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Abstract: To date, live-cell imaging at the nanometer scale remains challenging. Even though super-
resolution microscopy methods have enabled visualization of sub-cellular structures below the optical
resolution limit, the spatial resolution is still far from enough for the structural reconstruction of
biomolecules in vivo (i.e., ~24 nm thickness of microtubule fiber). In this study, a deep learning
network named A-net was developed and shows that the resolution of cytoskeleton images captured
by a confocal microscope can be significantly improved by combining the A-net deep learning
network with the DWDC algorithm based on a degradation model. Utilizing the DWDC algorithm to
construct new datasets and taking advantage of A-net neural network’s features (i.e., considerably
fewer layers and relatively small dataset), the noise and flocculent structures which originally interfere
with the cellular structure in the raw image are significantly removed, with the spatial resolution
improved by a factor of 10. The investigation shows a universal approach for exacting structural
details of biomolecules, cells and organs from low-resolution images.

Keywords: super-resolution reconstruction; A-net; deep learning network; cytoskeleton

1. Introduction

Microscale organizations and nanoscale biomolecular structures play essential roles in
life machinery, e.g., the nanopores control transportation [1] and the cytoskeleton behaves
as a mechanosensor [2]. To understand the underlying mechanism of cellular behavior, it is
important to monitor the dynamics of biomolecules at resolution of tens of nanometers, e.g.,
the ~50 nm persistence length of DNA [3] and ~24 nm thickness of microtubule fiber [4].
Imaging platforms, which are reported to achieve such resolution, include transmission
electron microscopy (TEM, 300 nm) [5], scanning electron microscopy (SEM, 200 nm) [6],
cryogenic electron microscopy (Cryo-EM, 200 nm) [7] and stimulated emission depletion
(STED, 20 nm) microscopy [8], etc. TEM, SEM and Cyto-EM, however, are not suitable
for live-cell imaging and monitoring molecular dynamics in vivo [9]. STED microscopy is
a promising technique. Its application is, however, hindered by the presence of specific
fluorophores [10], excessively complex operational procedures [11], and high cost [12].
Considering the fact that there exist large quantities of image data in various databases [13],
and most laboratories are only equipped with commonplace inverted microscopes with
sub-micron resolution and high noise level, it is critical to develop a numerical approach,
which can exact molecular information from poor quality images.

Currently, reported image processing algorithms can be categorized as traditional [14,15],
and deep-learning image processing algorithms. The latter have become a focus of the
image processing community, and many algorithms have been developed. For instance,
the super-resolution convolutional neural network (SRCNN) [16] is an end-to-end network
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developed and based on sparse coding to obtain a sharper edge and higher resolution
of images. The shortcomings of SRCNN include the sacrifice of processing speed to
realize an acceptable restoration quality. The fast super-resolution convolutional neural
network (FSRCNN) [17] is an update of SRCNN. It provides a large speed boost, while
simultaneously losing details as a result of excessive smoothing. The super-resolution
generative adversarial network (SRGAN) [18] optimizes loss function to obtain high PSNR
(peak SNR) and to enhance the restored image’s sense of reality. Visually, the restored
images show better reality; however, the PSNR of images is reduced. Additionally, these
algorithms primarily aim to enrich the pixel information of the image and not to improve
the image’s intrinsic optical resolution.

In this investigation, a deep learning network named A-net is proposed by improving the
structure of the U-net network. Accompanied with a traditional degradation model to process
label images, the details of a microtubule network captured by a confocal microscope can
be extracted with higher resolution and SNR. In brief, raw images were firstly processed by
threshold denoising and a three-dimensional Gaussian interpolation. Then, the corresponding
label images were obtained using the DWDC method [19], which combines discrete wavelet
and Lucy–Richardson deconvolution [20] to extract finer structures. The pairs of original
images with the corresponding label images served as our own datasets, relying on which the
A-net network was trained. Finally, the test images were processed according to the A-net
network. It is demonstrated that our method can effectively remove noise and flocculent
structures in the raw images, resulting in ~10 times increased resolution.

