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Abstract: With the development of silicon photonics, dense photonic integrated circuits play a
significant role in applications such as light detection and ranging systems, photonic computing
accelerators, miniaturized spectrometers, and so on. Recently, extensive research work has been
carried out on the phase shifter, which acts as the fundamental building block in the photonic inte-
grated circuit. In this review, we overview different types of silicon photonic phase shifters, including
micro-electro-mechanical systems (MEMS), thermo-optics, and free-carrier depletion types, high-
lighting the MEMS-based ones. The major working principles of these phase shifters are introduced
and analyzed. Additionally, the related works are summarized and compared. Moreover, some
emerging applications utilizing phase shifters are introduced, such as neuromorphic computing
systems, photonic accelerators, multi-purpose processing cores, etc. Finally, a discussion on each
kind of phase shifter is given based on the figures of merit.

Keywords: silicon photonics; phase shifters; MEMS; thermo-optics; free-carrier-depletion; photonic
accelerator; on-chip spectrometer; neuromorphic computing

1. Introduction

The past few decades have witnessed a huge growth in silicon photonics. Photonic
integrated circuits (PICs) have been widely used and studied in areas such as telecom-
munications, lab-on-a-chip sensing, and quantum computing [1–7]. Benefitting from the
broadband optical transparency (from 1.3 µm to 8 µm), high refractive index (n = 3.4757
at λ = 1550 nm, room temperature), and compatible manufacturing process with matured
complementary metal–oxide semiconductor (CMOS) technologies [8–10], the silicon-on-
insulator (SOI) substrate has become one of the most important platforms for on-chip
PICs [11–13]. To meet the rapidly increasing demand for data communication, optical
path routing, and optical signal modulation, passive and active optical components based
on the SOI platform have been extensively studied in the past few decades [8–10,14–17].
Furthermore, the commercialization of silicon photonics has begun to take shape [18].
Some matured and advanced commercial foundries, such as the Advanced Micro Foundry
(AMF) from Singapore, the American Institute for Manufacturing Integrated Photonics
(AIM) from the United States, and the Interuniversity Microelectronics Centre (IMEC)
from Belgium, have made great efforts and built promising PIC component libraries, in-
cluding strip and rib waveguide, power splitter, grating coupler, waveguide crossing,
directional coupler, micro-ring resonator, thermal-optical phase shifter, and so on. With
intensive efforts, the propagation loss of silicon wire waveguide has been reduced to below
1.0 dB/cm by researchers, which paves the way to build large-scale PIC applications [19].
Moreover, packaging technology has been extensively explored [20–23], which leads to a
high-level chip-scale integration including on-chip components such as photodetector (PD),
modulator, laser source, and fiber-to-chip coupler.

With the development of dense PICs, effective and high-performance on-chip active
components are urgently needed to realize complex on-chip functions. Phase shifters are
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one of the most important components in building PICs. A building block that offers two
inputs and two outputs capable of power tuning and phase shifting can be considered a
fundamental unit in large-scale PICs [24]. The phase shifter here refers to modulating the
phase of the transmission wave only without changing the amplitude, where the power
tuning function can be obtained by forming the interferometer based on phase shifters.
Using enough amounts of such building blocks, an arbitrary linear optical system can be
built. Using well-integrated phase shifters, researchers have reported various applications
such as neuromorphic computing systems [25,26], optical phased arrays [27–30], light
detection and ranging (LiDAR) systems [31,32], on-chip spectrometers [33–35], photonic
accelerators [26,36,37], and so on. In this review paper, we focus on the recent progress of
phase shifters on the SOI platform.

For silicon photonics, phase shifting mechanisms are mainly based on micro-electro-
mechanical systems (MEMS), thermo-optics effects, and free-carrier-dispersion effects,
to name a few (see Figure 1). MEMS is an effective modulation mechanism with low
power consumption and optical insertion loss [38]. Its modulation speed is commonly
limited by mechanical frequency. The thermo-optic mechanism could be realized by a
simple fabrication process. Its moderate modulation efficiency and low insertion loss are
preferred [39]. Considering the further dense integration, its heat dissipation and thermal
crosstalk should be well engineered. In addition, a fast and effective phase shifter can
be obtained using the free-carrier-dispersion mechanism, where the optical loss induced
by the free-carrier absorption should be well controlled to scale it up [14]. On the other
hand, due to the lack of second-order nonlinearity, common silicon-based materials usually
exhibit negligible electro-optic (EO) effects. Silicon-based modulators that utilize EO effects
require heterogeneous integration of other materials, such as lithium niobate (LiNbO3),
graphene, etc. [40,41].
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Figure 1. Semi-quantitative comparison between available methods for silicon photonic phase shifters.

Here, we review silicon-based phase shifters with a focus on three common modulation
mechanisms (MEMS, thermo-optics effects, and free-carrier-dispersion effects). Then,
applications based on phase shifters are introduced, and the advantages and disadvantages
of different modulation mechanisms are discussed. Some promising works of phase shifters
based on other heterogeneous integrated materials can be found in [42,43].

In this review, we introduce and discuss the current progress of phase shifters on
the SOI platform and its applications. Starting from the second section, we describe the
basic theory of phase shift and the method for experimental characterization. In the third
section, MEMS-based phase shifters are discussed in detail. Their operation principles and
performances are introduced. Next, we briefly introduce thermo-optics and free-carrier-
depletion-based phase shifters in the fourth and fifth sections. In the sixth section, some
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notable applications utilizing phase shifters are presented. The last section includes the
discussion about silicon photonic phase shifters.

2. Methodology
2.1. Phase Shift Principle

The phase shift of the optical wave in the waveguide can be obtained by [44]:

∆φ =
∆ne f f 2π∆L

λ
(1)

where ∆neff is the change in effective refractive index, ∆L is the change in optical path
length, and λ is the wavelength.

Generally, MEMS-based phase shifters change the effective refractive index (∆neff)
of the optical mode by modifying the mode shape or perturbing the evanescent field, or
change the optical path length (∆L) by switching the optical route. The thermo-optics
phase shifters modulate ∆neff of the optical mode by changing the material refractive index
through the on-chip heater. The free-carrier-depletion-based phase shifters modulate ∆neff
of the optical mode by changing the waveguide core material refractive index through the
change in carrier concentration.

