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Abstract: The in-situ strain/stress detection of hot components in harsh environments remains
a challenging task. In this study, ZrB2/SiCN thin-film strain gauges were fabricated on alumina
substrates by direct writing. The effects of ZrB2 content on the electrical conductivity and strain
sensitivity of ZrB2/SiCN composites were investigated, and based on these, thin film strain gauges
with high electrical conductivity (1.71 S/cm) and a gauge factor of 4.8 were prepared. ZrB2/SiCN
thin-film strain gauges exhibit excellent static, cyclic strain responses and resistance stability at room
temperature. In order to verify the high temperature performance of the ZrB2/SiCN thin-film strain
gauges, the temperature-resistance characteristic curves test, high temperature resistance stability test
and cyclic strain test were conducted from 25 ◦C to 600 ◦C. ZrB2/SiCN thin-film strain gauges exhibit
good resistance repeatability and stability, and highly sensitive strain response, from 25 ◦C to 600 ◦C.
Therefore, ZrB2/SiCN thin-film strain gauges provide an effective approach for the measurement of
in-situ strain of hot components in harsh environments.

Keywords: thin film strain gauge; direct ink writing; polymer-derived ceramics; conductive composites;
high temperature

1. Introduction

Thin film strain gauges (TFSGs) are widely used for in-situ strain detection of various
components and structures in the aerospace, transportation and automobile industries, civil
engineering and even the medical field due to their advantages of non-interference, small
size, fast response and in-situ integration [1–7]. TFSGs are mainly fabricated by depositing
alloy/metal films such as NiCr, PdCr and TaN-Cu on the surface of components [1,8,9]. An
effective TFSG must exhibit a number of appropriate properties (e.g., adequate operating
range, reasonable conductivity, lack of frequency dependence), probably the most important
property being the sensitivity or gauge factor (GF) [10]. However, the gauge factor (GF) of
traditional metal/alloy iso piezoresistive materials is about two, resulting in low sensitivity
and difficulty in detecting tiny strains.

To solve this issue, many researchers have turned to conductive composites. Con-
ductive composites contain an insulating matrix and conductive nanoparticles dispersed
therein, and the conduction mechanism and the strain sensitivity are primarily dominated
by the tunneling effect [10,11]. Flexible sensors based on conductive polymer composites
have stretchability and strain factors that far surpass foil strain gauges, and are widely used
in wearable devices, electronic skins and human motion detection, etc. [12–17]. However,
most TFSGs based on conductive composites are limited to room temperature. They are
not thermally stable at high temperatures.

To construct thermally stable conductive composites with a highly sensitive piezoresis-
tive response, the high-temperature thermal stability of the insulating matrix and the con-
ductive phase is the first design principle. Compared to metallic and polymeric materials,
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most ceramics, such as polymer-derived ceramics (PDCs) pyrolyzed at high temperature are
electrically insulating and thermally stable at high temperatures [18]. Existing PDCs high
temperature sensors such as temperature sensors and pressure sensors are still dominated
by discrete bulk devices [19–21]. Compared with larger discrete devices, in-situ integrated
TFSGs with a thickness of micrometers exhibit reproducible faster response [22]. However,
the huge volume shrinkage during the pyrolysis of PDCs will cause stress mismatch at
the interface of the film, leading to cracking or peeling off [23]. The use of particle fillers
such as SiC, ZrO2 and TiB2 can not only reduce the shrinkage of the PDCs during the
pyrolysis process, but also modify the properties of PDCs, such as electrical properties and
mechanical properties [24]. Boride ceramics are excellent conductors of electricity with
good mechanical properties, and oxidation resistance [25,26]. This makes boride ceramics
promising for high temperature sensors and electrical functional devices [2,27].

