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Abstract: This paper proposes a new 6T1C pixel circuit based on low-temperature polycrystalline
oxide (LTPO) technology for portable active-matrix organic light-emitting diode (AMOLED) displays
with variable refresh rates ranging from 1 to 120 Hz. The proposed circuit has a simple structure
and is based on the design of sharing lines of switch-controlling signals. It also provides low-voltage
driving and immunity to OLED degeneration issues. The calculation and analysis of programming
time are discussed, and the optimal storage capacitor for the proposed circuit’s high-speed driving is
selected. The results of the simulation reveal that threshold voltage variations in driving thin-film
transistors of ±0.33 V can be well sensed and compensated with a 1.8% average shift of OLED
currents in high-frame-rate operation (120 Hz), while the maximum variation in OLED currents
within all gray levels is only 3.56 nA in low-frame-rate operation (1 Hz). As a result, the proposed
6T1C pixel circuit is a good candidate for use in portable AMOLED displays.

Keywords: low-temperature polycrystalline silicon and oxide (LTPO); active-matrix organic light-
emitting diode (AMOLED); low frame rate; high frame rate; variable frame rate; portable displays

1. Introduction

Because of the benefits of outstanding color characteristics, short response time, high
contrast ratio, and low power dissipation, active-matrix organic light-emitting diodes
(AMOLEDs) have been widely used in display technologies [1–3]. The recent trend of
display panels in high-end portable devices requires not only high resolution and pixels
per inch but also low power consumption. Furthermore, portable products with adjustable
frame rates are displayed with cutting-edge technology. High-frame-rate (HFR) technolo-
gies are used to achieve superior image quality in high-performance applications such as
gaming or watching movies. In contrast, low-refresh-rate pixel designs are used in appli-
cations that require energy saving, such as smartwatches. In recent years, an increasing
number of portable AMOLED displays have begun to incorporate LTPO technologies into
pixel circuits. Low-temperature poly-Si (LTPS) thin-film transistors (TFTs) and metal-oxide-
semiconductor (oxide) TFTs make up the LTPO structure. LTPS TFTs have been mainly
adopted in mobile applications because of their high carrier mobility and excellent current
driving capability, which make LTPS technologies beneficial to pixel circuit driving with
low power consumption [4,5]. However, the characteristics of LTPS TFTs, such as the
threshold voltage (VTH), would be significantly affected by the crystallization process [6,7];
additionally, due to the properties of polysilicon materials, LTPS TFTs generally suffer from
high off-state leakage current [8,9]. Oxide TFTs, on the other hand, have advantages over
LTPS TFTs due to their outstanding uniformity, extremely low off-leakage current, and
low process complexity [10,11]. Both dynamic image quality and power consumption are
important considerations for portable AMOLED displays, and using the LTPO structure is
advantageous for achieving these two goals. Because of the high carrier mobility, driving
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the AMOLED pixel circuit with LTPS TFTs can dramatically reduce the programming
period, allowing the pixel circuit to operate at HFR. Furthermore, to achieve low power
consumption, the use of the LTPS TFT operates the pixel circuit with low-voltage driving
due to its exceptional current driving capability; additionally, the low-frame-rate operation
is a feasible way to realize power savings [12,13]. Holding the gate voltage of the driving
TFT (DTFT) is required to support low-refresh rate driving; thus, oxide TFTs can be used
to suppress the off-state current. Furthermore, the design of the storage capacitor is crit-
ical because the pixel circuit requires a relatively small capacitor to operate high-speed
programming at HFR.

As a result, numerous compensating pixel circuits based on LTPO have been published
to alleviate DTFT threshold voltage variations. Apple Inc. [14] pioneered the LTPO concept
with the 6T1C pixel circuit, which was mass-produced in the Apple Watch Series 4, enabling
an adjustable frame rate between 1 and 60 Hz. Nevertheless, the control signal lines of
the circuit were complicated, thus restricting the screen resolution and bezel area. Sharp
Inc. [15] demonstrated a 7T1C pixel circuit with LTPO technology that drove an AMOLED
panel favorably between 1 and 120 Hz using a GOA circuit. However, operating the circuit
at 1 Hz consumed a significant amount of electricity because the emission control signal
was still charged and discharged 120 times in one second. Following that, Fu et al. [16]
proposed a 7T1C pixel circuit that successfully solved the frequent charging–discharging
problem by holding the gate voltage of the LTPS driving TFT, allowing the circuit to drive
between 1 and 120 Hz. Nonetheless, this 7T1C circuit is confronted with the IR-drop issue
and intricate control signal line design.

