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Abstract: This paper continues the proposed idea of stability training for legged robots with any
number of legs and any size on a motion platform and introduces the concept of a learning-based con-
troller, the global self-stabilizer, to obtain a self-stabilization capability in robots. The overall structure
of the global self-stabilizer is divided into three modules: action selection, adjustment calculation and
joint motion mapping, with corresponding learning algorithms proposed for each module. Taking
the human-sized biped robot, GoRoBoT-II, as an example, simulations and experiments in three
kinds of motions were performed to validate the feasibility of the proposed idea. A well-designed
training platform was used to perform composite random amplitude-limited disturbances, such
as the sagittal and lateral tilt perturbations (±25◦) and impact perturbations (0.47 times the robot
gravity). The results show that the proposed global self-stabilizer converges after training and can
dynamically combine actions according to the system state. Compared with the controllers used
to generate the training data, the trained global self-stabilizer increases the success rate of stability
verification simulations and experiments by more than 20% and 15%, respectively.

Keywords: legged robot; global self-stabilizer; stability training platform; Q-learning; composite
disturbance; radial basis function network

1. Introduction

Compared with fix-based industrial robots, mobile robots have a wider application
prospect because of their mobility and operational capacity. In particular, legged robots
have a similar mechanism to animals and thus have a stronger adaptability to complex
terrains than robots with other movements, such as wheeled and tracked robots. However,
the practicality of legged robots is still lower than that of wheeled and tracked robots due
to the difficulties in balance control and perturbation recovery.

The early studies mainly focused on the balance control of walking motions. Based
on the Zero Moment Point (ZMP) force reflection control proposed by Vukobratovic [1], a
variety of balance control methods such as body posture control [2], ZMP damping con-
trol [3] and landing point adjustment control [4] were proposed and deployed successively
on ASIMO, Petman and other robots. Since then, researchers have started to consider
the influence of perturbations and proposed corresponding control methods according to
different types of perturbations. Successful results have been obtained for tilt ground [5–7],
uneven ground [8], external force impact [9–11] and other perturbations.

The above balance controllers generate a planned response for a specific perturbation
and then calculate the control outputs that enable the robot to track a determined trajectory
by solving the dynamical model (or simplified model) of that robot. Thus, these controllers
can be collectively defined as model-based balance controllers. Such controllers have
achieved many successful results in structured environments such as laboratories, but their
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application is limited in unstructured, complex environments where the robot may be
subject to multiple, mutually compounding, and unpredictable perturbations.

Consequently, more and more studies have paid attention to obtaining the self-
stabilization capability of legged robots by using learning-based methods which are able to
obtain the optimal mapping from the system state to the joint adjustment. The relevant
literature on learning-based balance control methods is summarized in Table 1.

Table 1. Summary of learning-based balance control methods.

Scholar Algorithm State Space Action Space Disturbance

Scesa et al. [12] CTRNN 6-d 1 continuous space 3-d continuous space Sagittal/lateral push
Shieh et al. [13] FNN 10-d continuous space 1-d continuous space Tilt/rugged ground
Zhou et al. [14] Fuzzy reinforcement learning Two 2-d continuous space 1-d continuous space None
Joao et al. [15] SVM + FNN 2-d continuous space 1-d continuous space None

Li et al. [16] Fuzzy control + optimal control Two 3-d continuous space 3-d continuous space None
Hwang et al. [17] Q-learning 82 discrete states 24 discrete actions Seesaw
Hengst et al. [18] Q-learning 4-d continuous space 9 discrete actions None

Hwang et al. [19,20] Q-learning + Reconstruction of
Segmented Postures 8 discrete states 25 discrete actions None

Liu et al. [21] DDPG 4-d continuous space 2-d continuous space Sagittal impact
Valle et al. [22] Approximate Q-learning 66 discrete states 8 discrete actions None

Li et al. [23] PPO 20-d continuous space 10-d continuous space Load of 15% total mass

1 short for 6-dimensional.

As shown in Table 1, some studies did not consider any perturbation, and the rest
of them applied one kind of perturbation—generally a specific perturbation in a single
direction. Moreover, the dimensions of the state/action space defined in existing studies
are relatively low, which means that the learning process is carried out locally in the
whole state space. In addition, the scope of state migration is relatively small when the
applied perturbation is simple. Therefore, even though successful results can be obtained
in the laboratory, state confusion is prone to occur in local state spaces determined by only
partial state variables when the existing controllers face complex perturbations in reality,
which leads to the failure in maintaining balance. In addition, the learning algorithms are
applied without considering the curse of dimensionality when the number of state/action
variables increases.

To address the above problems, the authors in [24] have proposed the idea of robot
stability training—that is, to simulate composite perturbations by the random amplitude-
limited motion of a six-degrees-of-freedom (DOF) training platform on which the robot is
trained, and to obtain the self-stabilization capability by reinforcement learning with feature
selection. A stability training simulation [25] of a bipedal robot was performed under
randomly varying ground tilt perturbation, which preliminarily verified the feasibility
of this idea. Relevant studies in medicine and biology also corroborate the practicability
of stability training—for example, studies on movement disorder syndrome [26], stroke
rehabilitation [27] and mice anatomy [28] have shown that training an organism with a
moving platform can enhance or rebuild its balance.

In order to distinguish from the balance controllers learned under a single disturbance,
the robot self-stabilizer trained on a 6-DOF motion platform called the global self-stabilizer,
where “global” means that the training process has traversed all different kinds of envi-
ronmental disturbances through the random amplitude-limited motion of the training
platform. A robot self-stabilizer trained under such conditions can obtain robustness to
any environmental perturbation, and after sufficient training, it can make the robot stable
under any perturbation within its driving capability.