2. Related Works

As the purpose of this paper is to explore super-resolution algorithms based on neural
networks, the existing algorithms for improving image resolution are reviewed in the first part,
followed by detailed introduction on the super-resolution algorithms based on deep learning.

2.1. Traditional Methods

Traditional image processing algorithms mainly rely on basic digital image processing
techniques. Generally, there are three categories: interpolation-based algorithms [21–23],
degenerate-model-based algorithms [24–26] and learning-based algorithms [27–30].

Interpolation-based algorithms [31,32] use the original pixel information of the low-
resolution image to “guess” the sub-pixel information of image based on interpolation.
It can effectively upgrade the low-resolution image to high resolution with more pixels.
Nevertheless, in practical applications, the interpolation algorithms can only improve the
image details in a very limited way.

Degenerate-model-based algorithms [33,34] focus on establishing an observation
model for the acquisition process of images, and then realize super-resolution reconstruc-
tion by solving the inverse problem of the observation model. The observation model
describes the process of obtaining the low-resolution observation image from the high-
resolution image by the imaging system, as shown in Formula (1):

L = H ∗ f + N (1)

where L is the low-resolution image, H is the high-resolution image, f is a transformation
function (i.e., the point-spread function in the optical system) and N is noise. This method
restores the actual information of the object with a higher resolution, based on the estimation
of f . Commonly, this type of super-resolution algorithm includes iterative backprojection
(IBP) [34], projection of convex set (POCS) [25], maximum posterior probability (MAP) [35],
or Bayesian analysis [36,37] methods, etc. These methods aim improve the visual quality of
images and restore object details. However, they also suffer a series of problems, e.g., the
processing speed is generally slow and may lead to spurious images.

Learning-based algorithms [38,39] aim to build a mapping between the low-resolution
image and the corresponding high-resolution image by prior training and learning from the
dataset. Learning-based algorithms are mainly realized by machine learning. There are sev-
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eral commonly used machine learning methods, including neighborhood embedding [40],
support vector regression [41,42], manifold learning [43], sparse representation [44,45], etc.
Learning-based algorithms are limited by several disadvantages including the need to
manually optimize parameters and the lack of end-to-end training, which leads to poor
algorithm applicability.

2.2. Deep-Learning-Based Algorithm

In recent years, various deep-learning-based super-resolution algorithms have been
developed. Dong et al. [16] first applied a deep neural network to super-resolution pro-
cessing. They proposed SRCNN to learn the end-to-end mapping between low-resolution
images and corresponding high-resolution images. A three-layer convolutional neural net-
work is combined with bilinear interpolation and nonlinear mapping to form the SRCNN
algorithm. SRCNN algorithm automatically optimizes all parameters by learning from
the input training set, and can therefore reach an average PSNR value of 30.09 dB with
a runtime of 0.18 s per image. Dong et al. [17] developed FSRCNN based on SRCNN. A
deconvolution layer was used at the end of the network to enlarge the image size, which
can save time by eliminating the pretraining phase. The network also replaces convolution
kernels in SRCNN with smaller convolution kernels and shares convolution layers in order
to reduce the computation. These improvements help the network reduce the calculation
parameters and speed up the processing. As a consequence, FSRCNN has very fast process-
ing speed without the loss of restoration quality and achieves an average PSNR of 32.87 dB
with a processing speed of 24.7 fps.

Kim et al. [46] extended the network to 20 layers based on SRCNN and introduced
residual structure into the network, i.e., very deep convolutional networks (VDSR). The
deep network layer has a larger receptive field, and more information can be learned with
better accuracy. The VDSR network uses the residual learning method to limit the gradient
to a certain range, which can speed up the convergence process. As compared to SRCNN,
the VDSR network realized higher accuracy, faster convergence, and greater resolution of
folds. In their investigation, VDSR achieves an average PSNR of 37.53 dB.