This paper proposes a novel 6T1C pixel circuit with an LTPO structure for portable
displays with variable frame rates ranging from 1 to 120 Hz. To reduce the number of
control signal lines and TFTs in the proposed circuit structure, a holding period is used.
In addition, the proposed circuit is independent of variations in the VTH of OLED that
provide immunity to OLED degeneration issues. The proposed circuit is provided with
low-voltage driving of 5 V, operating at 120 Hz, with an average error rate of 1.8% of OLED
currents, while the DTFT’s VTH variations are ±0.33 V. Furthermore, although the proposed
pixel circuit operates at 1 Hz, the overall variations in OLED driving currents are less than
3.56 nA. As a result, the proposed 6T1C pixel circuit is a good candidate for use in portable
AMOLED displays.

2. The Operation of the Proposed Pixel Circuit

Figure 1a shows the circuit construction of the proposed 6T1C LTPO pixel circuit,
which adopts the top-anode OLED configuration or the inverted top-emitting OLED
(ITOLED) structure [17,18]. The proposed 6T1C pixel circuit is composed of one driving
LTPS TFT (T1), two switching LTPS TFTs (T4 and T6), three switching oxide TFTs (T2,
T3, and T5), and one storage capacitor (CST). Furthermore, nodes N1 and N2 are the
DTFT’s gate (VG) and source voltages (VS), which play an important role in controlling
pixel currents. The corresponding timing diagram is shown in Figure 1b. To reduce the
complexity of the pixel circuit, both Scan[n] and Scan[n − 1] control signals (Em[n] and
Em[n − 1]) have the same pulse width. The operation of the proposed circuit is divided
into four phases, as shown in Figure 2, presented in detail as follows.

2.1. Reset Stage

In the beginning stage of the operation, Scan[n − 1] and Em[n] are high to turn on T3
and T6. Scan[n] and Em[n − 1] are low to turn off T2, T5, and T4. The purpose of this stage
is to reset the VGS of the DTFT. The ELVDD is applied to N1 through T3, while node N2
is discharged to ELVSS. Furthermore, the OLED is completely turned off during the reset
stage to prevent image flicker.
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Figure 2. Schematic of pixel circuit operation, including (a) reset, (b) programming, (c) holding, and
(d) emission periods.

2.2. Programming Stage

During this stage, Scan[n − 1] and Em[n] are low to turn off T3 and T6. Em[n − 1]
remains at a low voltage to prevent current from flowing through the OLED. The pro-
gramming stage is intended to compensate for DTFT VTH variations while simultaneously
inputting data voltage signals. Scan[n] is raised to turn on T2 and T5, and a data voltage is
applied to node N2 via T5. The diode-connected structure, which comprises T1, T2, and T5,
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discharges node N1 from ELVDD to VDATA + VTH_DTFT. As a result, the voltage VDATA +
VTH_DTFT is stored in CST at the end of the programming stage.

2.3. Holding Stage

Scan[n] becomes low during the holding period to turn off T2 and T5. To turn off T3
and T6, Scan[n − 1] and Em[n] are kept low. The N2 node is now floating, and the DTFT
is turned off. As a result, even though Em[n − 1] turns on the switching T4, the OLED
remains dark. Furthermore, the stored charges of CST are well held due to the low leakage
current of oxide TFTs T2 and T3.