Figure 1 compares the differences between the general balance controller of a legged
robot and the global self-stabilizer in this study.
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Figure 1. Comparison of a general balance controller and the global self-stabilizer for legged robots.
(a) General balance controller; (b) global self-stabilizer.

Figure 1a shows that a general robot balance controller uses a specific balance control
law for different perturbations; the balance control of the robot is coupled with a specific
motion, which means it is not universal.

As in Figure 1b, the global self-stabilizer is separated from the motion controller. The
former finds the optimal joints’ increments according to the internal state/action map; the
latter only needs to generate the reference motion according to the given motion parameters
and is not affected by the global self-stabilizer. Thus, the two tasks (motion and balance) are
independent. Only the target motion and the driving capability of the robot are considered
in the motion controller. In other words, the self-stabilization capability obtained is not
limited to specific motions, and the global self-stabilizer, such as a cerebellum, can be
applied to any motion under any perturbation after being sufficiently trained.

In this paper, the stability training system of a legged robot with multiple legs is
established and a general hierarchical structure of the global self-stabilizer is designed.
The task of the proposed global self-stabilizer will be divided into three subtasks: action
selection, adjustment calculation and joint motion mapping. Each subtask will be learned
in different state spaces.

This paper is organized as follows: Section 2 describes the model of the training
system and defines the state space of system variables and actions. Section 3 presents the
three modules of the global self-stabilizer and their corresponding learning algorithms.
Section 4 describes the simulated and experimental environments for stability training
of a biped robot (GoRoBoT-II) and the balance controllers for generating training data.
Sections 5 and 6 presents the simulation and experiment training processes and results.
This paper is concluded in Section 7.

2. A General Model for Stability Training of Legged Robots

The basic idea of the legged robot stability training proposed by the authors is shown in
Figure 2. During the training period, the robot stands on a training platform that performs
a 6-DOF random amplitude-limited motion to simulate perturbations in the real world.
The joint motion is generated by model-based balance controllers. The global self-stabilizer
learns from the state transition data to obtain the optimal state/action mapping through
reinforcement learning. After training, the converged global self-stabilizer can be used in
uncertain environments to keep the robot stable.
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Figure 2. The basic idea of legged robot stability training and its application [25].

2.1. Environmental Disturbance Simulation Method based on Motion Platform

A dedicated 6-DOF serial-parallel mechanism motion platform [24,29] was designed
in the authors’ laboratory for generating composite perturbations during stability train-
ing. Its mechanism sketch is shown in Figure 3a. The reference frames ΣOB-xByBzB and
ΣOP-xPyPzP are fixed to the ground and the platform, respectively. The motion of the
moving platform can be represented by the displacements xP, yP, zP and 3-2-1 Euler angles
θP1, θP2 and θP3 of the frame ΣOP with respect to frame ΣOB in Figure 3b. The pose vector
can be expressed as XP = [xP, yP, zP, θP1, θP2, θP3] T. Point C represents the center of mass
(CoM) of the trained robot.
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Figure 3. The mechanism of the training platform and its motion. (a) A 6-DOF serial–parallel
mechanism of the training platform; (b) spatial motion of the training platform.

Two forms of perturbations, ground tilt perturbations and inertial force/moment
perturbations, can be generated by the above platform. If the training platform performs a
random amplitude-limited motion, the generated tilt perturbation angle β, inertial force
perturbation FP and inertial moment perturbation MP will also be randomly distributed
within a certain range, thus enabling a comprehensive simulation of perturbations in the
real world.
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2.2. Model of the Training System

As shown in Figure 4, legged robots of any mechanical configurations and any size
standing on the training platform can all be equated to a multi-branch chain rigid-body
system with n1 (n1 ≥ 1) stance legs and n2 swing legs (n2 ≥ 0) if the motion in the air is
not considered.
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The reference frame ΣOS-xSySzS is established at the center of the theoretical support
zone, and the motion of frame ΣOS with respect to frame ΣOP can represent the change in
the contact state of the robot’s feet. In this study, situations in which the robot is completely
in the air or the support foot slides on the training platform are not considered. Thus, only
the 2-DOF flip motion of the theoretical support zone is analyzed, with the flip angles θS1
and θS2, respectively. Each swing leg can be viewed as an open chain mechanism with
its root located at the torso. The swing leg reference frame ΣOFj-xFjyFjzFj is located at the
center of the bottom surface of the jth swing foot (j = 1, 2 . . . n2). The motion of the swing
leg can be represented by the pose vector XFj—the pose of frame ΣOFj with respect to the
torso frame ΣOT-xTyTzT.

To establish the system variable set for the above model, the variables that can be
measured or estimated in this system are summarized in Table 2.

Table 2. System variables of a general model for stability training of legged robots.

Category of
System Variables Definition of Variable Symbolic Representation

Joint motion Angle, angular velocity and acceleration of joints θk,
.
θk,

..
θk, k = 1, 2, . . . NJ

Torso motion Pose, velocity and acceleration of torso XT = [xT, yT, zT, θT1, θT2, θT3]
T,

.
XT,

..
XT

jth swing foot motion Pose, velocity and acceleration of jth foot XFj =
[

xFj, yFj, zFj, θFj1, θFj2, θFj3

]
T,

.
XFj,

..
XFj

CoM motion Pose, velocity and acceleration of CoM PC = [xC, yC, zC]
T,

.
PC,

..
PC

ZMP position ZMP position in ΣOB PZMP = [xZMP, yZMP, 0] T

Inertial force and moment Resultant force and moment at CoM F = [FX, FY, FZ] T

M = [MX, MY, MZ] T

Support zone flip motion flip angle, angular velocity and angular
acceleration of ΣOS with respect to ΣOP

θS1,
.
θS1,

..
θS1,

θS2,
.
θS2,

..
θS2

Moving platform motion Pose, velocity and acceleration of ΣOP XP,
.