In the aforementioned methods, excessive smoothing of an image is inevitable and
could lead to a spurious image. Ledig et al. [18] proposed a generative adversarial network
(SRGAN), which is developed on the basis of the generative adversarial network (GAN) to
solve the problem for super-resolution processing and recovering finer texture structures.
The generate network generates high-resolution prediction images from low-resolution
original images, and the discriminate network determines whether the prediction image
is consistent with the corresponding label image. Although the PSNR values were not
apparently improved, the details of the image were enhanced to super-resolution level. It
should be noted, again, they aim to enrich the pixel information of the image, e.g., from
512 × 512 pixels to 1024 × 1024 pixels, not to improve the intrinsic optical resolution of
image, e.g., from 300 to 100 nm.

3. Algorithm

To improve the resolution of a poor quality image intrinsically, i.e., extract the real
structure from a blurred and noisy image, a new algorithm combining traditional image
preprocessing algorithms based on the degenerate model and A-net network [47] is pro-
posed here. The overall framework of this algorithm is shown schematically in Figure 1. For
the A-net deep learning network, the image pairs of original and label images are required
to construct training datasets for the deep neural network. Because of the scarcity and
particularity of biological images, it is necessary to build our own biological microtubule
image dataset (i.e., SR_MUI dataset), which is obtained using the DWDC method [19] that
constitutes of a series of preprocessing methods, discrete wavelet method, Lucy–Richardson
deconvolution method and postprocessing methods. The training dataset is input into
the network so that the A-net network can learn the mapping relationship between low-
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resolution images and high-resolution label images. The test dataset is then input into the
A-net network for prediction, and the super-resolution images are obtained.
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Figure 1. Overall framework of the algorithm. A series of preprocessing methods are used to obtain
the original image and the label image from the raw image. Denoise and a three-dimensional Gaussian
interpolation is performed on the raw confocal images to obtain the original image, as shown by
the green arrow. Then, the DWDC algorithm and a binarization are used to obtain high-resolution
label images (shown by the yellow arrow). The original image and the corresponding label image are
composed of image pairs and cropped into 512 × 512 size to construct the biological microtubule
image dataset, referred to as the SR_MUI dataset. A-net network trains the parameters in the network
through the image of the training dataset, and then obtains the corresponding prediction results. In
postprocessing, as shown by the orange arrow, applying binarization on the prediction image obtains
a shrinkage outline of the microtubule structures. Subsequently, the binary image is multiplied by
the test image to acquire the result image.

3.1. Raw Images and Processing Targets

The raw images to be processed in this paper are confocal fluorescent images of 3T3
fibroblast microtubule labeled by tubulin fluorescent dye, which is excited at 640 nm and
emitted around 674 nm (Figure 2). The raw images were captured by a commercial confocal
microscope (Nikon A1 LFOV) using an Olympus 100X NA1.4 oil immersion objective lens.
Each raw confocal image is in 16-bit TIF format with a size that is 512 × 512 pixels. The
pixel interval is 0.25 µm.
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images captured by a commercial confocal microscope (Nikon A1 LFOV) with an Olympus 100X
NA1.4 oil immersion objective lens. Images in (a,b) show the different structures and shapes;
(c,d) show separately the details of local regions within the white boxes of (a,b). The raw images are
all of 512 × 512 size.

It can be observed that the filament-like microtubule structures are widely present in
cells, characterized by poor SNR, insufficient spatial resolution and much noise information.
In the investigation, it is our goal to develop a universal algorithm to obtain super-resolution
images of microtubules from such low-resolution images.

3.2. Preprocessing

In order to improve the SNR of the image, threshold denoising is used first to re-
duce image noise. Since the pixel interval in the raw image is 0.25 µm, it restricts the
image resolution to be further improved. To restore the details of the targets, a three-
dimensional Gaussian interpolation is performed twice, with the Gaussian function as

g = g0 exp
[
− (x−xc)

2+(y−yc)
2

2r2
⊥

− (z−zc)
2

2r2
‖

]
, where r⊥ = 0.61λe/NA and r‖ = 4nλe/2N2

A being

the transverse and axial radius, respectively; xc, yc and zc are the interpolation center
coordinates; n is the refraction index of medium; NA is the numerical aperture of the lens
and λe is the wavelength of the excitation beam.