2.4. Emission Stage

In the final operating stage, Scan[n] and Scan[n − 1] remain low to turn off T2, T3,
and T5, and Em[n − 1] remains high. Because the gate voltage (N1) is held at VDATA +
VTH_DTFT and the ELVSS is applied to the source voltage (N2) while Em[n] becomes high to
turn on T6, the driving TFT operates in the saturation region. The emitting OLED current
can be calculated using the following equation:

IOLED=
1
2

µnCOX (
W
L
)

DTFT
(VGS − VTH_DTFT)

2

=
1
2

µnCOX (
W
L
)

DTFT
(VDATA + VTH_DTFT − ELVSS − VTH_DTFT)

2

=
1
2

µnCOX (
W
L
)

DTFT
(VDATA)

2.

(1)

Based on Equation (1), VTH_DTFT is removed, so the OLED currents are solely deter-
mined by VDATA. As a result, the proposed pixel circuit not only compensates for variations
in DTFT threshold voltage but is also unaffected by variations in ELVDD and VTH_OLED,
improving image uniformity. In low-frame-rate applications, node N1 must be held at
VDATA + VTH_DTFT to generate a constant driving current during the emission period. As a
result, to reduce the voltage fluctuation of N1 caused by the leakage currents of T2 and T3,
the switching TFTs connected to node N1 are implemented as oxide TFTs. In HFR appli-
cations, the proposed pixel circuit has to adopt an adequate storage capacitor to operate
with high-speed discharging. Furthermore, the LTPS DTFT enables the proposed circuit to
supply the OLED driving current with low-voltage power. As a result, the proposed pixel
circuit can operate at rates ranging from 1 to 120 Hz with low-voltage driving, making it
suitable for use in portable displays.

3. Analysis of Storage Capacitor

In HFR operation, using an appropriately sized storage capacitor to compensate for
VTH_DTFT variations is critical. To validate the storage capacitor design, the discharging
process of the programming stage, as shown in Figure 3, is explained and analyzed in detail
as follows.

In the equivalent circuit of the programming stage, the transient current (ICST) flowing
through the storage capacitor can be expressed as

ICST = (CST)
dVN1

dt
(2)

where VN1 is the voltage of N1 as well as the voltage being stored in CST. In addition, as
the Scan[n] signal turns on T2 and T5, a data voltage is supplied to N2 through T5. The
diode-connected structure starts discharging N1 from ELVDD to VDATA + VTH_DTFT in an
ideal operating situation. The discharging current (IT1) can be presented as

IT1 =
1
2

µnCOX (
W
L
)

DTFT
(VN1 − VDATA − VTH_DTFT)

2 (3)
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where VN1 −VDATA is the gate-to-source voltage (VGS) of the DTFT. Based on the principle
of charge conservation, Equation (4) must be followed.

ICST + IT1 = 0. (4)
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From Equations (2) and (3), Equation (4) can be derived as

1
VN1 − VDATA − VTH_DTFT

=
1
2

µnCOX (
W
L
)

DTFT
(

1
CST

) τ + A (5)

where τ is the total time of the discharging process as well as the programming period in the
proposed circuit, and A is the constant of integration. At the beginning of the discharging
process, τ is equal to zero, and VN1 is ELVDD; thus, the constant of integration, A, can be
calculated as

A =
1

ELVDD − VDATA − VTH_DTFT
(6)

Further, at the end of the discharging process, τ is the total programming time, and
VN1 is assumed to be discharged to β× (VDATA + VTH_DTFT), where β ≥ 1, representing the
actual voltage of VN1. Therefore, the formula for discharging period τ can be presented as

τ =
2L

µnCOXW
× CST ×

[
1

β(VDATA + VTH_DTFT)− VDATA − VTH_DTFT
− 1

ELVDD − VDATA − VTH_DTFT

]
(7)

