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Abstract: The anti-reflection of transparent material surfaces has attracted great attention due to
its potential applications. In this paper, a single-step controllable method based on an infrared
femtosecond laser is proposed for self-generation multiscale anti-reflection structures on glass. The
multiscale composite structure with ridge structures and laser-induced nano-textures is generated
by the Marangoni effect. By optimizing the laser parameters, multiscale structure with broadband
anti-reflection enhancement is achieved. Meanwhile, the sample exhibits good anti-glare perfor-
mance under strong light. The results show that the average reflectance of the laser-textured glass
in the 300–800 nm band is reduced by 45.5% compared with the unprocessed glass. This work
provides a simple and general strategy for fabricating anti-reflection structures and expands the
potential applications of laser-textured glass in various optical components, display devices, and
anti-glare glasses.

Keywords: anti-reflection; multiscale structure; Marangoni effect; anti-glare; femtosecond laser

1. Introduction

Transparent material is widely used in various optical windows [1,2], device screens [3],
photoelectric equipment [4,5], and optical elements [6] because of its special optical proper-
ties. However, due to the refractive index mismatch of the two media, there is still reflection
on the surface of the transparent material. The reflected light will result in interference
signals in the precision optical system. In addition, the reflected light from various display
devices will produce glare and degrade the user experience. More seriously, the dashboard,
navigation instrument, rearview mirror, and front windshield, as the main sources of infor-
mation for drivers during the driving process, are prone to producing glare on the interface,
which may cause a great safety hazard [7]. Therefore, it is of practical significance to explore
efficient and simple preparation methods for anti-reflection and anti-glare surfaces.

Preparing microstructure with light-trapping function on the material surface is consid-
ered an effective anti-reflection method [7,8]. This strategy has great anti-reflection effects
on non-transparent materials such as silicon [9] and metal [8,10]. After a long period of
evolution, organisms in nature have a variety of functional surfaces to adapt to challenging
environmental changes [11–14]. Studies have shown that the subwavelength structure with
moth-eye effect has advanced anti-reflection performance [15–17]. At present, subwave-
length structures are often fabricated by the sol-gel method [18], nanoimprinting [15,17,19],
electron beam lithography [20,21], laser printing [22–24], etc. Moreover, researchers have
found that the subwavelength LIPSS (laser-induced periodic surface structures) could be
induced on the material surface by adjusting the ultrafast laser polarization shape and the
external atmosphere [25–27]. Papadopoulos et al. [16] used circularly polarized ultrashort
laser pulses to induce the nano-columnar LIPSS, which had a moth-eye effect on fused
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silica. The average reflectance at 400–1200 nm is reduced from approximately 7.5% to 5%.
Additionally, the reflectance is further reduced after double-sided laser treatment. The
moth-eye effect depends on the refractive index gradient of the subwavelength structure,
which requires the shape and density of the subwavelength structure to meet specific condi-
tions. Therefore, the large-scale preparation of subwavelength structures with a moth-eye
effect by the above methods is complicated.

In recent years, various types of micro-nanostructures inspired by nature have also
attracted extensive attention [7,28,29]. The moth-eye effect and light trapping effect of
multiscale structures can not only reduce the Fresnel reflection loss on the material surface
but also change the direction of the incident light [30]. Niu et al. obtained butterfly
wing replicas with excellent anti-reflection properties by the sol-gel method and selective
etching, and the anti-reflection ability was due to the multiple scales of the structure size
and multiple anti-reflection mechanisms [31]. Yu et al. prepared micro-nanostructures
by wet etching and plasma etching and demonstrated that the dual-scale structure has
excellent anti-reflection performance [32]. Hsueh et al. formed a hybrid structure including
pyramids, etched holes, and inverted pyramidal cavities on silicon by three-step chemical
etching to obtain a low reflectance surface [33]. Meanwhile, compared with the single-
scale moth-eye structure, the multiscale structure has lower requirements for the nanoscale
structure characteristics, which reduces the difficulty of preparing nanostructures. However,
multiscale structures are usually fabricated step by step with different levels, and the
preparation process is relatively complicated.