2.2. Experimental Characterization of Phase Shift

The phase shift can be extracted by embedding the phase shifter in an imbalanced
Mach–Zehnder Interferometer (MZI) or a ring resonator. By applying DC voltages with
different amplitudes, the value of phase shift can be extracted from the MZI optical trans-
mission spectrum according to [45]:

∆ϕ =
|λ(V0)− λ(V)|

FSR
(2)

where λ(V0) is one of the MZI spectral dip wavelengths at the initial state without applied
voltage, λ(V) is the same MZI spectral dip wavelength with applied voltage, and FSR is the
free spectral range of the MZI spectrum. The unit of ∆φ is 2π.

The neff can also be extracted from the resonance wavelength tuning of a ring res-
onator [46]:

∆ne f f =
∆λres ·m

L
, m = 1, 2, 3 . . . (3)

where ∆λres is the resonance wavelength tuning and L is the round-trip length.

3. MEMS-Based Phase Shifter

MEMS-enabled photonics refers to an industrial technology that integrates optical,
electrical, and mechanical fields on the micro- and nanoscale. It modulates the optical mode
in the waveguide to realize a variety of functions by MEMS actuation. This technology has
flourished in the past few decades with the development of advanced silicon micro- and
nano-fabrication technologies, and its applications have gradually evolved from free-space
optics such as digital micromirror devices (DMD) to on-chip PICs [47,48]. Due to the
excellent optical and mechanical properties of silicon, such as low optical absorption loss,
low cost, matured fabrication technologies, reliable mechanical properties, and excellent
ability to integrate electronic functions, the SOI substrate has become one of the most
important platforms for on-chip MEMS applications. The driving mechanisms include
electrostatic actuation, electrothermal actuation, piezoelectric actuation, and so on.

The MEMS-based phase shifter has attracted tremendous attention from worldwide
researchers in academia and industry due to its high modulation efficiency, ultra-low power
consumption, small footprint, and low insertion loss. In this section, we first introduce
the figures of merit (FOMs) that are used to evaluate the MEMS-based phase shifter and
discuss the outstanding works so far according to these FOMs.
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3.1. FOMs for MEMS-Based Phase Shifter
3.1.1. Half-Wave Voltage Length Product (Vπ ·Lπ)

MEMS-based phase shifters are mainly driven by electrostatic actuation; hence, a
potential difference needs to be applied between the movable and rigid parts. Vπ ·Lπ refers
to the voltage that needs to be applied on the phase shifter of length Lπ to achieve π phase
shift, which indicates the modulation efficiency and footprint of the device. By embedding
a phase shifter into one arm of the MZI, Vπ can be obtained by measuring the DC voltage
required to modulate the MZI transmission at an exact wavelength from minimum to
maximum. Thus, a smaller Vπ ·Lπ indicates a higher efficiency for phase shift.

3.1.2. Insertion Loss (IL)

MEMS-based phase shifters usually modify or perturb the optical mode in the waveg-
uide, which inevitably has an impact on the optical transmission. Therefore, the insertion
loss here not only refers to the initial insertion loss in the unactuated state but also includes
the extra loss induced by MEMS actuation.

For MEMS-based phase shifters driven by electrostatic actuation or electrothermal
actuation, oxide-to-air transition loss happening in the rigid-to-movable region is another
source, while piezoelectric actuation method does not suffer from this loss since the entire
phase shifter area is wrapped in cladding material [49–51]. Additionally, in some cases,
mode conversion is involved, such as ridge-to-slot transition, which induces extra loss.

For phase shifters embedded in an imbalanced MZI, the power imbalance between two
branches of the MZI can be extracted by fitting the measured MZI transmission spectrum
to the theoretical one [52].

3.1.3. Response Time

As the dynamic response of the MEMS-based phase shifter is determined by its
mechanical structure, mechanical frequency should be measured to evaluate its response
time. The 3 dB cutoff bandwidth refers to the frequency of the dynamically modulated
signal (AC voltage) applied when the modulated power amplitude variation of MZI is
decreased by 3 dB. The mechanical resonant frequency (f ) can be extracted from the 3 dB
measurements, and the response time can be estimated to be 1/f. Specifically, the response
time can be read from the optical output rise and fall time by applying a square wave
modulated voltage signal.

3.2. Modulation Mechanism

In the literature, the modulation mechanisms of the MEMS-based phase shifter fall
into three categories, as shown in Figure 2. Figure 2a,b shows the modulation mechanisms
by perturbing the evanescent field of the optical mode in the bus waveguide through
a mechanical beam with mode cut-off dimensions. Figure 2c,d shows the modulation
mechanism by directly modifying the optical mode field distribution in the waveguide.
The modulation mechanism shown in Figure 2e,f is to modulate the optical path length.

3.2.1. Evanescent Field Perturbation

This type of phase shifter changes the effective refractive index of the optical mode by
perturbing its evanescent field. The relevant working principles are shown in Figure 2a,b.
The perturbation structure was designed to avoid mode coupling or leaking from the
waveguide. In 2016, Pruessner et al. proposed a three-dimensional phase shifter config-
uration utilizing one silicon nitride bridge placed above the bus waveguide to perturb
its optical evanescent field (Figure 3a,b) [53]. The 120 µm long phase shifter achieved π