Equation (7) shows that as the mobility of the DTFT or VTH_DTFT increases, the pro-
gramming period can be reduced, which benefits high-refresh-rate driving. Furthermore,
the storage capacitor CST is proportional to the programming time; thus, a relatively small
CST is required for high-speed operation. To confirm the appropriate size of the storage
capacitor used in the proposed 6T1C pixel circuit, a few LTPS driving TFT parameters and
experimental data are required. The LTPS driving TFT had a geometry of 3 µm/10 µm,
a threshold voltage of 1.5 V, mobility of 102 cm2/V·s, and a 30 nm SiO2 insulator COX of
115 nF/cm2. According to the simulation data, the parameter β was approximately equal
to 1.0054, while VDATA was −0.1 V when operating at the lowest gray level. Furthermore,
to operate the proposed pixel circuit at 120 Hz with FHD resolution, the discharging time
(data-inputting time) of the programming period must be less than the line-scanning time,
which can be calculated as

line − scanning time =
1 s

frame rate × FHD resolution
(8)
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where “FHD resolution” represents the row number of the FHD resolution display, and
the “frame rate” is 120 Hz. The discharging times of the proposed circuit have to be set
below 7.716 µs for a frame rate of 120 Hz with an FHD resolution; as a result, the proposed
storage capacitor CST must be limited as follows:

7.716 µs >
2L

µnCOXW
× CST ×

[
1

β(VDATA + VTH_DTFT)− VDATA − VTH_DTFT
− 1

ELVDD − VDATA − VTH_DTFT

]
(9)

In the calculation results of Equation (9), the storage capacitor CST needs to be lower
than approximately 103 fF. As a result, we set 100 fF as the value of the proposed CST.

4. Results and Discussion

LTPS and a-IZTO TFT devices were fabricated to validate the performance of the
proposed 6T1C pixel circuit, and the measured and simulated transfer curves are shown
in Figure 4. The a-IZTO TFTs, using a bottom-gate structure, can achieve a low leakage
current. The LTPS TFTs, using a top-gate structure, are able to provide high carrier mobility
and excellent current driving capability. The a-IZTO and LTPS TFTs used in the proposed
pixel circuit were measured by a semiconductor parameter analyzer (HP4145B) to obtain
the transfer curves. Furthermore, the characteristics of the a-IZTO and LTPS TFTs were
fitted by software to acquire the model parameters before the circuit simulation. The
proposed circuit was simulated using AIM-Spice, and the parameters are listed in Table 1.
Herein, the storage capacitor CST is set to 0.1 pF to operate the proposed pixel circuit
at an HFR of 120 Hz with FHD resolution. Furthermore, designing the Scan and Em
with the same voltage range reduces the complexity of GOA and is advantageous for
narrow-bezel applications.
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Table 1. Specifications of proposed 6T1C pixel circuit.

Parameter Value Parameter Value

(W/L)T1 (µm) 3/10 ELVDD (V) 5
(W/L)T2−T6 (µm) 3/3 ELVSS (V) 0

CST (pF) 0.1 Scan, Em (V) −1~5
COLED (pF) 0.4 VDATA (V) −0.1~1.9

Emission period for 120 Hz (ms) 8.33
Emission period for 1 Hz (s) 1

Figure 5a shows the simulated transient waveforms of node N1 of the proposed pixel
circuit operating at 120 Hz when VTH variations in DTFT are −0.33, 0, and +0.33 V. Node N1
is reset to ELVDD (5 V) at the start of the operation and then discharged to approximately
VDATA + VTH (3 V) with an input data voltage of 1.5 V after the programming period.
Furthermore, the proposed circuit senses variations of 0.33 and 0.32 V, which are nearly
equal to the actual variation of 0.33 V. Furthermore, at the end of the holding period,
node N1 drops from 3 to 2.85 V due to the parasitic capacitance issue caused by clock-
feedthrough effects. Figure 5b shows the simulated OLED currents versus data voltage
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from −0.1 to 1.9 V for ±0.33 V DTFT threshold voltage shifts with an average error rate of
1.8%, demonstrating the proposed pixel circuit’s high compensating capability for threshold
voltage variations when driven at 120 Hz.
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Figure 5. The (a) simulated transient waveforms of node N1 voltage operating at 120 Hz when
VTH variations in DTFT are −0.33, 0, and +0.33 V. (b) Simulated OLED driving currents versus data
voltage of the proposed 6T1C pixel circuit for ±0.33 V threshold voltage shifts of DTFT.