Accordingly, the image size is extended from 512 × 512 to 2048 × 2048, leading
to reduced pixel interval of 63 nm. The z-stack interval is also reduced from 1 µm to
250 nm. Then, the DWDC algorithm is used to obtain high-resolution label images [19]. In
this method, discrete wavelet analysis and the Lucy–Richardson deconvolution method
are combined, with binarization and threshold processing, in order to extract the sketch
of microtubule structures and prevent the detailed information to be immersed by the
background. The method is capable of significantly improving the image resolution of a
3t3 fibroblast microtubule up to 15 times and realizes 123.7 nm resolution. The details of
the structure of the microtubule are clearly reserved. Therefore, it is appropriate to use the
DWDC method to obtain the label images.

It is well known that larger image size increases the number of network parameters,
e.g., the size of the convolutional layer and the computation cost of the loss function. In
the process, the expansion brings heavy burden to the server and network for computing.
For instance, if the size of the feature convolution layer according to a 512 × 512 image
imported into the U-net model is 32 × 32 × 1024, then the size of that when importing a
2048 × 2048 image into the U-net model is 128 × 128 × 1024. The storage requirement is
increased 16 times and the computation cost could be more than 16 times, since the neural
network is nonlinear.

To improve the efficiency of training, a series of preprocessing steps are made, as
diagrammed in Figure 3. On one hand, the original 16-bit TIF images are converted to 8-bit
TIF images by projecting data from 16-bit to 8-bit using an approximately linear approach.
On the other hand, each image of 2048 × 2048 size, either the original one or the label one,
is split into 16 sub-images of 512 × 512 size. Thus, the SR_MUI dataset is constructed by
pairing the sub-images corresponding to the original and label images.

It is worth mentioning that since the image size of the training set is 512 × 512, when
the test image is input into the A-net network, each test image needs to be divided into 16
sub-images of 512 × 512 pixels as well. These sub-images of test images are processed by
the A-net network and the corresponding super-resolution prediction images are obtained.
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and a three-dimensional Gaussian interpolation are carried out on the raw confocal images. The
image after these processing steps is adopted as the original image for the A-net network. Then,
the DWDC algorithm is applied on the original images to obtain high-resolution label images. The
label image is further binarized to prevent the network from learning additional feature information.
Subsequently, both the original and label images are converted from 16-bit data to 8-bit, and split from
2048 × 2048 pixels to 16 sub-images of 512 × 512 pixels, to reduce the load of A-net computation.
Finally, the corresponding sub-image pairs form the SR_MUI dataset.

3.3. A-Net Network

This investigation focuses on the filament-like microtubule structures that can be
approximated as a cluster or mesh of segments. Thus, the U-net network, which has
been widely used in image segmentation, was applied here for biostructure extraction and
super-resolution processing. One of the most significant advantages of the U-net is that it
does not require a large biological dataset. This is particularly important for us, since our
dataset is relatively small and there are no established works or public datasets that can
fulfill our purpose.

The U-net network is composed of the encoder network and the decoder network
with symmetric structures. In the encoder network, there are four convolution blocks for
feature maps of different sizes. In the convolution block, there are two 3 × 3 convolutions
in sequence, followed by 2 × 2 max pooling. In the decoder network, there are also four
deconvolution blocks corresponding to the encoder network. In the deconvolution block,
there are two 3 × 3 convolutions in sequence, followed by a transposed convolution. The
encoder network doubles the number of channels, reducing the sample size of the feature
map by half. The decoder network doubles the size of the feature map and half the channel
numbers. Therefore, the encoder–decoder network transforms the input image into small-
size and multichannel feature maps, and then decodes the feature map to an output image
with the same size. At the same time, a skip-connection is adopted in the U-net network.
This operation can connect feature maps in different sizes, which is helpful for gradient
propagation and network convergence. All the convolutions in this neural network are
followed by batch normalization (BN) and a rectified linear unit (ReLU) for faster training
and to prevent the gradient vanishing problem.