phase shift under 3.8 V applied voltage and 2π phase shift under 4.2 V applied voltage.
However, the over-perturbation by the silicon nitride beam and the gold layer coated on
it may induce large extra loss during modulation (1.5 dB extra loss after 2p phase shift).
To overcome this limitation, the authors proposed to modulate the phase shifter through
gradient electric fields instead and increased the initial gap between the silicon nitride
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beam without the gold layer and the bus waveguide. In this case, the 100 µm long phase
shifter realized p phase shift with 33 V applied voltage, and the extra loss was reduced to
0.04 dB. Abdulla et al. placed a silicon cantilever above the ring resonator to perturb the
evanescent field, as shown in Figure 3c [54]. ∆neff was induced by moving down the silicon
nitride cantilever and thus changing the optical mode of the ring resonator, leading to a ∆λ
of resonance wavelength. The phase shifter showed large nonlinear relationship between
phase shift and applied voltage. Additionally, 122 pm resonance wavelength tuning was
observed with a modulation depth of 18 dB.
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Figure 3. MEMS phase shifter through evanescent field perturbation utilizing (a) a silicon nitride
beam coated with Au above the bus waveguide, (b) a pure silicon nitride beam actuated by gradient
electric field force above the bus waveguide, (c) a silicon cantilever above the ring resonator (reprinted
with permission from [54] © The Optical Society), (d) tunable ring resonator on the SOI (reprinted
with permission from [55] © The Optical Society), (e) in-plane motion silicon beam perturbation
(reprinted with permission from [45] © The Optical Society).
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In addition to the vertical perturbation using a MEMS-tunable layer above the SOI wafer,
the evanescent field perturbation can be obtained using the silicon device layer in the SOI
wafer only by in-plane or out-of-plane MEMS actuation. For example, Errando-herranz et al.
placed a narrow silicon beam on one side of the ring resonator to utilize a longer effective
optical path length, as shown in Figure 3d [55]. The ring resonator acting as the MEMS
cantilever was electrostatically actuated, which induced out-of-plane motion. By fully
etching the silicon between the perturbation beam and ring resonator, the buried oxide
(BOX) layer beneath the thin gap was exposed for HF wet etching. After sacrificing the
BOX part below the thin gap, a movable cantilever region was formed. The length of the
cantilever was determined by an array of release holes. The tunable ring resonator achieved
resonance wavelength tuning of 530 pm with a power consumption less than 100 nW and
a tuning rate of 62 pm/V. Furthermore, the phase shifter showed promising scalability
because of the small footprint. In addition, M. Poot used the H-resonator actuator, placing
the gold electrode away from the bus waveguide to reduce the extra insertion loss caused
by the metal absorption (Figure 2e) [56]. More than 0.5p phase shift was achieved with a
170 µm long phase shifter under 5 V applied voltage. Edinger et al. utilized a comb drive
actuator to modulate the neff of the bus waveguide [45]. Compared with the parallel plate
capacitor MEMS actuator, the comb drive actuator provided a larger displacement in a more
accurate and stable manner by sacrificing footprint. A 17.2 µm long phase shifter achieved
p phase shift with 10.7 V applied voltage, which showed a Vπ ·Lπ of 0.0184 V ·mm. Through
balancing the resonant frequency and Vπ , the 3 dB cut-off bandwidth was measured as
503 kHz and the power consumption is 500 nW with p phase shift. It is noted that an
approximately linear relationship between the phase shift and actuation voltage is achieved
by optimizing the optical and mechanical design simultaneously, which could facilitate its
further applications in the large-scale packaged PICs.

3.2.2. Confined Optical Mode Modification

This type of phase modulator directly changes the optical mode field distribution by
mechanically moving the waveguide structure, thereby changing the effective refractive in-
dex of the waveguide mode. In the literature, slot waveguide and directional coupler have
mainly been adopted. In 2012, Acoleyen et al. presented a phase shifter by reducing the slot
waveguide air gap, as shown in Figure 4a [57]. They applied a potential difference between
two silicon arms of the slot waveguide, thereby changing the slot mode neff. By cascading
three 5.8 µm long tunable slot waveguides, the authors achieved 0.22p phase shift under
13 V applied voltage. Larger phase shift can be achieved using a longer tunable slot waveg-
uide at a cost of optical loss. After that, Feng et al. built a physical model about the slot
waveguide phase shifter, and theoretically analyzed the influence of Casimir force, optical
force, and electrostatic force while modulating the slot waveguide [44]. The mechanical
model and pull-in effect were analyzed in detail, as well. To improve the performance
of slot waveguide phase shifter, Grottke et al. and Baghdadi et al. used asymmetric slot
waveguide and double-slot waveguide, respectively, as shown in Figure 4b,c [58,59]. The
parallel plate capacitor MEMS actuator was used to realize the in-plane motion of the two
silicon nitride beams of the slot waveguide. Instead of reducing the air gap, Grottke et al.
deposited a gold electrode near one side of the slot waveguide and increased the air gap by
applying a bias voltage between the gold electrode and one beam of slot waveguides. In
this study, a 250 µm long phase shifter was fabricated and achieved a Vπ of 4.5 V and a
phase shift of 13p at 17 V applied voltage. In addition, they used an asymmetric slot waveg-
uide to suppress the generation of higher-order eigenmodes to reduce insertion loss. The
static insertion loss of the 250 µm long phase shifter is lower than 0.7 dB, and the resonant
frequency was measured as 779 kHz in vacuum. Baghdadi et al. used dual-slot waveguide
to improve modulation efficiency and achieved p phase shift with 25 µm long phase shifter
under 0.85 V applied voltage. An insertion loss less than 0.04 dB was extracted from the
measured MZI transmission spectrum, and the 3 dB cutoff bandwidth was approximately
0.26 MHz.
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In addition, Sattari et al. and Liu et al. almost simultaneously proposed a phase shifter
via modulating the vertical directional coupler supermode effective refractive index [60,61].
Sattari et al. investigated the performance of the phase shifter and proposed a MEMS
actuator design with two step actuations, as shown in Figure 4d. A stopper was designed
to prevent the pull-in effect. In addition, Liu et al. experimentally demonstrated a 150 µm
long phase shifter on an indium phosphide membrane on silicon, as shown in Figure 4e. A
Vπ ·Lπ of 0.58 V mm was achieved, and a 4 dB extra loss was induced during the modulation.
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3.2.3. Optical Path Length Adjustment

The working principle is to change the phase of the bus waveguide transmission wave
by adjusting the optical path length. Chiu et al. proposed to adjust the optical path length
by bending one long and suspended waveguide, as shown in Figure 5a [62]. The authors
applied a bias voltage between the suspended waveguide and the electrode to deform
the waveguide. Experimental results found that a 150 µm long phase shifter achieved
0.06p phase shift at a voltage of 200 V. It was found that the limited phase shift could
be attributed to the small mechanical deformation. Moreover, Ikeda et al. realized an
adjustable optical path length by integrating a movable waveguide region with a comb
drive actuator (Figure 5b) [63]. Two directional couplers were designed to transfer the light
from the input waveguide to the movable waveguide and out to the output waveguide
in the following propagation. The phase shifter achieved 3p phase shift under the 13 V
actuation voltage, and the displacement of the directional couplers was 1 µm. It should be
noted that the proposed approach could be advantageous in terms of insertion loss owing
to the well-maintained mode propagation during MEMS tuning.

