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Abstract: For humanoid robots, maintaining a dynamic balance against uncertain disturbance is
crucial, and this function can be achieved by coordinating the whole body to perform multiple tasks
simultaneously. Researchers generally accept hierarchical whole-body control (WBC) to address this
function. Although experts can build feasible hierarchies using prior knowledge, real-time WBC is
still challenging because it often requires a quadratic program with multiple inequality constraints.
In addition, the torque tracking performance of the WBC algorithm will be affected by uncertain
factors such as joint friction for a large transmission ratio proprioceptive-actuated robot. Therefore,
the balance control of physical robots requires a systematic solution. In this study, a robot control
system with high computing power and real-time communication ability, UBTMaster, is implemented
to achieve a reduced WBC in real time. Based on these, a whole-body control scheme based on task
priority for the dynamic balance of humanoid robots is implemented. After realizing the joint friction
model identification, finally, a variety of balancing scenarios are tested on the Walker3 humanoid
robot driven by the proprioceptive actuators to verify the effectiveness of the proposed scheme. The
Walker3 robot exhibits excellent balance when multiple external disturbances occur simultaneously.
For example, the two feet of the robot are subjected to tilt and displacement perturbations, respectively,
while the torso is subjected to external shocks simultaneously. The experimental results show that the
dynamic balance of the robot under multiple external disturbances can be achieved by using strictly
hierarchical real-time WBC with a systematic design.

Keywords: whole-body control; hierarchical optimization; humanoid robot balance; proprioceptive
actuation

1. Introduction

Scholars have studied humanoid robots for decades and have made significant
progress in robot mobility, dexterity, and intelligence [1–3]. However, making humanoid
robots work or interact with humans in a human-friendly environment faces substantial
challenges. First, maintaining balance is one of the most fundamental skills of legged robots.

Due to the real-time requirements of the balance algorithm, scholars widely used the
balance control method based on a simplified model in their early work. They simplified
the robot into a single rigid body mounted on the top of the inverted pendulum, and the
control target was its center of mass [4]. Nechev et al. [5] proposed a three-link planar
model, which can include more information. Because the model’s accuracy is improved,
these methods, including ankle or hip joint, will be more feasible for a physical robot.
However, due to the failure to consider the motion of all joints, they will still give unnatural
solutions in some cases.

Whole-body control (WBC) has been paid more and more attention by robotics in
the past two decades because it makes full use of the redundant degrees of freedom of
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robots to complete multiple tasks simultaneously. For example, the humanoid robot has
various degrees of freedom to realize balance as a high-priority task in the WBC framework.
Therefore, WBC has gradually become a basic control scheme for the humanoid robot.
Dietrich et al. [6] have categorized the existing WBC methods into: null-space projection-
based WBC (NSP-WBC), weighted quadratic program-based WBC (WQP-WBC), and
hierarchical quadratic program-based WBC (HQP-WBC).

In redundant manipulator control, the NSP-WBC realizes the task hierarchy through
null-space projection [7]. Kajita et al. [8] extended this idea to the walking control of the
HRP-2 robot for the first time. However, this method is limited because it cannot consider
inequality dynamic constraints such as joint torque limitations, which are highly necessary
to the robot’s safety.

The WQP-WBC handles this problem by formulating the tasks and constraints as a
quadratic optimization problem. As a result, it can find the optimal solution that minimizes
the task errors while satisfying the constraint conditions. This method has been applied
to the Atlas robot to execute multi tasks during the DARPA robotics challenge [9–11].
However, the WQP-WBC cannot guarantee a strict task hierarchy. The soft hierarchy
realized by tuning the task weight becomes a limitation when the tasks conflict.

The HQP-WBC has been devised to combine the task hierarchy and inequality con-
straints together [12–14]. The basic idea is to construct each layer as a quadratic optimization
problem and solve them in a sequence where the lower-priority QPs cannot disturb the
higher-priority QPs. As a result, the inequality constraints in the QP stack gradually as
the priority decreases, thus leading to a time-consuming problem. Ref. [15] proposed an
efficient way by introducing null-space projection to reduce the computational cost and
implemented it on a torque-controlled robot Sarcos with a 1 KHz control loop. Similarly,
ref. [16] implemented this method on a quadruped robot ANYmal showing a natural adap-
tion to the terrain while walking. In short, the HQP-WBC has been a standard whole-body
motion generation tool for torque-controlled robots.