During laser irradiation, high laser energy density drives phase explosion in the crater
center [34], which can expel the neighboring melt sideways. Feng et al. presented that
laser pulses with a high repetition frequency caused a cumulative thermal effect, which
was beneficial to keeping the material in a molten state [35]. Meanwhile, the hot and
cold zones on the material surface cause a difference in tension gradient. It will lead to
the phenomenon of spontaneous mass transfer caused by the Marangoni effect [36]. The
nano-textures induced by laser irradiation show obvious laser polarization and wavelength
dependence [37,38]. Nevertheless, the multiscale structure has low requirements for nano-
textures, which can reduce the dependence on specific laser polarization and wavelength.
Therefore, by proper utilization of the ridge produced by Marangoni effect combined
with the nano-textures induced by laser processing, a multiscale structure with multiple
anti-reflection effects can be fabricated.

In this work, the Marangoni effect was adopted in femtosecond laser processing to
directly fabricate a micro-nano hybrid structure combining ridge structures and nanotex-
tures in a single step. Multiscale structures showed high controllability and broadband
anti-reflection enhancement. Meanwhile, the glare is obviously reduced when the laser-
textured glass is under strong light. The proposed single-step preparation method is simple
in process, high in applicability, free of any chemical components, environmentally friendly,
and has excellent application prospects.

2. Experimental Setup
2.1. Materials and Instruments

The material selected in this experiment was inorganic glass (B270, SCHOTT, Jena,
Germany) with a size of 30 mm × 30 mm × 3.2 mm.

A multiscale structure was fabricated by the linearly polarized infrared laser (wave-
length: 1028 nm, pulse duration: 290 fs, maximum power: 15 W, maximum pulse repetition
rate: 75 KHz) and the linearly polarized ultraviolet laser (wavelength: 343 nm, pulse dura-
tion: 290 fs, maximum power: 15 W, maximum pulse repetition rate: 75 KHz), respectively.

2.2. Machining Strategy of the Marangoni Effect

During the laser processing, part of the material in the laser irradiated area will re-
main in a molten state, and there will be a significant temperature difference between
the irradiated area and the nearby non-irradiated area. Usually, the surface tension of
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the liquid decreases with the increase in temperature, so shear stress will be generated
in the area of the cold and hot interface of the material [36], as depicted in Figure 1a.
The repetition frequency of the pulse laser is 25 KHz, which is beneficial to the accumu-
lation of thermal effect in the laser irradiation area. Consequently, the material surface
causes Marangoni convection, as shown in Figure 1b. In selective laser sintering processes,
non-planar surfaces caused by the Marangoni effect are often considered as machining
defects, known as the balling effect [39,40]. However, with the optimization of the laser
processing parameters supported by theoretical analysis, the morphology can be easily reg-
ulated into the desired structure. Therefore, by proper utilization of the Marangoni effect,
a ridge-shaped structure with a size smaller than the light spot can be obtained at the edge
of the light spot. Meanwhile, many nanoparticles will be induced in the laser ablation
area. Multiscale structures with light trapping effects and moth-eye effects can be achieved
by coupling ridge-shaped structures with nanoparticles. To obtain more abundant ridge
structures, a laser scanning dot matrix was designed (Figure 1c,d).
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2.3. Characterization

A field emission scanning electron microscope (SEM, SUPRA55 SAPPHIRE, Carl
Zeiss AG, Oberkochen, Germany) and a laser confocal microscope (LCM, VK-X1000,
KEYENCE, Osaka, Japan) were used to characterize the surface morphology of multiscale
structure samples. The reflectance spectra of the samples at 300–800 nm were measured by
a spectrophotometer (Lambda 1050+, PerkinElmer, Waltham, MA, USA) with an integrating
sphere accessory.

3. Results and Discussion
3.1. Anti-Reflection Mechanism

When light propagates between two media, reflected light due to refractive index
mismatch is inherent and cannot be completely eliminated. The micro-nano structure can
effectively reduce the surface reflection, and its mechanism is mainly determined by the
relationship between the structure size and the wavelength of the incident light [7].

