage current. The device
with three FP layers exhibited a VTH shift of 4%, a 4% increase in Ron, and a 4% increase in
the gate leakage current. The characteristics of the devices with two and three FP layers are
presented in Table 2.

Table 2. Characteristics of the devices with two and three fp layers after the htrb and htgb measurements.

HTGB VTH Ron IGS@VGS = 5 V

Temperature = 150 ◦C
VGS = 5 V

Time = 168 h

Device with 2 FP layers 15% 7% 15%

Device with 3 FP layers 14% 4% 6%

HTRB VTH Ron IGS@VGS = 5 V

Temperature = 150 ◦C
VDS = 600 V, VGS = 0 V

Time = 168 h

Device with 2 FP layers <4% <4% <4%

Device with 3 FP layers <4% <4% <4%

The results indicate that the device performance degraded after HTRB measurement.
After subjecting a p-GaN HEMT to HTRB, surface defects and negative charges are gen-
erated, which can result in a negative potential. Consequently, the channel is depleted of
electrons, and the gate depletion region is thus extended [34,35]. However, after a p-GaN
HEMT is subjected to HTGB, a strong electric field can favor the generation of defects in
p-GaN (similar to that observed in an AlGaN barrier under a negative bias), which leads to
the generation of leakage paths and consequently the failure of the gate junction [36].
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5. Conclusions

We compared the electrical characteristics of p-GaN HEMTs with different FP setups
using the TCAD software of Silvaco. The DC characteristics of p-GaN HEMTs with two and
three FP layers did not differ under low voltage operation. However, when these devices
were operated under a high drain bias, the device with two FP layers exhibited a higher
off-state breakdown voltage (1549 V) than the device with three FP layers (1353 V), which
can be attributed to the higher dispersion of the vertical electric field for the device with
two FP layers. Both devices exhibited low Ron values under high VDSQ values because of
the leakage current from the substrate region. The device with two FP layers had a lower
manufacturing cost than that with three FP layers. Thus, the device with two FP layers was
superior to that with three FP layers.
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