In recent years, proprioceptive actuation has become a mature technology widely used
in scenarios requiring back-driveability, such as legged robots. Engineers can compen-
sate for the torque loss in the reducer online through the predetermined friction model
and online parameter identification, such as the high dynamic locomotion of the MIT
cheetah robot [17]. However, when the gear reduction ratio increases, the friction model
becomes more complex and has stronger nonlinearity and uncertainty. Therefore, more
comprehensive offline modeling and parameter identification processes, and even an online
identification process, are required.

Besides the high-bandwidth characteristic of actuators, the overall performance of
the robot highly depends on the control frequency. For example, ref. [18] has noticed a
phenomenon in the torque-controlled robot, Mercury, that increasing the control frequency
from 1 kHz to 1.5 kHz will provide a more significant posture and foot position control
bandwidth. This operation puts forward a higher demand for the real-time computation of
WBC. Moreover, a real-time WBC is preferred as other time-consuming techniques such as
model predictive control (MPC) is usually embedded into the control framework.

This paper focuses on the dynamic balance control of a humanoid robot with proprio-
ception actuators through algorithm, software, and hardware system integration. We first
customize a prioritized hierarchy of tasks and constraints for rejecting multi-disturbances.
Then, a reduced whole-body control is implemented in real-time by UBTMaster, a control
system designed to provide computationally efficient WBC software and powerful com-
puting hardware. This unique real-time computing system is not available in other robotic
systems, which ensures the effective implementation of the control algorithm. Next, the
model identification process covers the joint friction and model inaccuracy issues. Finally,
plenty of experiments on various balancing scenarios are implemented on a robot Walker3
with proprioceptive actuation, and the performance is discussed.
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2. Control Approach

Walker3 is a humanoid robot with two legs and a torso, as shown in Figure 1. The
robot has a height of 1.6 m and weighs 43 kg. An inertial measurement unit (IMU) is
mounted on the torso for state estimation, and two six-axis force sensors are installed on the
soles to measure each foot’s center of pressure (CoP). Each leg has six electrical motors in
series. The motors use a gear reducer to enlarge the output torque, and the gear reduction
ratio ranges from 50 to 100. The actuators are controlled in real time using the EtherCAT
communication protocol.

Figure 1. Walker3 humanoid robot with 12 actuated DoFs (a) and its kinematic model (b).

An online task planner is proposed to adjust the task trajectory. The basic idea of this
planner is to ensure the foot ZMP resides in the safe region as much as possible. Then,
the desired CoM trajectory is tracked by a reduced whole-body controller coupled with
a hierarchical optimization solver. The hierarchy of tasks and constraints is divided into
four layers according to their priorities. A quadratic optimization solves each layer, and
the null-space projection guarantees the strict hierarchy among layers. After solving a
sequence of QPs, the whole-body controller outputs the optimized joint torques.

Joint torques are turned into the current commands for a robot with proprioceptive
actuation. The desired joint velocity commands obtained through the numerical integration
of desired joint accelerations are also considered here to improve the performance of the
joint-level control. The whole control architecture is illustrated in Figure 2. The kinematics
solver estimates the robot’s state with the sensory data of joints and IMU.

Figure 2. Overview of the control architecture.

3. Tasks and Constraints in Dynamic Balancing
3.1. Task Planner

In dynamic environments, the robot needs to properly tune the desired motion. The
task planner presented here can make real-time adjustments to the task trajectory according
to the ZMP state.
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Unlike the method in [15], we have no extra sensors to obtain information on the
moving support, apart from the force sensors to detect the contact between the foot and
support. When a robot is stably resting on a moving support, the ZMP of each foot must
reside inside its support polygon. Therefore, the desired motion of the foot can be set using
the following rule: if the measured ZMP is inside the safe region of the support polygon, we
adjust the desired position, posture, and velocity of the foot to its current state rF,re f = rF
and vF,re f = vF.