Since the sizes of the input image and output image of the U-net network are inconsis-
tent, in order to make the output images of the U-net network have the same size as the
input image, all valid convolution in the network is replaced with the same convolution.
The employment of the same convolution makes the feature maps of the corresponding
layers in encoding network and decoding network exactly the same size. Thereafter, it
is appropriate to directly copy the feature map of the encoding network to the decoding
network, as shown in Figure 4, and combine it with the feature map of the decoding
network through the skip connection. This process avoids the crop operations in the U-net
network, which can simplify the processing and reduce the image mismatching during
cropping. Accordingly, the revised U-net network is named A-net in this paper.
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Figure 4. A-net network architecture. In the network framework, the blue box denotes different
feature maps in different layers. The corresponding channel numbers are provided at the top of
the box. The white box denotes copied feature maps. Different colored arrows represent different
operations, which are labeled in the figure legend.

The loss function of A-net is calculated by combining the cross-entropy loss function
with a pixel-wise soft-max on the final feature map. The soft-max function can be calculated
as follows:

Pi(x) =
exp[ai(x)]

∑M
j=1 exp

[
aj(x)

] (2)

where Pi(x) denotes the approximated maximum function, i represents the category of
pixels, ai(x) represents the activation function score of the category of pixel is i with the
pixel position x ∈ Ω and Ω ⊂ Z2, M represents the number of classes, aj(x) represents the
activation function score when the category of image pixel points is j, and ∑M

j=1 exp
[
aj(x)

]
represents the sum of all classes of activation functions. In conclusion, Pi(x) is the classi-
fication result of pixel x of class M, maximizing the most likely result while suppressing
the probability of other categories. The sum of probabilities of all prediction categories is 1.
For the i that has the maximum activation ai(x), the responding Pi(x) ≈ 1, while for all the
other i the responding Pi(x) ≈ 0. Then, cross-entropy penalizes Pg(x)(x) for a deviation
from 1 at every position by Equation (3):

E = ∑x∈Ω ω(x) log
[

Pg(x)(x)
]

(3)

where ω ∈ Ω with Ω ⊂ R denotes a weight and g(x) denotes the ground truth of each pixel.
The purpose of setting ω is to give higher weights to pixels in the image that are close to the
boundary points. In order to let the network learn to distinguish smaller boundaries, the
weight graph is calculated in advance with ground truth of each pixel in the label images.

3.4. Postprocessing

The A-net network predicts the input sub-images (512 × 512 pixels) of the test image
and obtains corresponding predicted sub-images (512× 512 pixels), which are subsequently
assembled as prediction image (2048 × 2048 pixels). Then, a binarization step is applied on
the prediction image in order to obtain a shrinkage outline of the microtubule structures.
Subsequently, the binary image is multiplied with the test image to obtain the result image
(shown in the Results section).

4. Experiments
4.1. SR_MUI Dataset

In this investigation, a biological microtubule image dataset, i.e., SR_MUI dataset, is
constructed based on 3t3 cell images. The raw confocal image, the original image, and the
high-resolution label images are shown in Figure 5.
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Figure 5. Images during the production of the SR_MUI dataset. (a) The raw 3t3 cell images captured
by confocal microscope (Nikon A1 LFOV), the image size is 512 × 512; (b) the image obtained by
the threshold denoising algorithm and three-dimensional Gaussian interpolation algorithm from (a),
the image size is 2048 × 2048; (c) shows the high-resolution label images obtained by the DWDC
algorithm and a binarization from (a), the image size is 2048 × 2048.

In the SR_MUI dataset, there are 200 image pairs for training and 50 images for
testing. A preview of SR_MUI dataset is shown in Figure 6. It can be seen that the label
images clearly extract the sketch of the microtubule structures from the noisy and blurry
raw images.
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Figure 6. A preview of the SR_MUI dataset: (a,b) shows the sub-original images in the SR_MUI
dataset and (c,d) show the corresponding high-resolution sub-label images. The sub-image of original
and the sub-image of label compose image pairs to form the training dataset. The white scale bar
represents 10 µm.