XP,
..
XP
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For robots with any number of legs and any configuration, the system variable set can
be constructed according to Table 2. In addition, the state variables corresponding to each
action will be selected from the system variable set in the subsequent stability training.

2.3. Action Set of Legged Robot

The action set which stores the action variables and their adjustment equations is the
discourse domain for the action selection. The action is considered as the active adjustment
performed by the robot. So, after excluding the system variables that cannot be actively
adjusted in the last two rows of Table 2, six types of actions are obtained: single-joint action,
torso action, swing foot action, CoM action, inertial force/moment action and ZMP action
(corresponding to the first six rows of Table 2, respectively).

In the stability training, the robot needs to accomplish three tasks simultaneously, i.e.,
tracking motion samples, resisting environmental (training platform) perturbations and
avoiding joint limits. In the following, the six types of actions listed will be assigned to the
three tasks mentioned above, and then the equation for action adjustment will be designed
for each action. The parameters for each action are explained in Table 3.

Table 3. Parameter table for action set.

Action Parameter Meaning

Single-joint action

K11, K12, K13
the compensation coefficients when the joint position, velocity and

acceleration are close to the limit

ε11, ε12, ε13
the width of the neighborhood where the joint position, velocity and

acceleration start to avoid the limit
L (·) the compensation function for avoiding the joint limit

Torso action
Xd

T,
.

X
d
T

the torso target pose and velocity vector
K21, K22 the proportional and derivative coefficients for the torso adjustment

Swing foot action
Xd

Fj,
.

X
d
Fj

the swing foot target pose and velocity vector

K31, K32 the proportional and derivative coefficients for the swing foot adjustment

CoM action
PS, PC the position of the stance foot coordinate system origin OS and the robot CoM

lC the distance from the robot CoM to the OS
K41, K42 the proportional and derivative coefficients of the CoM adjustment

Inertial force/moment action

Flast, Mlast the resultant inertial force and moment at the CoM in the last control cycle
mC the total mass of the robot
LC the angular momentum about the CoM

K51, K52 the adjustment coefficients for the inertial force and moment

ZMP action

xZMP, yZMP position of the ZMP point along the x and y axes within ΣOS
PCP the CP point position in the support zone
P0 the position of the center point of stance foot
K6 the coefficient for ZMP adjustment

(1) Single-joint action. When the robot’s joint reaches its position limit, velocity limit or
acceleration limit, the motion of the robot will be affected, so joint limit avoidance
is required.

The angular acceleration
..
θk (k = 1, 2 . . . NJ) of the NJ joints of the robot are taken as the

action variables in the single-joint action so that the motion curves obtained by integrating
the acceleration are smoother than those obtained by directly adjusting the position and
velocity. The adjustment is calculated according to Equation (1).

∆
..
θXi = L(θXi, K11, ε11) + L

( .
θXi, K12, ε12

)
+ L

( ..
θXi, K13, ε13

)
,(X = L, R; i = 1, 2, . . . , 6) (1)
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The compensation equation for the joint angular limit is calculated according to
Equation (2). The compensation equations for joint velocity and acceleration are similar
and will not be listed specifically.

L(θXi, K11, ε11) =


−K11

(
θXi − θmax

Xi + ε1
)
, θXi > θmax

Xi − ε1

0, O.W.
K11
(
θmin

Xi + ε1 − θXi
)
, θXi < θmin

Xi + ε1

(2)

(2) Torso action. This kind of action is used to bring the robot stance leg back to the

preset motion sample after other adjustments. The action variable is chosen as
..
XT, and

its adjustment is calculated using the PD control law shown in the following equation.

∆
..
XT =

[
∆

..
xT ∆

..
yT ∆

..
zT ∆

..
θT1 ∆

..
θT2 ∆

..
θT3

]T
= K21

(
Xd

T −XT

)
+ K22

(
.

X
d
T −

.
XT

)
+

..
X

d
T (3)

(3) Swing foot action. Similar to the torso action, for the n2 swimming feet in the general

model. The action variables are chosen as
..
XFj (j = 1, 2 . . . n2) and the adjustment is

calculated using the PD control law shown in the following equation.

∆
..
XFj =

[
∆

..
xFj ∆

..
yFj ∆

..
zFj ∆

..
θFj1 ∆

..
θFj2 ∆

..
θFj3

]T
= K31

(
Xd

Fj −XFj

)
+ K32

(
.

X
d
Fj −

.
XFj

)
+

..
X

d
Fj (4)

(4) CoM action. This type of action will directly adjust the robot CoM to keep balance on
the moving platform. The action variable is chosen as the linear acceleration of the
CoM. To keep the CoM above the stance legs, the adjustment is calculated according
to the estimated position of the moving platform.