Figure 6 depicts the simulated voltage waveforms of node N1 operating at a low frame
rate of 1 Hz when the VTH variations in the driving TFT are −0.33, 0, and +0.33 V. After the
reset, programming, and holding operations, the voltage of node N1 ought to be sustained
within the long period emission stage of 1 s. It can be seen that the voltage of node N1 is
fine and holds that the maximum variation is about 0.23%. Furthermore, at the end of the
emission period, the proposed circuit detects voltages of 0.328 V and 0.326 V, indicating
that the proposed pixel circuit is highly resistant to DTFT threshold voltage variation when
driven at a low frame rate of 1 Hz.

Figure 7a depicts the simulated OLED currents at the low gray level in the proposed
circuit structure using all-LTPS TFTs or LTPO for a 1 s emission period. Within the long
emission time, being lower than the ELVDD, the voltage of node N1 (VDATA + VTH_DTFT)
is mainly charged by the path of the leakage current of T3. As a result, the OLED current
increases dramatically as the voltage of node N1 rises. Because of the extremely low off-
current characteristic of oxide TFTs, leakage currents can be limited in LTPO applications.
Figure 7b depicts the simulated OLED currents emitting continuously for 1 s at various
gray levels while the proposed 6T1C pixel circuit operates at a low frame rate of 1 Hz.
The overall variations in OLED driving currents are less than 3.56 nA, indicating excellent
stability when operating at a low frame rate of 1 Hz.
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bility when operating at a low frame rate of 1 Hz.  

Figure 6. Simulated waveforms of the voltage of node N1 operating at 1 Hz when VTH variations in
DTFT are −0.33 V, 0 V, and +0.33 V.
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In addition, in Table 2, a comparison between the proposed and previously published
pixel circuits demonstrates the advantages of the proposed 6T1C circuit, including a simple
structure, a minimum number of signal lines, wide refresh rate support, and low voltage
driving. The total number of signal lines, in this case, includes ELVDD, ELVSS, VDATA,
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VREF, and switch-controlling signal lines. Finally, based on the simulated results, it is
confirmed that the proposed 6T1C pixel circuit has good performance when operating at
various refresh rates ranging from 1 to 120 Hz, making it suitable for portable displays.

Table 2. Comparison between proposed and previously published pixel circuits.

Reference This Study Ref. [14] Ref. [16] Ref. [19] Ref. [20]

Structure 6T1C 6T1C 7T1C 6T2C 7T1C
Total signal lines 5 8 7 7 6

Frame rate 1–120 Hz 1–60 Hz 1–120 Hz 120 Hz 15–60 Hz
Resolution 1920 × 1080 368 × 448 1920 × 1080 1920 × 1080 320 × 360

Power voltage (VDD − VSS) 5 V N/A 7 V 4.8 V 6.6 V

The layout of the proposed pixel circuit using the method of line sharing is shown
in Figure 8. The target display specifications in this paper are designed for portable
applications, including full high-definition (FHD) resolution, a high ppi of 525, and 1 Hz to
120 Hz frame rate support. With the small subpixel dimension of 48.5 µm × 24.25 µm, it is
believed to reach a high pixel density for portable applications.
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5. Conclusions

This paper proposes a new 6T1C pixel circuit for AMOLED portable displays based
on LTPO technology that supports variable frame rates ranging from 1 to 120 Hz. To use
it in narrow-bezel applications, identical switch-controlling signals can be used to reduce
circuit complexity.
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Furthermore, the proposed circuit could not only be driven with a low power voltage
of 5 V but also be free of the OLED degeneration problem. According to the results of the
calculation and analysis, the storage capacitor of the proposed circuit, being suitable for
HFR driving, is chosen as 100 fF. The results of the simulation show that the average error
rate of OLED currents with ±0.33 V threshold voltage variations in the DTFT is 1.8% in
the HFR driving scheme (120 Hz); additionally, during low-frame-rate operation (1 Hz),
the maximum shift of OLED currents at all gray levels is about 3.56 nA. As a result, the
proposed pixel circuit can be successfully operated at a variety of refresh rates ranging
from 1 to 120 Hz, which is advantageous for portable AMOLED displays.
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