3.3. Discussion

In this section, we introduced three MEMS-based phase shifter working mechanisms
and the type of MEMS actuator used in their works in detail. Performances of some typical
MEMS-based phase shifters are summarized in Table 1. MEMS-based phase shifters showed
advantages of high efficiency, low insertion loss, and broad bandwidth. The modulation
speed ranges from several hundred kHz to a few MHz. In MEMS-based phase shifters,
most of them use electrostatic MEMS actuators. Hence, the modulation speed and required
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voltage are both affected by the size and type of the MEMS actuators. The modulation
speed could be increased by designing the mechanical structure with a larger stiffness.
However, this could lead to a larger electrostatic actuation voltage. Therefore, a trade-off
between these two FOMs should be carefully considered for the application scenarios. For
the evanescent field perturbation phase shifter, the phase modulation efficiency could be
improved by placing the perturbation beam closer to the bus waveguide, but this incurs a
larger optical loss at the same time. It is necessary to carefully determine the initial position
and the width of the bus waveguide to balance the modulation efficiency and insertion
loss. In addition, the modulation relationship between phase shift and voltage for the
MEMS-based phase shifters are usually nonlinear, and the pull-in effect must always be
avoided during modulation. For the non-solid-state system, reliability is an important
factor that must be investigated due to the inherent failure risks such as fatigue and
stiction. The failure mechanisms in MEMS devices have been widely studied [64]. Recently,
Seok et al. explored the long-term reliability of a MEMS-actuated vertical coupler used
in an optical switch, which showed negligible performance degradation after 10 billion
times of actuation [65]. The packaging and integration with the existing silicon photonic
platform need to be further studied, as well [21].
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Table 1. Performance summary of MEMS-based phase shifters.

Modulation
Mechanism

Vπ ·Lπ

(V·mm)
Insertion Loss

(dB)
Modulation Speed

(MHz) Ref.

Evanescent field
perturbation

0.432 0.5 2.3 [53]
1.7 0.5 0.58 [56]

0.535 0.33 0.503 [45]

Confinement optical
mode modification

0.02 0.04 0.26 [59]
0.588 5 1.1 [61]
0.84 0.47 1.177 [58]

Optical path length
adjustment

75 0.1 0.139 [62]
- 0.4 0.153 [63]

4. Thermo-Optics Phase Shifter

Thermo-optics phase shifters are widely adopted owing to their simple fabrication
process, efficient phase shift modulation, and broad bandwidth. The thermo-optics coef-
ficient is defined as the refractive index of the material to the change in the temperature
(dn/dT), which is 1.87 × 10−4 at the wavelength of 1550 nm for silicon [66].

In this section, we first introduce a basic configuration and its working principle for the
thermo-optics phase shifter. Next, some FOMs are presented, and optimizations method
are discussed based on these FOMs.
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4.1. Working Principle of Thermo-Optics Phase Shifter

The working principle of the thermo-optics phase shifter is to change the refractive
index of the waveguide and cladding material by injecting a current into a resistive heater
along them, thereby changing the effective refractive index of the optical mode. The
relationship between the phase change and the temperature change is given as [39]:

∆ϕ(∆T) =
2π

λ

(
dn
dT

)
e f f

∆TL (4)

where λ is the wavelength, and
(

dn
dT

)
e f f

is the change in the effective refractive index of the

transmission mode versus the change in temperature. This coefficient is not only affected
by the change in the refractive index of silicon, but also the change in the refractive index
of the surrounding claddings (e.g., silicon dioxide, silicon nitride). ∆T is the change in the
temperature, and L is the length of the heating waveguide region.

According to Equation (4), the required temperature change to achieve p phase shift is:

∆Tπ =
λ

2 · L ·
(

dn
dT

)
e f f

(5)

Thus, one of the FOMs, the power consumption, can be approximately given by [67]:

∆Pπ = ∆Tπ · G (6)

where G is the thermal conductance between the heated waveguide and the heat sink in a
unit of W/K.

Two other important figures of merit are the propagation loss of the waveguide and
the modulation speed. The modulation speed can be evaluated by a time constant, which
is determined by [67]:

τ =
H
G

(7)

where H is the heat capacity of the heated arm.
The gap of finite thermal conductance between the heat source and the waveguide is

not considered in the above equations.
A common configuration of the thermo-optics phase shifter is shown in Figure 6a. The

silicon waveguide is patterned in the cladding and a heater is placed above the waveguide.
It is noted that the vertical gap between the heater and waveguide should be kept large
enough to avoid excessive optical insertion loss. Hence, an upper cladding is usually grown
and covers the silicon waveguide to isolate and support the metal heater. While designing
a thermo-optics phase shifter, the width of the silicon, and the thickness and type of the
cladding and heater must be carefully designed. The steady-state heat distribution for a
conventional thermo-optics phase shifter with different kinds of claddings is shown in
Figure 7a [68].

Based on the traditional thermo-optics phase shifter, many research efforts have
focused on optimization targeting the power consumption, modulation speed, and insertion
loss, as shown in Figure 6. Figure 6b achieves thermal insulation between the silicon
waveguide and the claddings and substrate layer by processing a free-standing waveguide
to improve power consumption. Figure 6c shows the method by reducing the vertical
gap between the heater and the bus waveguide to improve power consumption and
modulation speed. An optical transparent material (e.g., 2D material) is needed to prevent
large propagation loss. Doping silicon can be used as the heater as well, as shown in
Figure 6d,e, which shows adequate balance between these three FOMs. Detailed works
based on these configurations are discussed in the following sections.
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Figure 7. (a) Steady-state heat distribution for conventional thermo-optics phase shifters with
different claddings (reprinted with permission from [68] © The Optical Society.), (b) free-standing
thermo-optics phase shifter, (c) spiral waveguide thermo-optics phase shifter, (d) slow-light-enhanced
thermo-optics phase shifter with graphene heater (reprinted with permission from [69] © 2017 Spring
Nature), (e) multi-pass structure-based thermo-optics phase shifter.

4.2. Typical Work in Thermo-Optics Phase Shifter
4.2.1. Toward Low Power Consumption

One of the approaches towards a low-power-consumption thermo-optics phase shifter
is to reduce the waste heat to the surrounding material other than the waveguide itself.
Sun et al. proposed a 100 µm long free-standing waveguide thermo-optics phase shifter
with a Pp of 540 µW, as shown in Figure 7b [70]. The insertion loss for an MZI switch that
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contains two proposed phase shifters was measured as 2.8 dB. However, the modulation
speed degraded to less than 10 kHz due to slower heat dissipation.