When the structure is a subwavelength structure, whose size is smaller than the
wavelength of the incident light, the interaction between light and structure is shown in
Figure 2a. At this time, the incident light cannot completely distinguish the structure form,
and the structure can be equivalent to a graded refractive index layer. In this way, the
reflected light caused by the sharp change in the refractive index between the two media is
reduced, resulting in a moth-eye effect, as shown in Figure 2b. When the spacing and depth
between structural surface topographies have the same size constraint as the wavelength
of incident light, the light will be reflected multiple times inside the structure. This will
produce a light trapping effect, as shown in Figure 2c. In Figure 2d, when the structure is
a micro-nano hybrid structure with a small size span, it is called a multiscale structure. The
multiscale structure has both a light trapping effect and a moth-eye effect, which is more
conducive to improving the anti-reflection ability of the surface. The shape characteristics
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are less critical than those of the single-scale subwavelength structure because it does not
rely solely on the moth-eye effect.
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Then, in order to investigate the anti-reflection performance of multiscale structures,
the simulation analysis was first carried out. Figure 3a presents the established model, in
which the strip-like structure represents ridge structures produced by the Marangoni effect,
and the spherical-like structures represent the nanoparticles induced by laser. The reflection
spectrum of the flat, ridge structure, and multiscale structure is displayed in Figure 3b,
respectively. The anti-reflection performance of multiscale structures is the best. This result
indicates that the ridge structure can form a forward-coupled multiscale structure with
nanoparticles, which has better anti-reflection properties than a single structure.
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3.2. Preparation of Multiscale Structure

In Figure 4, SEM was used to characterize the surface processed by the ultraviolet and
infrared femtosecond laser. The results show that the spot on the sample surface irradiated
by the ultraviolet laser is not a regular circle, as shown in Figure 4a. The Marangoni effect
at the edge of the light spot is weak, and there are no obvious ridge structures, as shown
in Figure 4b. The spot formed by the infrared femtosecond laser on the sample surface is
a regular circle, as depicted in Figure 4d. Additionally, there is an obvious ridge structure
at the edge of the light spot, as shown in Figure 4e. Meanwhile, comparing Figure 4c,f, the
number of nanoparticles induced by the two lasers is similar, but the line-like nanotextures
induced by the ultraviolet laser are fewer. It can be inferred that the infrared laser has
greater advantages in the generation of multiscale structures.
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Figure 4. SEM images of the glasses textured by different lasers. (a–c) ultraviolet femtosecond laser,
(d–f) infrared femtosecond laser.

The laser energy density affects the morphology of ridge structures as well as the
abundance of nanostructures. Figure 4 shows that the spot of the infrared laser is about
20 µm. When the scanning distance is 10 µm, the overlap between the spots increases.
The effect of laser energy density on the morphology of ridge structures generated by
single light spots and ridge structures generated by overlapping can be investigated at
the same time. Figure 5 shows the SEM images of infrared laser-textured glass at different
laser energy densities. When the laser energy density decreases, the diameter of the laser
spot decreases, and there are plenty of micropores and cracks inside the spot, as shown in
Figure 5a,d.
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In Figure 5b, as the laser scans, the light spots overlap, and the white, blue, and red
arcs represent the ridge structures generated successively. The newly formed light spot will
ablate the existing ridge and form a new ridge on its edge by the Marangoni effect. When
the laser energy density is 57.3 J/cm2, the existing ridge structures are unevenly ablated,
and cracks and micropores are formed at the ridge. At the same time, the material flow
caused by the Marangoni effect is weakened. Due to the higher height of the incompletely
ablated ridge, the light spot formed later cannot completely cover the existing ridge, and
finally, there are many cracks and micropores inside the light spot. When the laser energy
density is 95.5 J/cm2, the ablation of the existing ridge is more uniform, so the ablated ridge
is flatter. Moreover, the Marangoni effect is significantly enhanced, and the molten material
can completely cover the existing ridges. Therefore, there are almost no micropores and
cracks where the ridges overlap, as depicted in Figure 5e. In addition, the increase in the
laser energy density also leads to more nanoparticles and line-like nanotextures, as shown
in Figure 5c,f.