[
∆

..
xC ∆

..
yC ∆

..
zC
]T

= K41

(
PS +

[
0 0 lC

]T − PC

)
+ K42

( .
PS −wP ×

[
0 0 lC

]T − .
PC

)
−

..
PC (5)

(5) Inertial force/moment action. The inertial forces and moments influenced by the
motion of the limbs are taken as a class of actions to cope with the perturbations. The
action variables are chosen as the inertial force F and the inertial moment M at the
CoM. The kinetic energy attenuation method proposed by the authors of [11] is used
here to keep the robot balanced. The adjustment is calculated as follows:

[
∆FX ∆FY ∆FZ

]T
= F− Flast = K51mCvC − Flast[

∆MX ∆MY ∆MZ
]T

= M−Mlast = K52LC −Mlast
(6)

(6) ZMP action. As a common control strategy in robot balance control, changing the
ZMP position within the support zone through limb motion can be used as a class of
action in response to perturbations. Therefore, the action variables are chosen as xZMP
and yZMP. Using the pose balance control method based on the CP point proposed by
the authors of [8], the ZMP adjustment is calculated with the following equation:

[
∆xZMP ∆yZMP

]T
= (1 + K6)PCP − K6P0 − PZMP (7)

The action set of legged robots can be written as:

Q =
{

∆
..
θ1 ∆

..
θ2 · · ·

..
θNJ ∆

..
XT ∆

..
XF1 ∆

..
XF2 · · ·∆

..
XFn2 ∆

..
PC ∆F ∆M ∆xZMP ∆yZMP

}
(8)

Although only one equation is given for the adjustment of each action in Q, different
adjustments can be obtained by adjusting the 12 free parameters (K11, K12, K13, K21, etc.).
The determination methods and specific values of these parameters will be illustrated in
Section 4 with simulation examples.
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3. The Global Self-Stabilizer
3.1. Preprocessing and Structure of the Global Self-Stabilizer

Dimensionality reduction and discretization are required to enable the learning process
to exponentially converge because the system space designed in Section 2.2 is a high-
dimensional continuous space. The system variable set listed in Table 2 is denoted as
X = {xi |I = 1, 2 . . . N}, and the action set in 2.3 is denoted as Q = {qj |j = 1, 2 . . . m}. The
global self-stabilizer in this study will establish the mapping from X to Q.

The RAFS feature selection method proposed by the authors in [30] will be
used to reduce the dimensionality of the system space to obtain the state set
Sj =

{
sjk

∣∣∣k = 1, 2, · · · , NSj; sjk ∈ X
}

—corresponding to each action qj and followed by
the autonomic abstraction calculation of the state space based on the Gaussian basis func-
tions proposed by the authors in [25]. The continuous state space corresponding to Sj is then
discretized into different Gaussian basis functions according to the maximum affiliation
principle. The full set of Gaussian basis functions corresponding to Sj can be expressed
as Ψj = {ψjk = <µjk, Σjk>|k = 1, 2, . . . , NBj}, where µjk and Σjk are the center vector and
covariance matrix of the basis function ψjk, respectively.

With x = [x1, x2 . . . xN] T denoting the vector in the system space and
sj = [sj1, sj2 . . . sjNSj] T denoting the vector in the state space of action qj, the mapping
of X to Sj after feature selection can be expressed as:

sj = Wx (9)

where W j is the NSj × N selection matrix obtained from the feature selection calculation.
The affiliation of the reduced-dimensional state vector sj to the basis function ψjk can

be expressed as:

f
(

sj, ψjk

)
= e−0.5(µjk−sj)

TΣ−1
jk (µjk−sj) (10)

The NSj-dimensional continuous state space corresponding to Sj can thus be trans-
formed into a discrete space with NBj values. To facilitate the learning calculation of the
global self-stabilizer in Section 2, a normalized affiliation function is also defined.

f̂
(

sj, ψjk

)
= f

(
sj, ψjk

)/NBj

∑
i=1

f
(
sj, ψji

)
(11)

The legged robot’s actions need to be executed by the joint motion, so the global
self-stabilizer also needs to establish the mapping from Q to the joint angular accelera-

tion increment vector ∆
..
θ =

[
θ1, θ1, · · · , θNJ

]T
. Because the action variables in Q are all

acceleration or force/moment, we can linearize the kinematic or dynamical equations of
the system:

qj = bj·∆
..
θ (j = 1, 2, · · · , m) (12)

where bj is the NJ-dimensional joint motion mapping vector, which represents the projection
of the action adjustment qj in the robot joint space. Combining the joint motion mapping
vectors into the mapping matrix B = [b1, b2, . . . , bn] T, Equation (12) can then be written as:

q = B∆
..
θ (13)

In general, the number of actions m is greater than the robot DOF NJ, so the matrix
B is singular. Therefore, the action selection matrix ANJ×m is constructed, which has only
one element of 1 in each row and the remaining elements of 0. Adding the action selection
matrix A to Equation (13) gives:

∆
..
θ = (AB)−1Aq (14)
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According to Equation (14), the global self-stabilizer is divided into three modules
in this study: action selection module, adjustment calculation module and joint motion
mapping module, which are used to generate A, q and B, respectively. The specific structure
of the global self-stabilizer is shown in Figure 5.
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3.2. Action Selection Module

The action selection module selects NJ actions in the action set and generates the action
selection matrix A. Two main considerations are made when selecting the combination of
actions: the value of the actions for the robot stability at the current state, and the influence
of the actions on each other when combined.

The action value function is defined as VA(x). The mutual influence between actions
is shown by the singularity of AB in Equation (14). For the action variables qi and qj, the
mutual influence cij is quantified by the relative projection of the joint mapping vectors bi
and bj (defined in Section 3.4):

cij = |bi
Tbj|/(||bi||×||bj||), (15)

For any action selection of matrix A, we can define the action selection evaluation
function as follows:

EA(A, x) = VA(x) ·
(

AT1
)
−ωC

(
AT1

)T
C
(

AT1
)

(16)
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where 1 is an all-one vector, and ωC is the weight of the action value and mutual in-
fluence. Action selection can be achieved by solving the optimization model shown in
Equation (17).

