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Abstract: This paper presents a strategy to design ultrawideband power amplifiers with a fractional
bandwidth of approximately 200%. It exploits a simple output matching network, which consists of a
series transmission line together with a shunt stub, to compensate the output parasitic network of the
device. Following this, a multisection transformer is implemented to obtain the optimal load at the
intrinsic drain plane. As design examples, several output matching networks were designed for two
different size GaN HEMT devices. One of these examples was implemented and characterized, and a
drain efficiency from 52% to 70% and an output power between 40 dBm and 42.5 dBm were obtained,
over 67% of the 5G sub-6-GHz band (i.e., 0.1 to 4 GHz). The aforementioned results, to the best of the
authors’ knowledge, represent the state of the art in broadband power amplifiers.

Keywords: GaN-based FETs; ultrawideband power amplifiers; broadband matching networks

1. Introduction

Nowadays, 5G sub-6-GHz systems demand very high-speed transmission rates in
order to be able to deliver the always increasing amount of data that are generated by
millions of users around the world. This means that transmitters must cover large ranges
of frequencies, and so they make use of a power amplifier (PA), which is responsible for
increasing the wave energy with minimum waste, after the modulation process. Therefore,
solutions to design high efficiency and wideband PAs are a challenge that is always present
in the deployment of new communication networks.

In the literature, several approaches found hybrid PAs with a good efficiency for
bandwidths wider than an octave. For instance, in [1], a high efficiency PA with 145.5%
fractional bandwidth was obtained using a simplified device model. A 153.2% fractional
bandwidth PA was obtained in [2], where an estimation of the power and efficiency contours
was carried out in order to visualize a broadband output matching network (OMN). The
design process shown in [3] used an optimization algorithm to design a broadband PA with
equalized gain over the band, and a 145.6% fractional bandwidth was obtained. In [4], a
design process based on L-sections was proposed, obtaining a high efficiency over a 152.9%
fractional bandwidth. In addition, other methodologies have been implemented such as the
real frequency technique [5–7], wideband class J [8], and class E [9], among other harmonic
tuned PAs.

This paper presents an approach to design ultrawideband power amplifiers using
a simple OMN, focused only on the fundamental optimal load. This involves the use of
a series transmission line, a shunt stub, and a multisection transformer. Two examples,
using two different GaN HEMT devices, are theoretically studied, and one of them is
implemented and characterized as a demonstration circuit. The characterization of the
implemented amplifier shows state-of-the-art results in terms of high-efficiency bandwidth.
Its bandwidth extends from very low frequencies (i.e., 0.1 GHz) to 4 GHz, which means
that the PA covers 67% of the 5G sub-6-GHz band. The obtained drain efficiency is between
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52 and 70.7% over the band. A comparison with other state-of-the-art works is presented in
Table 1.

Table 1. Comparison of the designed and implemented PA with the state-of-the-art.

Ref. BW (GHz) Gain (dB) Output Power (dBm) PAE (%) Drain Efficiency (%)

[1] 0.6–3.8 9–14 40–41.9 46–75 51–76

[2] 0.45–3.4 8–10.5 41.5–44.3 54–70.4 -

[3] 0.85–5.4 8–9.5 43.5–44.9 45–55 -

[4] 0.4–3 10–12 40–42.5 53–72 -

This work 0.1–4 9–14 40–42.5 48–68 52–70.7

2. Output Network Topology and Bandwidth Estimation

In [10,11], the effective use of an equivalent output reactive network was used to
estimate the load dispersion, with respect to frequency, in high frequency field effect
transistors (FET). This simplified method proposes a network formed by a shunt capacitor
COUT and a series inductor LOUT, which separates the drain current generator and the
drain pin plane. Usually, these two reactive elements are referred to as the output parasitics
or the parasitic output network of the device. They are an unavoidable characteristic of the
device, which must be considered as part of the output matching network (OMN) or as
something undesirable to be compensated for.

Based on the above, this was the start point in this work. Whether the parasitic output
network is well compensated for a large bandwidth, is an important concept to exploit, as
this bandwidth can in theory be achieved, because with a wideband, real to real matching
is possible through a multi-section transformer. Let us consider a reference frequency fr,
which is used for all of the calculations presented in the following equations. It can be
demonstrated that a simple network involving a series transmission line and an open shunt
sufficiently compensate the parasitic effects through the correct selection of their electrical
lengths and characteristic admittances. Moreover, the bandwidth will be directly related to
fr. Thus, the proposed solution is shown in Figure 1, where iD is the drain current, and the
elements COUT and LOUT represent the estimated output parasitic network of the device.
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Therefore, the design consists of finding the appropriate values for the transmission
lines’ characteristic admittances and electrical lengths. As the function of the distributed
network is to compensate COUT and LOUT, the value of the real load GL is chosen as Gopt,
where Gopt is the optimal load for tuned load conditions in order to simultaneously obtain
the voltage and current saturation (i.e., IMAX/[2(VDD −Vk)]). Looking at Figure 1, the
external load admittance at the drain pin is given by

YX,S = Y01
GL + j(Y01T1 + T2)

Y01 − T1T2 + jGLT1
(1)

where T1 = tan θ1 and T2 = Y02 tan θ2.
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However, the optimal external load to perfectly compensate for the parasitic effects
COUT and LOUT, YX,O must be equal to

YX,O =
Gopt − jωCOUT

1−ω2LOUTCOUT − jωLOUTGopt
= GX,O + jBX,O (2)

Thus, the solution for the reference frequency fr is obtained by equalizing (1) and (2),
which leads to the following pair of equations,