In addition, the desired motion of CoM should be adjusted along with the foot desired
motion. The desired horizontal position is located in the middle of two feet:

rCoM,re f (x, y)=
(

rLF,re f (x, y) + rRF,re f (x, y)
)

/2 (1)

The desired vertical position is set to

rCoM,re f (z) =
(

rLF,re f (z) + rRF,re f (z)
)

/2 + C (2)

where C is a constant value depending on the robot stand pose. The desired velocity is set
to the average velocity of two feet

vCoM,re f=
(

vLF,re f + vRF,re f

)
/2 (3)

In our planner, the desired motion of the torso and foot contact force remains un-
changed throughout the balance control. The desired motion of torso is set to rT,re f=0,
vT,re f=0 and the desired vertical contact force is set to FLF,re f (z)=FRF,re f (z)=mg/2, where
m is the total mass of the robot.

3.2. Tasks and Constraints Hierarchy

When multi-tasks have to be performed simultaneously, handling the conflicts among
these objectives is crucial. The prioritized hierarchy strategy has been widely adopted
in redundant robots. Motion solvers will accomplish the lower-priority tasks under the
prerequisite that the higher-priority tasks are implemented first. For example, balance is
always considered a top-layer priority task for a humanoid robot. As a result, the robot
tends to sacrifice its posture under disturbance to ensure the feet fully contact the ground.
Likewise, physical constraints concerning humanoid robot safety should be the highest
priority. Table ?? specifies the hierarchy of tasks and constraints.

Table 1. Table task constraint hierarchy.

Level Task Task Dimensions Constraint Constraint Dimensions

1 Floating base dynamics 6 Joint torque saturation 12

2 Foot position and posture 12 Center of pressure and
Friction cone 18

3 Linear momentum 3
4 Torso posture and Foot contact force 15

3.2.1. Floating Base Dynamics

Humanoid robots, typical floating-based systems, are an example of underactuated
systems due to their partial actuation when interacting with the environment. The configu-

ration of a humanoid robot is represented by generalized coordinates q =
[

qT
f qT

a

]T
, q f

represents the position and orientation of the robot free-floating body and qa represents
the n-actuated joints of the robot. When the robot is in contact with the environment, the
dynamic equation of the system can be fully described by

S f Mq̈ + S f C + S f G = S f JTF (4)
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where M is the generalized inertia matrix, C is the nonlinear vector including Coriolis
and centrifugal forces, G is the gravity vector. F is the contact force vector, and J is
the Jacobian matrix of the contact point. S f =

[
I 0

]
is a matrix selecting the free-

floating joints. Thus, actuated torque vector τ is eliminated from the dynamic equation.
Instead, choosing a different selection matrix Sa =

[
0 I

]
will derive a linear function

between τ and q̈, F. Due to such linear dependence, the whole-body dynamics of n + 6
dimensions are simplified as the floating base dynamics of six dimensions. Adopting
floating base dynamics is crucial to reduce the optimization time and help implement the 1
KHz control loop.

The dynamic equation is essential for a physical multi-rigid-body system as the
highest-priority task. Once the equation holds, the movements of the system are physically
feasible. Following the dynamics equation, the second-priority task is the foot position and
posture control. A good task control performance will guarantee good contact between
foot and support, which is a premise for the contact force. Linear momentum control, the
third priority task, has been proven to be essential for a good balance by regulating the
state of CoM [19]. Finally, in the lowest-priority task, we prefer to have the torso posture
control and foot contact force control on the same level. This is because we have only
30 optimization variables (including 18 for q̈ and 12 for F). While there are 6, 12, and
3 variables for dynamic equation, foot position, posture task, and linear momentum task,
respectively, only 9 free variables are left for the torso posture and foot contact force control.

3.2.2. Operational Space Tasks

Operational space tasks such as foot position and posture control, linear momentum
control, and torso posture control can be phrased as:

Jq̈ + J̇ q̇ = a (5)

where J is the Jacobian matrix of a specific task, and a is the task desired acceleration which
can be determined by a feedforward and feedback control law. The J̇ q̇ term is related to the
robot state. In particular, the Jacobian matrix of the linear momentum task is also called the
centroidal momentum matrix. It can be calculated using an efficient O(n) algorithm based
on the generalized inertia matrix M [20].

3.2.3. Robot Safety Constraints

Given the physical limitations of the robot, several safety issues must be appropriately
concerned. The joint torque saturation constraint τmin ≤ τ ≤ τmax is especially important
for generating control commands that are valid on a robot.