A = arg max EA(A, x)
s.t. rank(A) = NJ

(17)

3.3. Adjustment Calculation Module

There may be different formulas (or different parameters) for calculating the adjust-
ment of the same action because the training data of the global self-stabilizer may have
multiple sources (model-based controllers, motion capture data, etc.). Therefore, the task of
the adjustment calculation module is to select the most valuable adjustment calculation
formula for each action, then calculate and output action adjustment q.

Assuming that the jth action has nj (j = 1, 2, . . . , m) different adjustment formulas, the
value functions of these formulas Vjk(x) (j = 1, 2, . . . , m; k = 1, 2, . . . , nj) are obtained by
learning, and the formula with the largest Vjk(x) is selected to calculate qj.

The action value function VAj(x) can be determined by Vjk(x):

VAj(x) = max
k=1,2,...,nj

V jk(x) (18)

Both the action selection module and the adjustment calculation module need to deter-
mine the value function Vjk(x) through learning. The learning of Vjk(x) will be introduced
below. The state transition of the training data at each moment can be extracted as a
quintuple <x, I, ∆

..
θ, r, x′>, where I is the activation flag matrix of the adjustment calculation

formula, and the element Ijk takes 1 when the adjustment qj is calculated by the kth formula.
x′ is the system variable vector at the next moment. r is the immediate reward, considering
the stability of the robot and the difference between the actual motion and the reference
motion of the robot. The reward function r is defined according to Equation (19).

r =

 1
n

NJ

∑
i=1

(
1− |θd

i −θi|
θimax−θimin

)
, stable

−100, unstable
(19)

where θi
d is the joint angle of the ith joint in the motion sample; θimax and θimin are the

positive and negative limit positions of the ith joint, respectively.
In this paper, ZMP is not the only criterion for determining stability. When ZMP

is within the support zone, the robot is considered to be stable; when ZMP exceeds the
support zone, the robot will start to flip along the boundary of the support zone. The
robot is still considered to have the possibility of recovery when the flip angle is less than
45◦; only after the flip angle exceeds 45◦ is the robot considered to be in an irrecoverable
unstable state.

For each training data, the value function Q(ψijk) is updated by Q-learning.

Q
(

ψijk

)
← Q

(
ψijk

)
+ Ijkα

rjk f
(

x, ψijk

)
+ γ

NBjk

∑
h=1

f
(

x’, ψhjk

)
Q
(

ψhjk

)
−Q

(
ψijk

) (20)

where rjk is the reward function after assigning the immediate reward r to the kth adjustment
calculation formula for the jth action, calculated according to Equation (21).

rjk =
rIjk

∣∣∣bj · ∆
..
θ
∣∣∣/∥∥∥bj

∥∥∥
m
∑

j=1

nj

∑
k=1

(
Ijk

∣∣∣bj · ∆
..
θ
∣∣∣/∥∥∥bj

∥∥∥) (21)
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3.4. Joint Motion Mapping Module

The task of this module is to give the joint mapping matrix B based on the feedback of
the system variable x. The radial basis function network (RBF network) will be used to train
the mapping relation (x, ∆

..
θ)→ q as an approximation to the system motion equations

because it is difficult to obtain training data in the form of <x, B> directly. However, it
is always possible to extract training data in the form of <x, q, ∆

..
θ> from the robot state

transition. Then, the local linearized mapping matrix B is obtained by differentiating this
RBF network.

This network is split into sub-networks with one single behavioral variable qi to reduce
the complexity. In Equation (12), ignoring the effect of ∆

..
θ on bi, the mapping vector bi

is considered as a function of x only. After performing the local linearization, qi can be
calculated by the following equation.

qi = qi0 + bT
i0

(
∆

..
θ− ∆

..
θ0

)
(22)

where qi0, bi0 ∆
..
θ0 are the mean values of qi, bi and ∆

..
θ0 in the neighborhood of the local

linearization, respectively.
The RBF network structure is shown in Figure 6, where Bi and vi are the weight matrix

and bias vector connecting the input layer to the hidden layer, respectively; uij (I = 1, 2, . . . , m;
j = 1, 2, . . . , Ni) is the linear activation function; the connection weights of the hidden layer
to the output layer are the affiliation function fij (defined in Equation (11)). The output
equation of the network is shown in Equation (23), where f i = [fi1, fi2, . . . , fiNi]T.

qi = fT
i

(
Bi∆

..
θ+ vi

)
(23)
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The basis functions of the above RBF network are evaluated only in the space ten-
sorized by x to reduce the number of basis functions. This modified RBF network is
equivalent to linear (first order) interpolation in the multi-dimensional space, which can
improve the fitting accuracy.

Differentiating Equation (23), the equation for the mapping vector bi extracted from
the RBF network is:

bi =
∂qi

∂∆
..
θ
= BT

i fi (24)
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The training of the designed RBF network is divided into two steps: (1) determination
of the center and boundary of the basis function; (2) local training inside the basis function.

The center and boundary of the basis function are determined by the state space auto-
nomic abstraction calculation based on the Gaussian base function [25] (feature selection
is also required). For each RBF sub-network, the basis function set can be expressed as
ΨBi = {ψBij|j = 1, 2, . . . , Ni} after the autonomic abstraction calculation.