Instead of reducing the heat dissipation, one can take advantage of power multi-
plexing to improve it. Benefitting from the spiral waveguide photonic structure, the heat
generated by heaters can be absorbed almost entirely by the optical waveguide. While
designing the layout of spiral waveguide, some interesting and effective methods were
proposed to reduce the device propagation loss. Qiu et al. proposed to set the adjacent
waveguide widths as different to reduce coupling loss and an offset at the connection
part between the bending waveguide and the straight waveguide reduce mode mismatch
(Figure 7c) [71]. The insertion loss for the phase shifters decreased from 1.9 dB to 0.9 dB
after these optimizations, and power consumption reduced to 3 mW without sacrificing
modulation speed (a modulation bandwidth of 39 kHz).

The third optimizing strategy is reducing the gap between the heater and the waveg-
uide. A metal heater with smaller gap between the bus waveguide will improve power
consumption and modulation speed while inducing a larger scattering loss. To solve this
problem, some optical transparent materials with relatively high electric resistance were
utilized, such as indium tin oxide (ITO) and graphene [68]. Yan et al. utilized a slow-
light-enhanced silicon photonic crystal waveguide with graphene heaters deposited on
it (Figure 7d) [69]. A tuning efficiency of 1.07 nm/mW and power consumption per free
spectral range of 3.99 mW/FSR were achieved. The response time 750 ns was obtained.

In addition to the optimization of heating efficiency, the phase shifter could be ad-
vanced by multi-mode waveguide circuit design. Miller et al. proposed a method which
used multiple direction coupler mode converters to route the multi-mode optical wave
propagation [72]. The proposed approach effectively increased the heating optical path
length by letting optical wave multi-pass the phase shift region, thus improving the modu-
lation efficiency and reducing the power consumption (Figure 7e). By utilizing six mode
converters, an 8-fold longer optical path extension could be achieved. They demonstrated
only 1.7 mW Pp with a modulation speed of 6.5 µs. Compared with the widely adopted
ring resonator type of phase shifter, the proposed approach could have a superior working
bandwidth with the optical path extension. The insertion loss reached up to 6 dB due to the
cascading of multiple mode converters and could be improved by optimizing the optical
structure and fabrication process.

4.2.2. Toward Low Loss and High Modulation Speed

A suitable balance between modulation speed, power consumption, and propagation
loss could be achieved by doping the same carrier on both sides of the waveguide. The
heat is generated by applying a continuous current to the doped part, and its steady-state
heat distribution is shown in Figure 8a [67]. A 357 kHz modulation bandwidth could be
achieved by improving the proximity of the heat source and the waveguide [73]. A more
compact design decreased the heated arm heat capacity H and the time constant τ. At the
same time, by carefully designing the doping silicon distribution, the insertion loss of the
phase shifter could be significantly reduced to 0.23 dB for a 61.6 µm long phase shifter [74].
Some typical thermo-optics phase shifters based on doping silicon heaters are shown in
Figure 8b,c [75].

4.3. Discussion

Some typical thermo-optics phase shifters are summarized in Table 2. Compared
with the phase shifter without air trenches, the one with air trenches shows much less
power consumption but has a slower modulation speed. While designing and using a
thermo-optics phase shifter, a trade-off between power consumption and modulation speed
is an important factor for researchers to consider, as thermal inductance has opposite
effects on these two FOMs. Thus, a composite FOM Pπ ·τ is widely used to characterize a
thermo-optics phase shifter that relies on the designed thermal inductance.
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Figure 8. (a) Steady-state heat distribution for rib waveguide with doping silicon heaters, (b) rib
waveguide thermo-optics phase shifter, (c) bended thermo-optics phase shifters with doping silicon
heaters embedded in an MZI.

In addition to the structure of the thermo-optics phase shifter, the type of heater is
also a factor to consider. Commonly used heaters include metal, which is placed on top
of the bus waveguide, and a doped-silicon resistor, which is placed on both sides of the
bus waveguide. According to the experimental results of thermo-optics phase shifters
with different types of heaters processed in the commercial foundries IMEC and AMF,
phase shifters with metal heaters and doped-silicon heaters show similar modulation
efficiencies, while the modulation speed of doped-silicon-based phase shifters is faster but
has a larger footprint [67,76]. Besides benefitting from the excellent optical properties and
high electric resistance, optical transparent materials such as graphene and ITO are also
favorable candidates for heater materials.

Even with a moderate modulation speed, the thermo-optics phase shifter is widely
preferred in silicon photonics due to its high modulation efficiency and easily access from
commercial foundries. Considering a densely integrated on-chip system, a thermo-optics
phase shifter requires not only a calibration of the initial state, but also avoiding thermal
crosstalk by planning the layout. Random phase noise is another factor that needs to be
considered in some exact applications. Song et al. demonstrated a 2 µm width silicon
photonic thermo-optics phase shifter with a TiN heater, which reduced the normalized
phase error to 1e-3 π/nm [77].

Table 2. Performance comparison of silicon photonic thermo-optics phase shifters.

Heater
Type

Waveguide
Type

Power
Consumption

(mW)

Modulation
Speed

(µs)

Insertion
Loss
(dB)

Ref.

Conventional
phase shifters

Tungsten Strip
waveguide 23.38 45 - [78]

TiN Strip
waveguide 21.4 5.6 <0.01 [67]

Optical
transparent

heater

ITO Strip
waveguide 10 5.2 <0.01 [68]

Graphene Rib
waveguide 57.75 4.97 2 [79]

Air-trenches
phase shifter

Pt Strip
waveguide 0.54 141 2.8 [70]

TiN Strip
waveguide 0.49 144 0.3 [80]

Doped
silicon

Doped
silicon

Bend
waveguide 12.7 2.4 0.5 [75]

Doped
silicon

Rib
waveguide 24.77 7.7 0.23 [74]

Doped
silicon

Rib
waveguide 22.8 2.2 <0.01 [67]

NiSi Rib
waveguide 20 2.8 - [73]

Spiral
waveguide

Cr/Au Strip
waveguide 6.5 14 - [81]

Ti Strip
waveguide 3 25.64 0.9 [71]



Micromachines 2022, 13, 1509 13 of 24

5. Free-Carrier-Depletion-Based Phase Shifter

Free-carrier-dispersion-based phase shifters are favored in the field of telecommunica-
tions and data centers due to their high modulation speed and low power consumption.
Based on the working mechanism, free-carrier-dispersion-based phase shifters fall into
three categories: carrier injection, carrier depletion, and carrier accumulation. In this sec-
tion, we introduce the free-carrier-depletion-based phase shifter only. Some outstanding
reviews of free-carrier-based phase shifters can be found in [9,14,15,82].