A stable contact between foot and support is an essential precondition for generating
a six-dimensional contact force vector, which means the foot cannot tilt or slide relative to
the support. Stable contact can be ensured from two aspects. One is the center of pressure
constraint. The center of pressure at each foot must not exceed the foot’s support polygon
boundary. The other is the friction cone constraint, which requires that the foot contact
force stays inside the friction cones. The cones are approximated as pyramids here, so the
constraint can be expressed as linear inequality.

4. Real-Time WBC
4.1. Reduced Hierarchal Whole-Body Control

The tasks can be formulated as equalities, and constraints can be formulated as
inequalities. Therefore, the tasks and constraints in the same level can be stacked vertically
into the form. {

Aix− bi = 0
Dix− fi ≤ 0

(6)
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where Ai is the ith task matrix, bi is the ith task reference vector, Di is the ith constraint
matrix, fi is the ith constraint boundary vector, and x =

[
q̈T FT ]T is the optimal

variables. The goal of this level is to find q̈ and F that satisfy these objectives as well as
possible. The solution under such a linear inequality constraint can be solved through
quadratic optimization. The tasks and constraints in different levels need to be optimized
in a strict prioritized order. Solving level p yields an optimal solution x∗p. In order to ensure
the strict prioritization of tasks, the solution of level p + 1 can be found in the null space of
all higher-priority tasks Np = Np−1

(
I − Â#

p Âp

)
. Np−1 is the null space of all tasks from

level 1 to p− 1.
(

I − Â#
p Âp

)
is the null space of task in level p. Âp = ApNp−1 describes the

task matrix of level p projected into the null space of all higher-priority tasks. The solution
of level p + 1 can be expressed as xp+1=x∗p + Npup+1, where up+1 is an arbitrary vector
lying in the row space of Np. Substituting xp+1 into the QP problem in level p + 1 yields

min .
up+1

∥∥∥Ap+1

(
x∗p + Npup+1

)
− bp+1

∥∥∥2

s.t. Dp+1

(
x∗p + Npup+1

)
− fp+1 ≤ 0

Dp

(
x∗p + Npup+1

)
− fp ≤ 0

...
D1
(

x∗1 + Npup+1
)
− f1 ≤ 0

(7)

All the higher-priority constraints are stacked into the optimization to ensure the strict
prioritization of constraints. Then, the recursive algorithm is used to solve the QP of each
layer according to the priority order.

The slack variables are introduced initially to turn the hard constraint into a soft one.
In our case, however, we notice that the optimized slack variables are always zero, which
means that the solver can find the optimal result without violating the hard constraints.
Therefore, the slacks are excluded from the optimization variables to reduce the computa-
tional complexity. As a result, the slack variables are omitted in the optimization problem,
different from the general formulation in [15].

WBC software is developed based on C++ to implement the above algorithm effec-
tively. Figure 3 depicts the architecture of the WBC software. The software contains four
basic classes: RobotDynamics, Task, Constraint, and Wbc. These classes provide the basic
interfaces for user development, and the derived classes of Walker3 are developed in this
software. The following part will describe these classes in detail.

The RobotDynamics class contains the member variables related to the kinematics and
dynamics of a robot, such as the number of the generalized joints, contact forces, inertia matrices,
Coriolis and centrifugal vectors, gravity vectors, selection matrices, Jacobian matrices, etc.

For the Walker3 robot, it is implemented by a subclass named RobotDynamics_Walker3.
The model structure of Walker3 can be constructed in the subclass directly or loaded from
URDF files. Calling the calcWbcDependence()function can obtain all the required kine-
matics and dynamics parameters. The open-source rigid body dynamics library (RBDL),
a highly efficient C++ library with some essential rigid body dynamics algorithms [21],
is used here. The task and constraint classes are constructed according to Equation (6)
with their member variables, including the task’s or constraint’s name, priority, dimension,
matrix, reference vector (boundary vector), and the DoF of variables. Each task or constraint
of Walker3 is implemented by a subclass, thus forming a task or constraint library. Using
the update (const RobotDynamics &) function will update the member variables with
calculated kinematics and dynamics parameters.