For the jth basis function of action qi, the following error function can be defined:

eij =
1
2

Nqi

∑
k=1

f
(

s(k)i , ψBij

)(
q(k)i − bRij∆

..
θ
(k)
− vij

)2
(25)

The superscript (k) represents the kth training data, bRij is the jth row of the weight
matrix Bi, and vij is the jth element of the bias vector vi. For simplicity, f (si

(k), WBi, ψBij) is
abbreviated as fijk. To minimize eij, the following equations need to be solved:

∂eij

∂
[
bRij vij

] = Nqi

∑
k=1

 fijk

(
bRij∆

..
θ
(k)

+ vij − q(k)i

)[
∆

..
θ
(k)

1

]T
 = 0 (26)

Solving Equation (26), the solution shown in Equation (27) can be obtained.

[
bRij vij

]T
=

(
^
UUT

)−1( ^
UqLi

)
(27)

Where the definition of U,
^
U and qLi are shown in:

U =

[
∆

..
θ
(1)

∆
..
θ
(2)

· · · ∆
..
θ
(Nqi)

1 1 · · · 1

]
(28)

^
U =

 fij1∆
..
θ
(1)

fij2∆
..
θ
(2)

· · · fijNqi ∆
..
θ
(Nqi)

fij1 fij2 · · · fijNqi

 (29)

qLi =
[
q(1)i q(2)i · · · q

(Nqi)

i

]T
(30)

4. Stability Training System of Biped Robots

Taking the biped robot GoRoBoT-II as an example, the simulated and experimental
stability training environment are established to validate the effectiveness of the proposed
idea and the balance controllers for generating the training data are designed.

4.1. Simulation Environment

The biped robot used in this study is the bipedal part of the GoRoBoT-II robot designed
by the author’s laboratory. Its main mechanism parameters are shown in Table 4. The
seven-bar multi-rigid-body model of the biped robot is shown in Figure 7. The reference
frames and variables are defined according to the model in Section 2.2. In addition, the
joint angles of the left and right legs are denoted as θLi and θRi (i = 1, 2, . . . , 6), respectively.

Table 4. Main parameters of the biped robot GoRoBoT-II.

Parameter Length (mm) Parameter Length (mm) Parameter Mass (kg)

Torso length l0 300 Hip width lh 125 Torso mass m0 12.5
Thigh length l1 220 Forefoot length lf1 120 Thigh mass m1 6
Calf length l2 189 Hindfoot length lf2 60 Calf mass m2 2.5

Ankle height l3 104 Foot width lfw 90 Foot mass m3 0.25
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4.2. Experiment Environment

The experimental system for stability training is shown in Figure 8, which includes the
upper computer, motion platform, biped robot and protection device. The upper computer
is a PC with a Windows operating system. The protection device is composed of a wire
rope, a fixed pulley and a pull ring. When the robot is stable, the wire rope stays slack and
does not affect the robot; when the robot is unstable, the experimenter pulls the protection
rope tightly to prevent the robot from falling down.
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The training platform in the above system is a 2-DOF motion platform. The mechanism
diagram and its main parameters are given in Figure 9. The motion platform can oscillate
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around the x-axis and y-axis, denoted by θP1 and θP2, respectively. The limits of oscillation
amplitude, speed and acceleration are ±20◦, ±40◦/s and ±60◦/s2, respectively, which
meet the requirements for stability training.
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Figure 9. Mechanism diagram of the 2-DOF motion platform.

Each joint of the robot is driven by a Maxon RE35 DC servo motor. The transmis-
sion system consists of a synchronous belt drive (first stage) and a harmonic gear drive
(second stage).

The motion control commands of the robot are generated by the upper computer, and
the DC servo motors of each joint are position servos controlled by IPM100 controllers.
In addition to the photoelectric encoders on the DC servo motors, the robot is equipped
with a gyroscope (mounted on the torso) and force sensors (mounted under the soles
of the feet) to measure the acceleration and velocity of the torso as well as the contact
forces, respectively.

4.3. Balance Controllers for Stability Training Data Generation

The model-based balance controllers used for training data generation can be obtained
by combining actions in action set Q. The stance leg can follow the motion sample input
when the behavior variable

..
XT is adjusted according to Equation (3); similarly, when

..
XF

is adjusted according to Equation (4), the swing leg can follow the motion sample input.

Thus, if the robot’s action vector is chosen to be
[ ..
X

T
T

..
X

T
F

]T
, the robot’s motion will be

completely limited to the motion sample input.
By replacing some elements of the above action vector with the variables of three

types of actions—CoM action, inertial force/moment action and ZMP action—the balance
adjustments can be achieved based on the input sample motions. A variety of legged robot
balance controllers with different action combinations can be obtained. The three types of
controllers are described in detail below.

(1) CoM adjustment balance controller. This controller maintains the robot’s balance by
keeping the robot’s CoM above its support zone. The action variable that must be
selected is

..
PC, and the action variable to be replaced can be

..
xT,

..
yT or

..
zT in

..
XT, and

..
xF,

..
yF or

..
zF in

..
XF. The former corresponds to adjusting the robot’s CoM by translational

motion of the torso, and the latter by the swing foot.

(2) Energy attenuation balance controller. This controller dissipates the system energy
by making the inertial force and moment do negative work, thus achieving stabi-
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lization. The action variables to be selected are F and M. The action variables that
can be removed are the torso acceleration

..
XT or the swing leg acceleration

..
XF, which

correspond to the two ways of changing the inertial force and moment by the stance
leg adjustment or the swing leg adjustment, respectively.