5.1. Modulation Principle

Free-carrier-depletion-based phase shifters usually modulate the phase of transmis-
sion wave by changing the carrier concentration in the core material of the bus waveguide.
The refractive index changes (∆n) and carrier absorption (∆α) caused by free-carrier con-
centration change can be described by the Drude model [83]:

∆n = − e2λ2

8π2c2ε0n
·
(

∆Ne

m∗e
+

∆Nh
m∗h

)
(8)

and

∆α =
e3λ3

16π3c3ε0n
·
(

∆Ne

m∗2e µe
+

∆Nh

m∗2h µh

)
(9)

where e refers to the elementary charge, λ is the laser wavelength, c is the light speed,
ε0 denotes the vacuum permittivity, n represents the unperturbed refractive index of the
material, ∆N is the charge carrier density, m* refers to the carrier effective mass, and the
subscripts e and h indicate quantities related to electrons and holes, respectively.

Some free-carrier-depletion-based phase shifter structures are shown in Figure 9. Rib
waveguide is usually used, benefitting from a pair of thin film slabs. The cross-section
is divided into an enhanced doping concentration region (p++/n++ region), a doping
concentration region (p+/n+ region), and an intrinsic region (i region). Doping area
distributions and doping concentrations are the most important parameters, which affect
the modulation efficiency (Vπ ·Lπ) and waveguide propagation loss (α). Electro-optic
bandwidth is regarded to represent the modulation speed.

5.2. Typical Work in Free-Carrier-Depletion-Based Phase Shifter

Various configurations have been proposed to balance and optimize modulation
efficiency, waveguide propagation loss, and modulation speed. The waveguide propagation
loss can be effectively reduced by avoiding the overlap between the waveguide mode field
and the doping area. Patel et al. proposed a phase shifter with an offset doping area,
which aims at reducing the optical loss and improving the modulation efficiency [84]. The
target doping concentration of the p type region was 7.8e17, which is lower than that
of the n type region (2.1e18). The insertion loss of the 500 µm long doping waveguide
embedded in a Michelson interferometric modulator was characterized as 4.7 dB, and a
0.72 V·cm Vπ ·Lπ was obtained at 1V bias voltage. Figure 9b shows a PIPIN diode phase
shifter proposed by Ziebell et al. [85]. By selectively doping the waveguide (8e17 in the p+
region, 1e18 in the n+ region, and 3e17 in the p region), the transmission loss was reduced
while ensuring effective modulation efficiency and modulation speed. The experimental
results showed that for a 0.95 mm long phase shifter embedded in the MZI, the insertion
loss was extracted as 2.5 dB, and the Vπ ·Lπ was 3.5 V·cm. The modulation speed was
measured as 40 GHz. Tu et al. demonstrated the carrier compensation method and set
the concentration of the doped waveguide at the corner to zero [86], thereby reducing the
waveguide propagation loss to 1.04 dB/mm without sacrificing the modulation efficiency
(Figure 9c). The Vπ ·Lπ was measured as 2.67 V·cm at 6 V bias voltage. Azadeh et al.
constructed a silicon–insulator–silicon capacitive phase shifter that greatly reduced the
doped waveguide area, as shown in Figure 9d [87]. Through injecting a high concentration
of carriers (7e18 in the n+ region and 6e18 in the p+ region), the waveguide propagation
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loss was obtained as 4.2 dB/mm with the modulation efficiency of 0.74 V·cm at 2V bias
voltage. The modulation speed was measured as 48 GHz.
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In addition, Li et al. proposed an ultra-fast free-carrier-deletion-based phase shifter
by removing the silicon substrate beneath the bus waveguide, which can reduce the
useless power consumption in the substrate and thus improve the modulation bandwidth
(Figure 9e) [88]. The 3 dB EO bandwidth reached up to 60 GHz at the DC bias voltage
of −8 V. The waveguide propagation loss was 2.2 dB/mm and the modulation efficiency
achieved was 1.4 V·cm.

By maximizing the overlap between the depletion region and the optical mode, the
modulation efficiency can be improved. As shown in Figure 9f,g, interleaved junctions and
zig-zag structures were proposed, which demonstrated modulation efficiency of 2.4 V·cm
and 1.7 V·cm, respectively [89,90].

5.3. Discussion

Performances of some typical free-carrier-depletion-based phase shifters are summa-
rized in Table 3. Through optimizing the concentration and distribution of free carriers in
the bus waveguide, research has been carried out to balance the modulation efficiency, mod-
ulation speed, and propagation loss. Phase shifters are widely used in the data transmission
and telecommunication fields, benefiting from the fast modulation speed.
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Table 3. Performance summary of free-carrier-depletion-based phase shifters.

Doping
Distribution

P Conc.
(cm−3)

N Conc.
(cm−3)

Modulation
Efficiency

(V·cm)

Propagation
Loss

(dB/mm)

Modulation
Speed
(GHz)

Ref.

PN junction in
the center of the

waveguide

5 × 1017 5 × 1017 1.9 (3V) 1.2 >20 [91]
7 × 1017 5 × 1017 3.5 (3V) 1 10 [92]
1 × 1018 3 × 1018 1.59 3.2 27 [93]
2 × 1017 2 × 1017 1.7 (3V) 1.2 12 [94]
2 × 1018 2 × 1018 1.2 (3V) 4.5 4.3 [95]
4 × 1017 1.3 × 1017 3.2 (0–4V) 1 46 [96]

Offset PN
junction

2 × 1018 3 × 1017 14.3 - 8 [97]
2 × 1017 6 × 1017 11 (3V) - 19 [98]
2 × 1017 2 × 1017 1.8 (3V) 1.6 27.8 [99]
3 × 1017 1.5 × 1018 2.8 (4V) 5 40 [100]

Interleaved
waveguide

2 × 1017 2 × 1017 1.7 (3V) 1 20 [101]
2 × 1017 2 × 1017 1.4 (3V) 1.7 11.8 [102]
2 × 1018 2 × 1018 0.8 (4V) 3.5 12.6 [95]
5 × 1017 1 × 1018 2.4 2.1 20 [89]

Zig-zag
waveguide 2 × 1017 4 × 1017 - - 23 [90]

PIPIN junction 8 × 1017/
3 × 1017 1 × 1018 3.5 1 40 [85]

Corner doping
concentration - - 2.67 (−6V) - 8.9 [86]

Wrapped PN
junction - - 0.52 (2V) - 50 [103]

6. Other Phase Shift Modulation Mechanisms

Apart from the three phase shift modulation mechanisms mentioned above, two more
modulation mechanisms (liquid crystal-based phase shifters and phase change materials)
that utilize non-silicon-based materials but are still important are briefly introduced.