The Wbc class, the software’s core, contains the pointers of the other three types. It
can manage the tasks’ addition, deletion, and adjustment operations and constraints. In its
implementation, two subclasses based on different algorithms are developed here. One
is named WqpWbc, which forms all the tasks and constraints as one quadratic optimiza-
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tion problem [10]. The other is HqpWbc, which implements the hierarchical quadratic
optimization mentioned before.

This software avoids lots of redundant codes and improves efficiency development.
Meanwhile, developers also build the dynamic model of some robots and their correspond-
ing tasks’ and constraints library. Users can also develop their robots without rewriting the
WBC solver code.

Figure 3. The architecture of WBC software.

4.2. High-Performance Master Control System

The WBC software is embedded in a modular master control system named UBT-
Master, as shown in Figure 4a. It is designed with the characteristics of real-time solid
computation, extensible computing capability, and a configurable interface. As a result, it
can realize the different combination configurations of typical hardware platforms, such as
ARM, GPU, X86, and DSP, and expand the computing capability in different scenarios. For
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example, the X86 basic edition can perform 100 GFLOPS per second with the Intel Core
i7-7600U.

Figure 4. The modular master control system (a) and its software architecture (b).

The software architecture is illustrated in Figure 4b. The real-time operating system
based on the PREEMPT_RT kernel serves real-time applications that process data as it
comes in, typically without buffer delays. It ensures that the application’s task must be
carried out within the defined time constraints. In the real-time communication layer,
we apply the high-speed real-time bus communication protocol EtherCAT for short data
update times (also called cycle times; ≤100 us) with low communication jitter (for precise
synchronization purposes; ≤1 us). These two aspects can control the time jitter on a
microsecond level.

In the upper layer, the roboCore runs in real time and isolates the applications from the
hardware platform. As a result, users can develop their applications to meet specific requirements.

5. Proprioceptive Actuation with a Big Reduction Ratio
5.1. Joint-Level Control

Given the inputs, WBC software will output the optimized joint torque. However, the
lack of a torque sensor in proprioceptive actuation does not allow direct torque control.
A common workaround for this problem is to utilize an admittance coupling to convert
joint torque to joint velocity [22]. However, considering that the bandwidth of admittance
control will limit the torque tracking performance, we utilize direct current control.

The joint current can be approximated as a linear function of joint torque due to the
negligible torque loss in the reducer for proprioceptive actuation with a small reduction
ratio. However, the reducer has significant static friction with a large reduction ratio. This
stiction translates into joint torque stiction of up to 5 Nm. Consequently, joint friction
torque compensation is essential. Moreover, the joint velocity obtained by integrating the
optimized joint acceleration can also be added to the current command as a kinematic
compensation term to improve the joint impedance [11].

In this research, the final control law for the joint current is calculated as:

icmd=ki

(
τopt+k f τ f + τq̇

)
(8)

where τopt is the optimized joint torque, τ f is the joint friction compensation torque, k f is
the corresponding friction compensation coefficient, τq̇ is the joint kinematic compensation
torque. τopt,τ f , and τq̇ can be expressed as:

τopt=Sa Mq̈opt + Sa(C + G)− Sa JTFopt (9)

τ f=


Fc + Fv

(∫
q̈optdt− q̇∗

)
,
∫

q̈optdt ≥ q̇∗∫
q̈optdt Fc

q∗ , − q̇∗ ≤
∫

q̈optdt ≤ q̇∗

−Fc + Fv
(∫

q̈optdt + q̇∗
)
,
∫

q̈optdt ≤ −q̇∗
(10)
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τq̇=kq̇

(∫
q̈optdt− q̇

)
(11)

where τopt is reorganized from the full dynamics. The joint friction compensation torque
τ f is modeled as two parts: Coulomb and viscous friction. Fc is the Coulomb friction and
Fv is the viscous friction coefficient. q̇∗ is a user-defined value to prevent a sudden jump in
joint friction compensation torque as the motor rotates reversely. kq̇ is a gain acting on the
difference between the desired joint velocity

∫
q̈optdt and the measured joint velocity q̇.

5.2. Model Identification

Model identification is an effective method used for obtaining a robot’s dynamic
parameters. Besides the concerned dynamic parameters such as links’ mass, inertia, and
center of mass, the joint friction model can also be incorporated into the linearized dy-
namic equation [23]. Here, the Coulomb–viscous friction model is preferred due to its
linear expression.

The main process can be divided into three parts.