(3) ZMP adjustment balance controller. This controller keeps the robot’s CP point in
the center of the support zone by adjusting the ZMP. Therefore, the action variables
that must be selected are xZMP and yZMP, and the substituted action variables can be
..
xT or

..
yT in

..
XT, and

..
xF or

..
yF in

..
XF, which is equivalent to the adjustment of the ZMP

position by torso swing or swing leg kick.

Table 5 summarizes the six balance controllers. During the stability training, the action
selection matrix A is determined by the corresponding controllers used in Table 5; the joint
mapping matrix B is calculated according to the kinematics and dynamics of the robot;
the adjustment vector ∆q within each control cycle is calculated from the corresponding
adjustment calculation formula (Equations (1)–(7)) according to the current state x; and
the control output ∆

..
θ is solved by Equation (14). Furthermore, the state transition in-

formation <x, I, ∆
..
θ, r, x′> generated by the above balance controller will be recorded to

form the training data, and this data will be used for learning the three modules of the
global self-stabilizer.

Table 5. Model-based balance controller for global self-stabilizer training data generation.

Balance Controller Behavior Symbol Activated Action Variables

CoM motion
Torso translation TC ∆

..
PC, ∆

..
θT1, ∆

..
θT2, ∆

..
θT3, ∆

..
XF

jth swing foot kick FC ∆
..
XT, ∆

..
PC, ∆

..
θF1, ∆

..
θF2, ∆

..
θF3

Energy attenuation Torso motion TE ∆F, ∆M, ∆
..
XF

jth swing foot motion FE ∆
..
XT, ∆F, ∆M

CP balance control
Torso translation TB ∆xZMP, ∆yZMP, ∆

..
zT, ∆

..
θT1, ∆

..
θT2, ∆

..
θT3, ∆

..
XF

jth swing foot kick FB ∆
..
XT, ∆xZMP, ∆yZMP, ∆

..
zF, ∆

..
θF1, ∆

..
θF2, ∆

..
θF3

When the position, velocity or acceleration of a joint enters its limit neighborhood
(determined by εJ1, εJ2 and εJ3), the joint limit will be avoided by the single-joint action,
which is achieved by selecting one of the single-joint actions that has the largest influence
coefficient (defined by Equation (15)).

5. Simulation Results

Here, the stability training data of the single-leg stance, double-leg stance and stepping
will be generated within the simulation environment established in 4.1 using the model-
based balance controllers in 4.3 to train the global self-stabilizer, after which the stability
verification simulation of the trained global self-stabilizer will be performed under the
same conditions.

5.1. Stability Training in Simulation

In the stability training simulation, the motion platform applies two kinds of pertur-
bations. The first one is time-varying ground tilt perturbation by the amplitude-limited
random motion of the swing angle θP1 and θP2 (see Figure 7); the other is the impact
perturbation by the sudden change of angular velocity based on the first one.

Three different sets of the control parameters in the adjustment amount
(Equations (1)–(7)) are designed, corresponding to different response speeds. The spe-
cific values are given in Table 6, which were obtained from the simulation conducted before
training. The superscript is used to indicate the level action that the variable takes, such
as xZMP

(1).
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Table 6. Different levels of parameters for adjustment.

Action Parameter
Value

Level 1 Level 2 Level 3

Single-joint action (K11, K12, K13) (5, 3, 1) (4, 2, 1) (3, 1, 1)
(ε1, ε2, ε3) (4◦, 6◦/s, 12◦/s2) (7◦, 10◦/s, 20◦/s2) (10◦, 15◦/s, 30◦/s2)

Torso action (K21, K22) (14.1, 100) (20, 100) (28.2, 100)
Swing foot action (K31, K32) (14.1, 100) (20, 100) (28.2, 100)

CoM action (K41, K42) (14.1, 100) (20, 100) (28.2, 100)
Inertial force/

moment action (K51, K52) (1, 0.5) (1.5, 0.8) (2, 1)

ZMP action K6 0.8 1.2 1.6

Three reference motions were used for the stability training simulation, i.e., single-leg
stance, double-leg stance and stepping. The stepping motion has random landing points,
and the motion samples were obtained by the planning method proposed in [31]. One
hundred simulations were performed for each level of each balance controller under each
perturbation condition in Adams, and 4000 system variable transition data were extracted
from each simulation. The duration of each simulation was 20 s, and the control period was
5 ms. For the controllers of TCi, TEi and TBi (I = 1, 2, 3), a total of 1.2 × 106 transition data
of system variables without impact and 8 × 105 with impact were obtained, respectively;
for the controllers of FCi, FEi and FBi (I = 1, 2, 3), a total of 8 × 105 transition data of
system variables without impact and 4 × 105 with impact were obtained, respectively.
The maximum simulation success rates among all model-based controllers are shown
in Table 8.

As a preparation for Q-learning and RBF network learning, feature selection and
autonomic abstraction calculations were performed first, and the results are shown in
Table 7. The value functions of the actions with different parameters share the same feature
selection results, but the state space autonomic abstraction calculation is performed with
different basis function distributions so that different parameters obtain different numbers
of basis functions.

A total of 198 system variables were selected for the 40 functions in the above table.
There were an average of five state variables per function from 113 system variables,
which shows that the RAFS feature selection method effectively reduces the state space
dimensionality of learning.