GX,OT1T2 + BX,OGLT1 = Y01GX,O − Y01GL (3)

[Y2
01 −GX,OGL]T1 + Y01T2 + BX,OT1T2 = Y01BX,O (4)

Solving (3) and (4) for T1, a quadratic equation is obtained,[
GX,O

(
Y2

01 −GX,OGL

)
− B2

X,OGL

]
T2

1 − 2Y01BX,OGLT1 + Y2
01(GX,O −GL) = 0 (5)

Therefore, T1 is given by

T1 =
Y01BX,OGL ±

√
Y2

01B2
X,OG2

L − Y2
01

[
GX,O

(
Y2

01 −GX,OGL

)
− B2

X,OGL

]
(GX,O −GL)

GX,O

(
Y2

01 −GX,OGL

)
− B2

X,OGL

(6)

The sign before the square root is chosen to obtain a positive value for T1, and the
electrical length θ1 is obtained as

θ1 = arctanT1 (7)

As shown in Figure 1, GL = Gopt is assumed to guarantee the optimal load, even at
very low frequencies. Now, using (3),

T2 =
Y01(GX,O −GL)− BX,OGLT1

GX,OT1
(8)

and the electrical length θ2 is given by

θ2 = arctan
(

T2

Y02

)
(9)

Notice that (7) and (9) depend on the characteristic admittances Y01 and Y02. In this
framework, they are left as the free selection variables. However, an estimation of the bandwidth
is recommended to evaluate the selection of these variables. To this purpose, as a criterion for
estimating the bandwidth, the following intrinsic reflection coefficient is defined as

Γint = −
Yint −Gopt

Yint + Gopt
(10)

with

Yint = jωCOUT +
YX,S

(
1

jωLOUT

)
YX,S +

1
jωLOUT

(11)

Thus, the bandwidth here is defined by Γmax, the maximum value of |Γint| that can
be tolerated.

3. Design and Implementation

Let us consider two different devices to demonstrate the effectiveness of the design
equations proposed in Section 2. These are the Wolfspeed (Durham, NC, USA) CG2H40010
and CG2H40025 GaN HEMT devices. Table 2 shows the values for COUT and LOUT for both
devices, respectively.
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Table 2. Parasitic estimations for the CG2H40010 and CG2H40025 GaN HEMT devices.

Device LOUT COUT Gopt

CG2H40010 0.45 nH 2.03 pF 1/25 S

CG2H40025 0.49 nH 3.39 pF 1/14 S

In this case, Y01 is selected in order to match the physical dimensions of the device’s
drain pin. Both devices have a drain pin width of 1.4 mm. Hence, Y01 = 1

46 S is a good
selection for a Taconic RF35 substrate with εr = 3.5 and 0.76 mm in height. This value
ensures the needed soldering space at the drain pin. Y02 is chosen only looking at Γint,
as given in Equation (10). As an example, let us consider the CG2H40010 device and
fr = 3.5 GHz. Using (6)–(9), for different implementable values of Y02, θ1 and θ2 are
obtained, as presented in Table 3. Figure 2 shows |Γint| versus frequency, which provides
a notion of the expected bandwidth. It is noticeable that, if Γmax = 0.2 is considered, a
bandwidth from almost 0 Hz to 4 GHz is expected for Y02 = 1

30 S. As can be seen in Figure 2,
for greater values of Y02, the bandwidth tends to increase slightly. Therefore, Y02 = 1

30 S is
considered to be a very good implementable selection in this work.

Table 3. θ1 and θ2 calculations using Equations (6)–(9) for CG2H40010 with fr = 3.5 GHz.

Y01 Y02 θ1 θ2

1/46 S 1/30 S 19.5◦ 51.3◦

1/46 S 1/50 S 19.5◦ 64.4◦

1/46 S 1/100 S 19.5◦ 76.5◦
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Figure 2. |Γint| for different values of Y02 using the CG2H40010 device.

With the values of Y01 and Y02, using (6)–(11), |Γint| can also be studied for different
values of fr. This is shown in Figure 3 for both devices. In Table 4, the obtained values of θ1
and θ2 versus fr are presented.

As the interest of this work is to design an amplifier that covers most of the 5G sub-6-
GHz band, fr = 3.5 GHz together with CG2H40010 were selected as a suitable option for
implementation and case study. However, the complete PA design can also be carried out
using CG2H40025, as demonstrated in [2], where an Input Matching Network (IMN) and
stability network were designed for broadband applications for this device. Thus, the PA
schematic is shown in Figure 4. As mentioned above, the substrate RF 35 with εr = 3.5
and h = 0.76 mm was used. As usual, the IMN has been designed including two low
impedance shunt stubs and an RC stability network. Two choke inductors in series were
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implemented as part of the bias-T at the OMN, and the typical 50-ohm terminal load was
transformed to GL = Gopt =

1
25 S through a four-section Chebyshev transformer. A class

AB bias point was adopted with VDD = 28 V and VGG = −2.7 V (IDD = 150 mA). The
implemented PA is presented in Figure 5. In this case, an ad hoc aluminum carrier was
used as a heat sink.
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Figure 5. Picture of the designed PA. Size: 12.8 cm × 5 cm.

The Continuos Wave (CW) characterization results are shown in Figure 6. As can be
noticed, a 4 GHz bandwidth was obtained from very low frequencies up to 4 GHz. Over
this band, a drain efficiency between 52% and 70% was obtained, while the output power
was from 40 dBm to 42.5 dBm. The transducer gain was always higher than 9 dB over the
band. To the best of the authors´ knowledge, these results represent a state-of-the-art single
stage PA design.
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