6.1. Liquid Crystal-Based Phase Shifter

The modulation efficiency of EO modulation directly on the silicon material is very
low due to the weak second-order nonlinearity of silicon itself [104]. Benefitting from
the high birefringence, liquid crystal material (e.g., E7 liquid crystal mixture) is a promis-
ing candidate to achieve EO modulation by injecting it above the silicon waveguide as
cladding [105]. When no external electric field is applied, the director (the average ori-
entation of the molecules) of the liquid crystal is parallel to the waveguide. In contrast,
the director rotates, and its orientation becomes perpendicular to the waveguide while
applying a sufficient large electric field. During the rotation process, the waveguide mode
neff is modulated, thus changing the phase of the transmission wave.

The commonly used waveguide platforms for liquid crystal-based phase shifters
include strip waveguide platform and slot waveguide platform. Strip waveguide is easy
to process, and the propagation loss can be maintained at a very low level. However, its
modulation efficiency is relatively low due to the less evanescent field overlap with the
liquid crystal claddings. On the other hand, a large portion of the optical field of slot mode
is confined in the slot structure, which indicates large overlap between the optical field and
liquid crystal claddings. In this case, the modulation efficiency is much larger and a larger
propagation loss is induced.

Some promising works about liquid crystal-based phase shifters were proposed [106–109].
Atsumi et al. proposed a liquid crystal-based phase shifter utilizing strip waveguide [110].
By embedding it into a Michelson interferometer and applying DC voltages, a VpLp of
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1.86 V·mm was obtained and the extracted phase shifter propagation loss was 6 dB/mm.
The response time for this phase shifter is around 8 ms. Xing et al. demonstrated a strip-
loaded slot waveguide with a liquid crystal cladding phase shifter [111]. A better VpLp of
0.0224 V·mm was achieved with the degradation of the phase shifter propagation loss to
10 dB/mm. The response time for this phase shifter was around 2 ms.

6.2. Phase Change Material

Phase change materials are a specific class of materials whose optical properties change
significantly under external stimuli. Chalcogen-based alloys, especially Ge2Sb2Te5 (GST),
attracts lots of attention and research interests due to its non-volatile nature [112,113].

The GST material will undergo a transition from an amorphous state to a crystalline
state under external stimuli. The amorphous state of GST material could be highly transitive
and electrically conductive. On the other hand, the crystalline state of GST material causes
large optical absorption and is electrically resistive. The transition between these two states
is generally achieved through heating, and optical or electric pulses usually act as external
stimuli to heat the material. Furthermore, the GST material is widely used in all-optical
photonic computing systems as the weight module due to its optical controllability and
non-volatile nature. Some applications based on the GST materials are discussed in the
Section 7.

7. Applications

As one of the most essential but important components, phase shifters play an impor-
tant role in the development of reconfigurable PICs. Many high-performance reconfigurable
devices based on phase shifters have been proposed, such as modulators [114–116], optical
filters [117–119], and tunable delay lines [120,121]. In addition, an efficient phase shifter
with low power consumption and high modulation speed paves the way to large-scale
neuromorphic computing systems, photonic accelerators, optical phased arrays, on-chip
spectrometers, and so on. In this section, we introduce several outstanding applications
based on phase shifters.

7.1. Advanced Optical Computing Systems

In the post-Moore era, traditional computers based on the von Neumann architecture,
which physically separates the computing module and the storage module, are facing speed
and integration density bottlenecks. Many scientists began to explore the next generation of
computing architectures to break though the limitations of Moore’s Law and demonstrated
some promising computing platforms.

7.1.1. Neuromorphic Computing System

The powerful computing capability and ultra-low power consumption of the human
brain have attracted many scientists to reveal its mysterious working principle and mimic it
using hardware. The development of micro- and nanofabrication technology and material
science have made silicon PIC a promising platform for the physical imitation of the human
brain, especially neural synapses.

The memory and learning mechanism of the human brain is based on the Hebbian
learning rule. Action potentials (spikes) are generated by a neuron (pre-neuron) and
propagate along the axon through a junction to the next neuron (post-neuron), which
generates the postsynaptic action potentials. The junction is called a synapse, and the
synaptic weight (w) determines the communication strength between the two neurons [122].

Cheng et al. proposed to use the PCM to simulate the synapse of nerve cells, as shown
in Figure 10a [25]. Discrete PCM blocks were patterned on the taper waveguide to achieve
adequate weight plasticity and easier control of the output state. By inputting different
numbers of pulse signals, five states of the synaptic output were realized. Furthermore, an
all-optical method was realized to modulate the synaptic weight.
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Figure 10. (a1) Schematic of the integrated photonic synapse. (a2) Top: Schematic of the photonic
synapse realized by six discrete GST islands on the taper waveguide. Bottom: E-field distribution
with all GST islands in crystalline states (reprinted with permission from [25] © 2017 AAAS.).
(b) Schematics of the all-optical spiking neuronal circuits (reprinted with permission from [123] ©
2019 Spring Nature). (c) All-optical fully integrated coherent nanophotonic network (reprinted with
permission from [124] © 2017 Spring Nature). (d) Schematic of a parallel convolutional processing
photonic architecture (reprinted with permission from [36] © 2021 Spring Nature). (e) Schematic
of the optical neural chip in implementing complex-valued networks (reprinted with permission
from [125] © 2021 Spring Nature).

Moreover, Feldmann et al. built a photonic neural network containing four neurons
and sixty optical synapses based on spiking neurons, combining wavelength division multi-
plexing (WDM) and a PCM-based ring resonator to achieve weight addition and nonlinear
activation (Figure 10b) [123]. Not only supervised learning but also the unsupervised
learning training method can be realized through a feedback mechanism. They built an
all-optical fully connected neural network that contains four neurons and successfully
differentiated four 15-pixel images.