5.2.1. Linearization of Dynamic Equation

The recursive Newton-Euler equation is used to reorganize the joint torque τ as a
linear function of dynamic parameters π (including joint friction parameters), given that
τ = Yπ. Y is the identification matrix and can be uniquely determined by joint motion q, q̇,
and q̈.

5.2.2. Optimal Excitation Trajectory

The excitation trajectory is parameterized first by a finite Fourier series function and
then optimized for the minimum of a user-defined cost function [24] while satisfying the
constraint conditions. The series and base frequency in the Fourier series are set at 5 and
0.1 Hz, respectively. The condition number of the Y matrix is closely relative to the mean
square error of identification results and thus selected as the cost function.

5.2.3. Dynamic Parameters Optimization

An optimization problem is constructed to find optimal dynamic parameters π which
can minimize the error between the measured and the predicted joint torque by linear
dynamic equation.

In addition to the motors lacking torque sensors, a prior calibration of the current–torque
coefficient can help to obtain approximate joint torque through the measured joint current.

Figure 5 compares four sets of joint torque in the left leg. The red dotted line indicates
the measured torque through the joint current. The blue solid line indicates the predicted
torque through identified dynamic parameters, while the green dotted line indicates the
predicted torque through identified with base dynamic parameters. The black dotted line
indicates the theoretical torque calculated by parameters obtained from the 3D model.
There is a large error between the measured and theoretical torque. The main reason is that
the joint friction torque is not considered in the dynamics equation calculation.

Not surprisingly, the error between the measured and predicted torque is very small.
Meanwhile, several torque jumps are measured when the motor changes its rotating
direction. Thanks to the Coulomb friction term in our friction model, the predicted torque
curve follows the measured one closely. It directly proves that the identified dynamic
parameters can reflect the actual dynamic characteristics and can be used to model the
physical control system.
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Figure 5. The comparison of joint torque in the left leg.

6. Experimental Results and Discussion

The control approach, as mentioned above, is experimentally evaluated on the Walker3
humanoid. In addition, the balance performance is evaluated in different scenarios: push
recovery on the ground, balancing on a seesaw, and push recovery on two moving skate-
boards. A summary of experimental videos is available at https://youtu.be/g79tWSATmhA
(accessed on 21 August 2022).

https://youtu.be/g79tWSATmhA
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6.1. Push Recovery on the Ground

The robot is subjected to impulses from X and Y directions while standing on the
ground. A ball weighing 5 kg is used to generate impulses at the robot’s torso. The ball’s
momentum with its known mass and velocity can quantify the impulses. Figure 6 shows a
series of snapshots when the robot is stroked along the X axis and Y axis. Eight impulses
along the X axis and seven impulses along the Y axis are exerted on the robot.

Figure 6. The balancing behavior in push recovery scenario along the X axis (a) and the Y axis (b).

For the push recovery along the X axis, the index and magnitude of impulses are listed
in Table 2.

Table 2. The magnitude of impulses along the X axis.

Index 1 2 3 4∼8

Magnitude 8 Ns 10 Ns 11 Ns 12 Ns

Several key features of the tasks are drawn in Figure 7. First, it can be seen that the
peak of the foot pitch angle gradually increases as the impulses increase. The foot pitch
angle reaches up to 1.5◦ when the impulse reaches its maximum 12 Ns. Theoretically, the
foot pitch angle should be zero because the CoP constraint has been considered in the
hierarchical optimization. Such a small pitch angle is acceptable given a carpet between the
foot and the ground.

Figure 7b draws the CoM position along the X axis. The CoM position fluctuates in
the range of −29~56 mm under the continuous impulses. Figure 7c draws the pitch angle
of the torso. The robot tries to rotate the upper body to preserve the foot posture and
the CoM position, which looks similar to a human rotating its trunk to maintain balance.
The maximum value of the torso pitch angle is 25.7◦. Increasing the impulse will cause a
balance failure due to the torso pitch angle exceeding the joint angle limits.

A tiny stability error exists for these three tasks in Figure 7, although the tasks’ feedback
control law works. Such a control command resulting from the tiny error will not drive the
joint to move. In the video, the robot behaves in a way that it cannot recover to its original
state after the disturbances.