In this study, PDC-SiCN was used as the insulating matrix, and the dispersed ZrB2
conductive particles acted as the conductive phase. TFSG based on ceramic conductive
composites was fabricated by the direct ink writing (DIW) technique based on the Weis-
senberg effect. Herein, the morphologies and microstructure of the ZrB2/SiCN TFSGs were
characterized. The effects of ZrB2 content amount on the electrical conductivity and GF of
ZrB2/SiCN films were investigated. The piezoresistive response of ZrB2/SiCN TFSGs at
room temperature was tested. Ultimately, high temperature performance of the ZrB2/SiCN
TFSG was investigated from 25 ◦C to 600 ◦C.

2. Materials and Methods
2.1. Materials and Preparation Process

As shown in Figure 1a, commercially available PSN2 (Chinese Academy of Sciences,
China) filled with ZrB2 nanopowder (average diameter: 50 nm, Shanghai Chaowei Nano
Technology Co., Ltd., Shanghai, China) was utilized as printing ink. The filling weight per-
cent of ZrB2 nanopowder is 40~60 wt%. The ZrB2 nanopowder were uniformly dispersed
in PSN2 by magnetic stirring for more than 2 h. Briefly, as shown in Figure 1b, the ink was
printed by a Weissenberg-based DIW platform, which consisted of three key components:
an x–y high-precision moving platform, a homemade printing setup including a printing
head and a charged–coupled device camera. The printing head consists of micron tube and
microneedle. The solution is quickly transported to the printing needle through the micron
tube under the high-speed rotation of the microneedles. Then, the prepared thin-film strain
grids were pyrolyzed in a tube furnace under nitrogen atmosphere (−0.1 MPa is evacuated
before introducing nitrogen) at 800 ◦C for 4 h (heating rate 2 ◦C/min and cooling rate
3 ◦C/min). Finally, Ag paste was used to prepare solder joints to connect the thin-film
strain grids and the Pt leads.
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thin-film strain gauge fabrication process.

2.2. Experiment Setup

Strain grid thicknesses were determined by a profilometer (Dektak XT, BRUKER,
Billerica, MA, USA). SEM (SUPRA55 SAPPHIRE, CARL ZEISS, Oberkochen, Battenburg,
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Germany) coupled with EDS was used to characterize the morphology of the obtained
samples. High temperature furnace (GSL-1700X, HF. Kejing, Hefei, China) was used to
pyrolysis and high temperature furnace (OTF-1200X, HF. Kejing, Hefei, China) was used to
test in high temperature.

A cantilever beam arrangement was used to investigate the strain response behavior
of the ZrB2/SiCN TFSGs, as shown in Figure 2a. One end of the beam was clamped,
and the sensor was subjected to strain by applying displacement at the free end of the
cantilever [2]. The corresponding resistance changes of the TFSG were recorded using data
acquisition equipment. Calculate the strain at the location of the strain gauge according to
the following Equation (1) [28]:

ε =
3yhx
2l3 (1)

where ε is the strain at the location of the TFSGs, y is the deflection at the free end, l is the
length of the cantilever beam, x is the distance from center of strain gauge to the point of
application of load and h is the thickness of the beam. The indicator for strain sensitivity of
the strain gauge is defined as:

GF =
∆R/R0

ε
(2)

where ∆R is the change of TFSG resistance when strain ε is applied and R0 is the initial
resistance of TFSG. The piezoresistive response of TFSG at high temperatures was done
in a high temperature furnace. The tube furnace is heated to 600 ◦C at 12 ◦C/min. In the
meantime, the stepper motor is applied strain to the free end of the cantilever beam to
obtain the strain response at high temperatures.
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The high temperature resistance test system of the strain gauge is shown in Figure 2b,
which consists of a tube furnace and a standard k-type thermocouple. The unit of TCR is
ppm/◦C and is used to express the relationship between the resistance of the strain gauge
and the temperature. TCR can be calculated by the following Equation (3) [29]:

TCR =
dR

RdT
× 106 (3)