7.1.2. Photonic Accelerator

Matrix multiplication is one of the most basic and important calculations in traditional
computing architectures, especially in the field of neural networks and deep learning. In the
process of deep learning, the weight matrix is fixed after training, and nonlinear operations
are often performed. Considering that, all-optical computing could be a valuable solution
for neural networks. In the all-optical neural network, the weights are implemented
either by modulating the splitting ratio of the MZI through a phase modulator, or directly
by changing the optical absorption rate of the PCM material. Shen et al. proposed an
optical implementation of matrix multiplication using the MZI optical coherence module
(Figure 10c) [124]. Before the signal was input into the optical neural networks (ONN), the
authors preprocessed the input signals into a high-dimensional vector, and then encoded
them into pulse signals of different amplitudes. Each layer of ONN contains an optical
interference unit (OIU) to represent matrix multiplication and an optical nonlinearity unit
(ONU) to implement nonlinear activation functions. In the experimental setup, the OIU is
implemented by 56 MZIs, each containing a thermo-optics phase shifter. The function of
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the phase shifter is to change the splitting ratio of the MZI to route the optical signal and
implement matrix multiplication. One more thermo-optics phase shifter was patterned on
the output of the MZI to control the differential output phase. The authors then built an
ONN containing four layers of OIUs with four neurons in each layer and showed acceptable
performance (76.7% accuracy) in vowel recognition.

In addition, Feldmann et al. realized the parallel computing of matrix multiplication
by combining PCM and optical frequency, which greatly improved the operation speed
(Figure 10d) [36]. Zhang et al. utilized the MZI coherence and achieved complex-value
calculation through optical neural networks (Figure 10e) [125]. Some promising works such
as logic gate realization, classification tasks, and handwriting recognition were proposed.

7.2. Optical Phased Array

Inspired by array radars in electronics, the optical phased array has developed rapidly
in the past two decades. OPAs have become a convincing candidate for optical communi-
cation in free space, LiDAR mapping, and spatially resolved optical sensors, benefitting
from its precise and flexible steering angle of emitted light. Generally, OPAs are composed
of an incident light coupler, phase shifter array, and grating emitters. Two-dimensional
steering angles can currently be achieved, where one steering angle is controlled by the
wavelength of the input light, and the other direction is controlled by the phase shifter. Con-
sidering the large-scale and densely integrated on-chip optical circuits, a phase shifter with
high efficiency, low phase noise, and low power consumption is needed. Thermo-optics
phase shifters are mainly used in OPA systems due to their easy access from commer-
cial foundries and small footprint. Hutchison et al. achieved an ultra-high-resolution
phase array by carefully designing a non-uniform emitter spacing, which showed 80◦

steering in the phased-array axis and 0.14◦ divergence with over 500 resolvable spots [27].
Sun et al. also achieved an 8 × 8 active phased array using directional couplers with dif-
ferent coupling ratios to obtain equal power emitting (Figure 11a) [29]. The thermo-optics
phase shifters with doping silicon heaters are used to actively tune the phase in horizontal
and vertical directions.
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Figure 11. (a) Schematic of an 8 × 8 active phased array utilizing thermo-optics phase shifter
(reprinted with permission from [29] © 2013 Spring Nature). (b) Schematic of a mesh structure
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(c) An optical image of an on-chip digital Fourier transform spectrometer (reprinted with permission
from [127] © 2018 Spring Nature).
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7.3. Multi-Functional Signal Processing Systems

Inspired by FPGAs in the field of electronics, Perez et al. proposed a hexagonal mesh
structure in which each side of the hexagon has a phase shifter enabling a particularly
large number of functions as shown in Figure 11b [126], such as single-input/single-output
FIR filters, optical ring resonators, coupler resonator waveguides, side-coupler integrated
spaced sequences of optical resonators, ring-loaded MZIs, and so on. The structures greatly
improve the scalability and functionality of photonic integrated circuits.

7.4. On-Chip Spectrometer

The spectrometer is currently an important calibration and measurement tool in indus-
try and laboratories. Although current bulky spectrometers can achieve high-resolution
measurements, spectrometers currently have a trend towards miniaturization, and re-
searchers have made great efforts in this regard [128–131]. The integrated phase shifters
offer the on-chip light splitting and routing functions, which could enable the spectrometer
application by creating on-chip light interference. Kita et al. demonstrated a digitalized
Fourier transform (FT) spectrometer using the silicon PIC chip as shown in Figure 11c [127].
By constructing the optical switch with phase shifters, a tunable optical path difference was
realized, controlling the thermo-optics phase shifters. The miniaturized FT spectrometer
obtained a high resolution and scalability features through combining with machine learn-
ing regularization techniques, which achieved significant resolution enhancement beyond
the classical Rayleigh criterion. As thermo-optics phase shifters are easily accessible in the
silicon photonic foundry, the authors took the foundry service for the well-packaged chip
device for the experimental demonstration.

8. Discussion

In this paper, we review the modulation mechanisms, optimized structures, and the
performance of MEMS, thermo-optics, and free-carrier-depletion-based phase shifters.
Trade-off between each FOM is the key in designing individual devices and selecting
an appropriate phase shifter in a complicated system. It is hard to improve all FOMs
simultaneously. The mechanical dimensions of the MEMS actuator have opposite effects
on the applied voltage and modulation speed, while the initial position of the MEMS
actuator affects the (dynamic) insertion loss and modulation efficiency. For thermo-optics
phase shifters, a balance between the modulation efficiency and modulation speed needs
to be determined according to the applications, and footprint and thermal crosstalk are
sometimes important considerations. For free-carrier-depletion-based phase shifters, the
free-carrier concentration and distribution affect the modulation efficiency, insertion loss,
and modulation speed simultaneously.

On the other hand, these three kinds of phase shifters complement each other from
the perspective of the application. The free-carrier-dispersion-based phase shifter is widely
used in applications requiring high-speed phase modulation, such as telecommunications.
However, it has the inherent disadvantage of relatively large dynamic insertion loss. The
thermo-optics-based phase shifters offer efficient and stable phase modulation without
dynamic insertion loss. However, the layout of the thermo-optics phase shifters must be
carefully designed in large-scale PICs due to the limitation of large power consumption
and thermal crosstalk. MEMS-based phase shifters appeared around two decades ago
and had major developments in the past five years. Benefitting from its extremely low
power consumption and no thermal crosstalk, MEMS-based phase shifters show significant
potential for the future dense PIC applications. Nevertheless, due to the fatigue and
other failure risks of non-solid-state systems, the packaging and long-term stability of
MEMS-based phase shifters are still worth investigating.

In the future, in addition to the improvement of modulation efficiency and insertion
loss, the dense integration and commercialization of silicon photonic phase shifters need
further investigation, including the reduction in power consumption and footprint and
the optimization of the packaging technologies, to name a few. Moreover, due to their
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excellent optical and electro-optics properties, heterogeneous integrated materials (Ge-on-
Si, graphene, LiNbO3, etc.) have attracted great interest and flourished.
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