Figure 8a compares the measured ZMP with the optimized one. The measured ZMP
is calculated using the force sensor, while the optimized ZMP is calculated using the
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optimized foot contact force. Ideally, the measured ZMP should follow the optimized ZMP
closely, but there is a slight difference. It means that all motors in the robot cannot generate
the required optimized foot contact force. The main reason for that is the joint torque error
due to the limited identification accuracy of the joint friction model in Section 5.2.

Figure 7. The measured pitch angle of the right foot (a), CoM position along the X axis (b), and the
pitch angle of the torso (c).

Figure 8. The measured and optimized ZMP of right foot (a) and the task error of the lowest priority
task (b).
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In addition, there are several times that the optimized ZMP reaches up to its boundary.
This indicates a strong linear relationship between the optimal foot contact force, leading
to the dimensionality reduction in optimal variables. As a result, the robot tends to
sacrifice the lowest-priority task due to a lack of DoFs. As proof, Figure 8b plots the
task error error = ‖Ax− b‖2 of the lowest-priority task. It can be seen that the task
error is small enough when the first three impulses act on the robot. However, there will
always be a sharp peak with the magnitude of 103 as long as the impulses increase to
12 Ns. The huge task error will deteriorate the control performance. The robot is originally
designed to show its torso compliance according to the PD parameters, but the compliance
characteristic cannot be ensured due to the task error. The inappropriate compliance will
enlarge the amplitude of the torso pitch angle, which further limits the performance of push
recovery. These push recovery test results show that the hQP-WBC method can handle
multi-tasks well according to their priority and thus improve the robustness of the robot
under environmental disturbance.

6.2. Balancing on a Seesaw

The robot balances the inclination disturbances along the X axis and Y axis on a see-
saw. Figure 9 shows how the robot adapts to the inclined surface to maintain balance,
and Figure 10 plots the measured orientation and angular velocity of the right foot. Un-
fortunately, no additional IMU is mounted on the seesaw to measure its real movement.
Nevertheless, the estimated foot state approximates the seesaw because the ZMP resides in
the foot polygon throughout the test.

Figure 9. The balancing behaviors when the seesaw rotates along the X axis (a) and the Y axis (b).
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Figure 10. The measured orientation and angular velocity of the right foot.

The amplitude of inclined angles along both axes reaches up to 6◦, as shown in
Figure 10. Meanwhile, the maximum angular velocity along the Y axis is 1 rad/s, slightly
larger than that on the X axis (0.6 rad/s). The reason mainly relies on the joint friction’s
minor influence on the balance performance when the seesaw inclines along the Y axis. The
robot needs to modulate its ankle pitch joint to adapt to the inclined seesaw along the Y
axis while modulating its ankle roll joint and the length of both legs to adapt to the inclined
seesaw along the X axis. Here, a low-pass filter has processed the angular velocity data
with a cutoff frequency of 20 Hz.

Figure 11 shows the response of the right foot’s ZMP during the disturbances. The
components of ZMP along the X and Y axes did not exceed the constrained boundary
defined by foot geometry. All these prove that the task planner works well, and the robot
can adjust the tasks’ target to resist the disturbance from the seesaw.

Figure 11. The measured ZMP of the right foot.

6.3. Push Recovery on Two Moving Skateboards

The final experiment in balance maintenance on two moving skateboards is shown in
Figure 12. The two feet of the robot rest on two moving skateboards separately and suffer
inclination and shift disturbances independently. The right-moving skateboard is actuated
by hands to translate along the X and Y axes and rotate along the X, Y, and Z axes. At the
same time, the left one is locked (Figure 12a) to evaluate the disturbance rejection capability
of the robot. Figure 13 plots the measured velocity of the right foot with each direction
tested separately. The shift disturbance along the Z axis is indirectly measured by rotating
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the skateboard about the Y axis, where the foot will rise as the tilt angle increases. The
robot can resist the moving skateboard disturbance with the maximum velocities 0.94 m/s,
0.89 m/s, and 0.47 m/s along the X, Y, and Z axes, and the maximum angular velocities
1.8 rad/s, 1.4 rad/s, and 0.5 rad/s along the X, Y, and Z axes.

Figure 12. The balancing behaviors when the right support moves in all directions (a) and the
balancing behaviors in push recovery on the moving support scenario (b).

Figure 13. The measured velocity of the right foot with each direction.