4.2. Implementation

The numerical experiment is performed on the PyTorch platform with Python lan-
guage. This study trained and tested the A-net network on a server with 10 NVidia RTX
2080TI GPUs. The epoch number is 200. The size of the minibatch is 1. In the entire training
process, the A-net network adopts the Adam optimizer. In the testing process, the test im-
ages (2048× 2048 pixels) were split into 16 sub-images (512× 512 pixels). After input of the
16 sub-images into the A-net network to obtain the corresponding prediction images, the
16 prediction images were assembled to acquire the prediction image of 2048 × 2048 pixels.
The resulting image is obtained after postprocessing.
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5. Results

Figure 7a is a typical test image that has low SNR and poor resolution. The cluster
of microtubule structures can be roughly distinguished from the crowded backgrounds;
the image cannot provide more accurate information on the microtubule distribution. In
contrast, in the result images after A-net training, the noise is significantly suppressed and
the microtubule structure information is extracted from the test image. In addition, after
zooming in on the local image structures of both the test and result images, it can be seen
that the two images (Figure 7c,d) show consistent structures of the microtubule.
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Figure 7. Comparison of the test image and the result image. (a) A test image placed into the A-net
network and (b) the resulting super-resolution image. The test image is obtained through applying
binarization on prediction images output from the AU-net network and multiplying the binary image
with the test image. The image size is 2048 × 2048. The comparison of local regions in the red boxes
of the test image and the result image are shown in (c,d).

At the same time, in order to verify the consistency of microtubule structures between
the test images and the result image, the two images are overlapped, as shown in Figure 8.
For a different test image, the microtubule structures are concisely highlighted by the result
image. The results clearly demonstrate the capability of the A-net network on preserving
the raw filament-like structures. It should be noted, as a result of the high noise level,
that some structures have been inevitably segmented. However, the results do not affect
estimation of the overall topology of the microtubule structures.
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Figure 8. Test and result images are overlapped to show the consistency of structures. The test image
is shown in red and the result image is shown in white. It can be seen that the main structures in the
test picture have been extracted and show high consistency with the result image.

Figure 9 shows the comparison of the image intensity profiles along the horizontal
direction between the test and result images. Here, only parts of the intensity profiles are
plotted as an example to show the improvement in the images [48]. Observe that the image
intensity distribution of the result image has a sharper peak and apparently lower noise.
Overall, the result image retains a large amount of the structural information contained in
the test image. The resolution of distinguishing the microtubule structures can be evaluated
by the full width at half maxima (FWHM) [49,50]. As shown in the right column of Figure 9,
the FWHM in the test image is 1.19 µm as compared to 120 nm in the result image. A super
resolution with ~10 times improvement of resolution compared to the original image has
been realized.
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Figure 9. Comparison of the image intensity distribution between the test image and the result image.
The left figure is the intensity profiles along the horizontal direction. On the right is a zoom-in view
of the left figure in the marked position. The FWHM of the test image is 1.19 µm and that of the result
image is 120 nm.

At the same time, the result images obtained by the A-net network are compared with
those obtained by the DWDC algorithm, as shown in Figure 10. The FWHM of the result
image obtained by the DWDC algorithm is 290 nm, and that of A-net network is 252 nm.
An improvement of over 10% has been realized, even though DWDC has already exhibited
super-resolution image processing capability.

For the result image, the SSIM and PSNR are 0.22 and 25.88, respectively, which are
surprisingly low. This is because our purpose is to extract the information of microtubule
structures with super resolution; the SSIM and PSNR values cannot provide effective
evaluation on image processing. Although there is currently no appropriate criterion to
evaluate the processing, the improvement in visual visibility and clarity of image structure
is sufficient to demonstrate the effectiveness of this algorithm.