3. Results
3.1. Microstructural Characterisation of ZrB2/SiCN TFSG

The fabricated ZrB2/SiCN TFSGs on Al2O3 substrate are shown in Figure 3a. The
length and width of ZrB2/SiCN TFSGs are 7 mm and 5 mm, respectively. Its line width and
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thickness were determined by the profilometer, and were 600 µm and 15 µm, respectively.
Porosity, cracks and inhomogeneity are the main factors affecting the electrical conductivity
and thermal stability of TFSG. The low-magnification SEM image of ZrB2/SiCN TFSGs
is shown in Figure 3c. There are no obvious cracks on the surface of ZrB2/SiCN TFSGs.
The high-magnification SEM image of ZrB2/SiCN TFSGs in Figure 3d shows a dense and
crack-free surface. The SEM cross-sectional image presented in Figure 3e shows that the
interface is clearly visible, and the sensitive grid is tightly bonded to the substrate without
an obvious gap.
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3.2. Piezoresistive Response of ZrB2/SiCN TFSG

The electrical conductivities of the printed ZrB2(40 wt%)/SiCN, ZrB2(50 wt%)/SiCN,
ZrB2(60 wt%)/SiCN strained grids are 0.036 S/cm, 0.077 S/cm and 1.71 S/cm, respectively.
With the increase of ZrB2 nanopowder filling, the electrical conductivity of the strain grids
increases significantly, which is related to the conductive network composed of ZrB2 in
ZrB2/SiCN composites. To investigate the piezoresistive behavior of ZrB2/SiCN TFSGs in
detail, their strain responses were tested using the deflection method at room temperature.
The strain responses of the ZrB2(40 wt%)/SiCN TFSG at room temperature are shown in
Figure 4a–d. Figure 4a shows the static strain response of the ZrB2(40 wt%)/SiCN TFSG.
Strain was applied sequentially in 100 µε increments, and the change in resistance was
consistent with the strain applied to the sensor as time progresses. The ZrB2(40 wt%)/SiCN
TFSG exhibits a good response that stepwise applied strain leads to a distinguishable,
recoverable step change in the resistance of the TFSG. The ZrB2(40 wt%)/SiCN TFSG
exhibits a positive GF, that is, the resistance increases with increasing positive strain
and decreases with increasing negative strain. Figure 4b shows the strain responses of
ZrB2(40 wt%)/SiCN TFSG under different strain amounts, where strains of 100 µε, 200 µε,
300 µε, 400 µε, and 500 µε were sequentially applied to the TFSG at a constant strain
rate of 100 µε/s. Figure 4c,d show the strain response of 500 µε at different strain rates
(20 µε/s, 50 µε/s, 100 µε/s, 200 µε/s, and 400 µε/s) and the cyclic strain response with
a period of 4 s, respectively. The applied strains were all 500 µε. Consistent changes in
relative resistance indicate that the ZrB2(40 wt%)/SiCN TFSG has a stable and strain-rate
independent strain response.
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The strain responses of ZrB2(60 wt%)/SiCN TFSG at room temperature are shown
in Figure 6a–d. Compared with ZrB2(40 wt%)/SiCN and ZrB2(50 wt%)/SiCN TFSGs, the
strain signal of ZrB2(60 wt%)/SiCN TFSG is more obvious.
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The GFs of the ZrB2/SiCN TFSGs were calculated according to Equation (2). The GFs
of ZrB2(40 wt%)/SiCN, ZrB2(50 wt%)/SiCN and ZrB2(60 wt%)/SiCN at room temperature
are 3.4, 3.3 and 4.8, respectively (see Figure 7). Comparing the GF of TFSG with different
ZrB2 filling amount, the GF of ZrB2(60 wt%)/SiCN is the highest, which is mainly owing
to the change in resistivity by the concentration of ZrB2 conductive phase, which leads
to the increase of the effect of piezoresistive response. Guenter Schultes et al. fabricated
boride TFSG on a Al2O3 substrate by DC magnetron sputtering and obtained 0.7 GF [26].
In contrast, the GF of TFSG based on ZrB2/SiCN conductive ceramic composite is several
times higher than that of single boride TFSG.