The robot can also maintain balance when the two skateboards have different incli-
nation angles and translate back and forth without phase velocity. Meanwhile, when 8Ns
impulses along the Y axis are exerted on the robot as the skateboards keep moving, the
robot generates a large torso rotation to keep balance (Figure 12b).

The onboard computer needs to solve the hierarchical optimization, which contains
four quadratic optimization problems in 1 ms, to achieve a 1 kHz control loop. Figure 14
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plots the computation time of the whole algorithm, including the state estimation, trajectory
planning, whole-body control, and joint-level control parts. The average and the maximum
computation times are 0.363 ms and 0.639 ms, respectively. As the most time-consuming
portion, the computation time of the whole-body control part is also plotted here in the
yellow line. The average computation time is 0.321 ms, which takes up about 88 percent of
the time, leaving 0.042 ms for the other parts. We must solve the quadratic optimization
and the null-space projection matrix sequentially in the whole-body control part. About
72% of the computation time is used for quadratic optimization, and the left 28% is used
for the null-space projection matrix. The quadratic optimization is solved through a C++
open-source QP solver, qpOASES [25], which implements the active set algorithm. The
null-space projection matrix must calculate the pseudo-inverse of the matrix first, and the
complete orthogonal decomposition algorithm implemented in the Eigen matrix library is
used here.

Figure 14. The computation time of the algorithm.

7. Conclusions

This paper aims to make the proprioception-actuated humanoid robot capable of
dynamic balance. For this purpose, tasks and constraints are assigned in a hierarchy of
task priorities.

• A real-time computation is achieved through computationally efficient WBC software
and a reduced hierarchical whole-body control scheme.

• UBTMaster, a modular control system with real-time communication and powerful
computing capabilities, is designed.

• The key dynamic parameters are identified to deal with the nonlinear friction and
imprecision of the model of the robot.

Results show that the predicted torque is close to the measured, and the average
residual is less than 1 Nm.

After fully considering these aspects in a system, the balance performance of the
humanoid robot Walker3 is tested in various scenarios. The robot can be balanced with
continuous impulses on the X and Y axes up to 12 Ns. Like human behavior, the robot
tends to rotate its upper body to maintain foot posture and CoM position. In addition, we
found reasons to limit push recovery performance. When the optimal variable reaches the
constraint boundary, dimensionality reduction will cause the system to sacrifice the task
with the lowest priority. Because of the strict hierarchy, high-priority tasks are not affected.
An effective solution is to provide more redundant degrees of freedom, such as adding
arms to the robot.
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When Walker3 stands on the seesaw, it can actively adapt to the tilted surface to
maintain balance. Different from [15], the state of the seesaw is estimated without an
additional IMU and then used to update the trajectory of the task. The experimental results
show that the inclination angle along the two axes reaches 6◦. Meanwhile, the maximum
angular velocities of the X axis and Y axis are 0.6 rad/s and 1 rad/s, respectively, which is
about 1.7~2.8 times the performance of the torque control robot COMAN [26].

To further exploit the robot’s adaptability to uncertain perturbations, we placed Walker3
on two moving skateboards and applied tilt and displacement perturbations. The maximum
velocities of the robot in the X, Y, and Z axes are 0.94 m/s, 0.89 m/s, and 0.47 m/s, respec-
tively. The maximum angular velocities of the X, Y, and Z axes are 1.8 rad/s, 1.4 rad/s, and
0.5 rad/s, respectively. When the two skateboards have different inclination angles and no
phase velocity in front and back translation, the robot can even resist 8 Ns impulse.

The results show that the proprioception–actuation robot can perform quite well as
the torque-controlled robot under a strict hierarchical structure, real-time calculation, and
careful joint friction treatment. We hope to improve the balancing framework through
intelligent planning to cope with the greater disruption of future work. Furthermore, the
results show that the introduction of online predictive control technology will significantly
improve the robustness of the robot.

At present, our research focuses on the effectiveness of the proposed method. Our
research goal is to focus on the solution of biped robot dynamic balance problem from
the perspective of algorithm, software, and hardware, and the adopted Walker is used to
test this solution. In terms of the performance of the robot, Walker robot needs to increase
its arms to improve its balance performance more fully, which is comparable to, or goes
beyond, the Atlas robot.
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