To increase the density of ridges, the scanning distance is further reduced to 5 µm,
as shown in Figure 6. The light spots can be perfectly overlapped, and almost no micro-
holes or cracks are generated. Meanwhile, the laser-induced nanoparticles and line-like
nanotextures were more abundant with the increase of spot overlap. Overall, the resulting
multiscale structure exhibits morphological diversity at each scale.
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Figure 6. SEM image of the laser-textured glass with different magnifications when the infrared laser
scanning distance is 5 µm. (a) 1000 times magnification, (b) 4000 times magnification, (c) 10,000 times
magnification, and (d) 15,000 times magnification.

The morphology measurements are performed with the laser confocal microscope for
laser-textured glass at different scanning distances. The LCM images and cross-sectional
views under three different scanning distances are shown in Figure 7, where the black
dotted line in the LCM images represents the selected cross-sectional position of the cross-
sectional view. At different scanning distances, the overlapping of light spots is different,
and the flow of materials by Marangoni convection is different. In Figure 7b,d, and f, the
blue, red, and green arcs represent the successively generated light spots, and the blue-red
gradient arrows represent the material flow between the two successively formed ridges.
As shown in Figure 7a, when the scanning distance is 20 µm, the overlap between the
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light spots is small. For the formation of the red spot, the laser irradiation position is the
unprocessed material and a small part of the blue ridge structures, as shown in Figure 7b.
Therefore, the Marangoni convection will mainly drive the unprocessed material on the
upper side of the red arc and a small part of the material at the blue ridge to cross the
blue ridge to form a new red ridge. Therefore, there are two ridges with different heights
where the spots overlap. As shown in Figure 7b, when the scanning distance is 10 µm,
the overlap between the light spots is enhanced. For the formation of the red spot, since
the laser irradiation position is on the right blue ridge, the blue ridge will be completely
ablated. Thus, the Marangoni convection will drive all the materials at the blue ridge and
some unprocessed materials on the right to form a new red ridge, as shown in Figure 7d.
When the material flows to the left, the height difference promotes the Marangoni effect, so
the left side of the red arc in Figure 7d eventually generates ridge structures higher than
those in Figure 7b. When the scanning distance is 5 µm, the overlap between the spots is
further enhanced, as shown in Figure 7e. For the formation of the red spot in Figure 7f,
the laser irradiation position is the left part of the right blue ridge, so the ablation and
flow of the material are similar to those in Figure 7d. The laser irradiation causes complete
ablation of the right blue ridge, but the laser irradiation on the right unprocessed material
decreases. At the same time, the height difference on the left side is smaller, so the height
of the generated ridge structures is slightly lower than that in Figure 7d.
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4. Discussion

The multiscale structure obtained at different scanning distances differs in both ridge
density and nanoparticle abundance. Figure 8a shows the reflection spectrum of the
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multiscale structural samples at three scanning distances, compared with the unprocessed
samples. In Figure 8a, the multiscale structure has an excellent anti-reflection effect. With
the decrease of the scanning distance, the anti-reflection effect is obviously improved by
the increase of ridge structures and nanoparticles. When the scanning distance is 5 µm, the
average reflectance of the laser-textured glass in the 300–800 nm band is 4.8%, while that of
the unprocessed glass is 8.8%. Compared with the unprocessed sample, the reflectance of
the multiscale structural sample is reduced by 45.5%, and it has excellent broadband anti-
reflection capability. At the same time, the reflectance of the multiscale structural sample
is reduced by 71.0% at the wavelength of 358 nm, which is meaningful for anti-reflection
applications at specific wavelengths.
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Figure 8b shows the transmission spectrum of the self-generated multiscale structural
samples at three scanning distances. Compared with unprocessed glass, the average
transmittance of laser-textured glass is decreased by 9.6%, 13.9%, and 27.8% when the
scanning distances are 20 µm, 10 µm, and 5 µm, respectively. However, as seen from
Figure 8a, the reflectance of laser-textured glass is decreased by 21.6%, 37.5%, and 45.5%,
respectively, at three scanning distances. Transparent materials often have the problem
of light transmittance reduction after surface processing. However, when the scanning
spacing is 20 µm and 10 µm, the surface transmittance of multiscale structure can still be
maintained at about 75%, which can meet various applications in daily life [16]. Meanwhile,
the decreasing ratio of reflectance of multiscale structures is obviously higher than that of
transmittance. In optical precision detection equipment, reflected light is often regarded as
an interference signal. The proportion of interference signal in the transmission signal will
obviously decrease by using laser textured glass instead of unprocessed glass.