3.3. High Temperature Performance of the ZrB2/SiCN TFSG

Since ZrB2(60 wt%)/SiCN TFSG exhibited higher conductivity and strain sensitivity, its
high temperature performance was tested. In practical applications, the consistency of the
temperature-resistance characteristics during the cycle temperature and high temperature
resistance stability of the TFSG are very important, and it reflects the stability and oxidation
resistance of the TFSG at high temperatures. In order to study the repeatability of the
temperature resistance of ZrB2(60 wt%)/SiCN TFSG, we tested the temperature-resistance
characteristic curves of two times of heating and cooling (Figure 8a). ZrB2(60 wt%)/SiCN
TFSG exhibited a negative temperature coefficient of resistance of −428 ppm/◦C and good
repeatability in the range of 25–600 ◦C. Figure 8b shows the resistance change curves of
ZrB2(60 wt%)/SiCN TFSG at 600 ◦C for 2 h. ZrB2(60 wt%)/SiCN TFSG exhibited excellent
resistance stability and antioxidant qualities at 600 ◦C, and resistance increased by 1.3% after
two hours of oxidation. The good repeatability, stability and consistency of the resistance
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of ZrB2(60 wt%)/SiCN TFSG are attributed to the oxide layer formed on the surface of the
film, which prevents the further diffusion of oxygen [30].
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To evaluate the strain response of ZrB2(60 wt%)/SiCN TFSG at high temperatures,
cyclic strain tests were carried out from room temperature to 600 ◦C, as shown in Figure 9a.
The curves of the cyclic strain response were intercepted at 400 ◦C, 500 ◦C and 600 ◦C,
respectively, as shown in the Figure 9b–d. ZrB2(60 wt%)/SiCN TFSG exhibits good re-
peatability and stability resistance at high temperatures. Although the overall resistance
decreases with increasing temperature due to the temperature-resistance effect, the pulse
signal caused by the cyclic strain is clearly visible. The above high-temperature test results
show that ZrB2(60 wt%)/SiCN TFSG has good resistance stability and highly sensitive
strain response in the temperature range from room temperature to 600 ◦C, and has poten-
tial application in the field of hot component strain monitoring/sensing.
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4. Discussion

ZrB2/SiCN TFSGs were fabricated on alumina substrates by DIW of the Weissenberg
effect. The used DIW process enabled thin-film patterning and in situ strain/stress sensing
of high-temperature components. The ZrB2/SiCN TFSGs were characterized to determine
the structural dimensions, surface topography and cross-sectional structure by SEM. The
piezoresistive behavior of ZrB2/SiCN TFSGs at room temperature was investigated by the
deflection method. ZrB2/SiCN TDSGs exhibited excellent strain responses and resistance
stability at room temperature. The effects of ZrB2 content on the electrical conductivity and
strain sensitivity of ZrB2/SiCN composites were investigated. Finally, ZrB2(60 wt%)/SiCN
film with high conductivity (1.71 S/cm) and GF of 4.8 was used as the sensitive material for
high-temperature thin-film strain gauges. The temperature-resistance characteristic curves
of ZrB2(60 wt%)/SiCN TFSGs were tested, and the TFSGs exhibited a negative temperature
coefficient of resistance of −428 ppm/◦C and good repeatability in the range of 25–600 ◦C.
The resistance change curves of ZrB2(60 wt%)/SiCN TFSGs were tested at 600 ◦C. The
TFSGs have good resistance stability with resistance increasing by 1.3% after two hours
of oxidation at 600 ◦C. Finally, the strain response verification was conducted from 25 ◦C
to 600 ◦C. ZrB2(60 wt%)/SiCN TFSG has a highly sensitive strain response from 25 ◦C to
600 ◦C. Therefore, ZrB2/SiCN TFSGs based on the Weissenberg DIW can be applied to
micro-strain detection from room temperature to 600 ◦C. Further research is underway to
improve the antioxidant nature of ZrB2/SiCN TFSGs for applying to higher temperatures.
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