Micromachines 2022, 13, 1515 11 of 13

Micromachines 2022, 13, x  11 of 14 
 

 

the test image. The resolution of distinguishing the microtubule structures can be evalu-
ated by the full width at half maxima (FWHM) [49,50]. As shown in the right column of 
Figure 9, the FWHM in the test image is 1.19 µm as compared to 120 nm in the result 
image. A super resolution with ~10 times improvement of resolution compared to the 
original image has been realized. 

 
Figure 9. Comparison of the image intensity distribution between the test image and the result im-
age. The left figure is the intensity profiles along the horizontal direction. On the right is a zoom-in 
view of the left figure in the marked position. The FWHM of the test image is 1.19 µm and that of 
the result image is 120 nm. 

At the same time, the result images obtained by the A-net network are compared 
with those obtained by the DWDC algorithm, as shown in Figure 10. The FWHM of the 
result image obtained by the DWDC algorithm is 290 nm, and that of A-net network is 
252 nm. An improvement of over 10% has been realized, even though DWDC has already 
exhibited super-resolution image processing capability. 

 
Figure 10. Comparison of the image intensity distribution between the result images from DWDC 
algorithm and A-net network. The left figure is the intensity profiles along the horizontal direction. 
On the right is a zoom-in view of the left figure in the marked position. The FWHM of the result 
image from the DWDC method is 290 nm, and that of A-net is 252 nm. 

For the result image, the SSIM and PSNR are 0.22 and 25.88, respectively, which are 
surprisingly low. This is because our purpose is to extract the information of microtubule 
structures with super resolution; the SSIM and PSNR values cannot provide effective eval-
uation on image processing. Although there is currently no appropriate criterion to eval-
uate the processing, the improvement in visual visibility and clarity of image structure is 
sufficient to demonstrate the effectiveness of this algorithm. 

Furthermore, in this study, the three-dimensional (3D) structures of microtubule on 
the basis of raw and result images layer-by-layer is built, as shown in Figure 11a,b, respec-
tively. Figure 11c displays the 3D view of the lower left region of (b). As a result of the 
low signal–noise ratio of raw images, the 3D microtubule structures constructed from the 
raw images are blurry and unclear. The spatial distributions of the structures and even 
the skeleton are indistinguishable. In contrast, the 3D microtubule structures constructed 
from result images eliminate the noise and show the structures clearly. The major biolog-
ical structures are continuous, which supports the effectiveness of the method. 
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algorithm and A-net network. The left figure is the intensity profiles along the horizontal direction.
On the right is a zoom-in view of the left figure in the marked position. The FWHM of the result
image from the DWDC method is 290 nm, and that of A-net is 252 nm.

Furthermore, in this study, the three-dimensional (3D) structures of microtubule on the
basis of raw and result images layer-by-layer is built, as shown in Figure 11a,b, respectively.
Figure 11c displays the 3D view of the lower left region of (b). As a result of the low
signal–noise ratio of raw images, the 3D microtubule structures constructed from the raw
images are blurry and unclear. The spatial distributions of the structures and even the
skeleton are indistinguishable. In contrast, the 3D microtubule structures constructed from
result images eliminate the noise and show the structures clearly. The major biological
structures are continuous, which supports the effectiveness of the method.
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Figure 11. Three-dimensional microtubule structures reconstructed by a set of result images:
(a) 3D microtubule structures by raw images (see Visualization 1 for details) and (b) 3D micro-
tubule structures by the result image. (c) Zoom-in view of the lower left region of (b) (see Visual-
ization 2 for details). The influence of noise has been significantly inhibited and the cell structure is
clearly displayed.

6. Conclusions

In this investigation, a new method based on the A-net neural network and DWDC
method is advanced and used to extract the molecular structure of 3t3 fibroblast microtubule
networks from poor quality confocal images. The method requires a relatively small data set
and avoids the difficulty of acquiring biological images in biomedical and medical imaging
disciplines. The experimental results indicate a 10-fold improvement of spatial resolution,
with a super resolution of 120 nm revealed from raw confocal images. The algorithm
provides a general way for improving the resolution of filament-like structures with fewer
computation resources. The algorithm will benefit broad biological and biomedical research,
which rely strongly on optical imaging techniques.
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