As the most used means of transportation in daily life, the safety performance of
automobiles has attracted tremendous attention. In the process of driving, strong sunlight
and other light may cause glare on the navigation screen, instrument panel, and windshield
surface, which will affect the driver’s sight (Figure 9a). Laser-textured glass applied to
display components of transportation tools can greatly reduce glare and improve driving
safety. Indoor strong light (Figure 9b) is used to test the glare of glass in the face of strong
light. Figure 9c shows a schematic of the anti-glare capability of the three laser-textured
samples and the unprocessed sample. The numbers marked are the laser scanning distance
of the laser-textured sample. When the unprocessed sample is exposed to strong light,
the glare generated by the reflected light is obvious. The surface produces obvious bright
stripes, and the characters and patterns on the lower side of the sample are completely
unrecognizable. In contrast, when the laser-textured samples are faced with strong light,
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the width and number of bright stripes on the sample surface are obviously reduced. The
glare is significantly diminished, and the characters and patterns on the lower side of the
samples can be recognized. For the laser-textured samples, when the scanning distance
is 20 µm, there are more bright stripes on the surface. As the scanning distance decreases,
both the width and the number of bright stripes on the sample surface decrease, and the
anti-glare ability of the laser-textured sample increases.
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The line roughness Ra and Rz, as well as the surface roughness Sa and Sz, are used to
evaluate the roughness of the surfaces, as shown in Table 1. The line roughness of the three
samples met Ra 0.1 and Rz 0.8, reaching the N3 standard with a high degree of surface
smoothness. The values of Sa and Ra are close to each other, and Sz is slightly larger than
Rz, indicating a high degree of uniformity in all directions of the sample surface and a small
surface irregularity defect. This indicates that the laser-textured glass can maintain a high
degree of surface smoothness.

Table 1. Roughness of samples with different scanning distances.

Scanning Distances Ra/(µm) Rz/(µm) Sa/(µm) Sz/(µm)

20 µm 0.0727 0.3785 0.0754 0.6370

10 µm 0.1176 0.6343 0.1099 0.8514

5 µm 0.0756 0.5458 0.0856 0.910

5. Conclusions

In summary, a strategy for laser surface processing based on the Marangoni effect
is proposed and experimentally demonstrated in this paper. This strategy is designed to
prepare highly efficient anti-reflective and anti-glare structures on transparent material
surfaces by a controlled single-step and chemical-free method to generate multiscale hybrid
structures on the material surface. Firstly, simulation shows that multiscale structures have
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better anti-reflection performance than single-scale structures. After that, the influence of
different laser parameters on the structures produced by the Marangoni effect and the laser-
induced generation of nanoparticles are investigated. Finally, the laser-texturized sample
with low reflectance is obtained when the energy density of the infrared femtosecond laser
is 95.5 J/cm2 and the scanning distance is 5 µm. The average reflectance of this sample
in the 300–800 nm band is reduced by 45.5% compared to the unprocessed glass. This
sample also has anti-glare properties, and the surface can maintain high transmittance as
well as high smoothness. Compared with the current common anti-reflection technology,
the method is simple, environmentally friendly, low in cost, and easy to manufacture
anti-reflection structures on a large scale. It is suitable for various types of optical windows,
windshields, anti-glare glasses, electronic screens, instrument dials, and so on, which can
work in strong light environments. This strategy is highly universal for materials and can
be applied to the design of anti-reflection in metals and various flexible materials as well.
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