The 30 most-selected system variables are shown in Figure 10. The most-selected
variables are joint angles of stance leg, followed by the position of CoM and the flip
angle. Overall, the system variables related to robot CoM, platform swing angle, resultant
force/moment and ZMP are all present in the top 30 most-selected variables. All of
these are important variables or equilibrium criteria in biped robot balance control, which
indicates that the RAFS feature selection method successfully selected system variables
of significance.

The 40 functions in Table 7 were learned separately after the feature selection and state
space autonomic abstraction calculation described above. The Q-learning of the action
values was trained in a batch, with the amount of training data for each batch being 10,000,
and the incremental threshold of the value function for iterative convergence set to 10−5;
the RBF network for joint motion mapping was trained according to Equation (27). The
optimal solution was converged after performing one iteration on all training data.
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Table 7. Results of key feature selection and autonomic abstraction calculation of state space.

Variable Selected
State Variables

Number of Basis Function
Level 1 Level 2 Level 3

Action
variable

∆
..
θRi (i = 1, 2, . . . ,6) θRi, ∆

.
θRi, ∆

..
θRi 52 * 70 * 64 *

∆
..
θLi (i = 1, 2, . . . ,6) θLi, ∆

.
θLi, ∆

..
θLi 55 * 67 * 59 *

∆
..
xT xT,

.
xT, xZMP, θR5, θR4 1872 1935 1763

∆
..
yT yT,

.
yT, yZMP, θR6 1119 1328 1266

∆
..
zT zT,

.
zT, θR4,

.
θR4 1203 1298 1255

∆
..
θT1 θP1,

.
θP1, θT1,

.
θT1 1353 1499 1296

∆
..
θT2 θP2,

.
θP2, θT2,

.
θT2 1277 1394 1206

∆
..
θT3 θT3,

.
θT3, θR1 206 301 255

∆
..
xF xF,

.
xF, MY, FX, θS2,

.
θS2 2452 2571 2368

∆
..
yF yF,

.
yF, MX, FY, θS1,

.
θS1 2280 2246 2116

∆
..
zF zF,

.
zF, θL4,

.
θL4 1368 1420 1297

∆
..
θF1 θF1,

.
θF1, θL6,

.
θL6 1385 1538 1226

∆
..
θF2 θF2,

.
θF2, θL5,

.
θL5 1235 1496 1126

∆
..
θF3 θF3,

.
θF3, θL1 341 391 335

∆
..
xC

xC,
.
xC, xZMP, θS2,

.
θS2, θP2,

.
θP2, MY, FX, θR5,

.
θR5

11,359 12,670 12,370

∆
..
yC

yC,
.
yC, yZMP, θS1,

.
θS1, θP1,

.
θP1, MX, FY, θR6,

.
θR6

12,697 13,019 11,268

∆
..
zC zC,

.
zC, θR4,

.
θR4, θL4,

.
θL4 2332 2569 2571

∆FX
FX, xZMP, θS2,

.
θS2, θP2,

.
θP2,

xC,
.
xC

5002 5233 5493

∆FY
FY, yZMP, θS1,

.
θS1, θP1,

.
θP1,

yC,
.
yC

5540 5981 6127

∆FZ θS2,
.
θS2, θS1,

.
θS1, zC,

.
zC 3627 3826 3695

∆MX
yZMP, θS1,

.
θS1, θP1,

.
θP1,

yC,
.
yC

3890 3452 3321

∆MY
xZMP, θS2,

.
θS2, θP2,

.
θP2,

xC,
.
xC

4023 3926 3751

∆MZ θS2,
.
θS2, θS1,

.
θS1 1231 1396 1117

∆xZMP
xZMP, θP1,

.
θP1, θP2,

.
θP2,

θS1, θS2, xC,
.
xC, yC,

.
yC

8695 9007 9861

∆yZMP
yZMP, θP1,

.
θP1, θP2,

.
θP2,

θS1, θS2, xC,
.
xC, yC,

.
yC

8824 8937 9331

Joint
mapping

∆FX
xC, zC, θR1, θR2, θR3, θR4,

θR5, θR6
6892

∆FY
yC, zC, θR1, θR2, θR3, θR4,

θR5, θR6
7101

∆FZ
xC, yC, zC, θR1, θR2, θR3,

θR4, θR5, θR6
7840

∆xZMP

xC, zC, θR1, θR2, θR3, θR4,
θR5, θR6, θL2, θL3, FX,

FZ, MY

24,427

∆yZMP

yC, zC, θR1, θR2, θR3, θR4,
θR5, θR6, θL2, θL3, FY,

FZ, MX

22,246

* Denotes the average number of basis functions.
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Figure 10. The 30 most-selected system variables.

5.2. Stability Verification Simulation of the Trained Global Self-Stabilizer

To verify the effectiveness of the trained global self-stabilizer, five hundred stability
verification simulations were performed on the motion platform for each of the three
robot motions, under the same simulation conditions and parameters as the training data
generation. The success rates of the above verification simulations are presented in Table 8
and are compared with the highest success rate of the model-based balance controllers.

Table 8. Comparison of the simulation success rates of the trained global self-stabilizer and model-
based balance controllers.

Motion
Success Rate without Impact Success Rate with Impact

Global
Self-Stabilizer

Model-Based
Controllers

Global
Self-Stabilizer

Model-Based
Controllers

Double-leg stance 97.4% 88% (max) 85.7% 47% (max)
Single-leg stance 94.2% 75% (max) 80.2% 47% (max)

Stepping 76.6% 44% (max) - -

From the above table, it can be seen that the trained global self-stabilizer obtains
stronger stability than the model-based balance controllers, with increases ranging from
around 10% to 33%. The global self-stabilizer nearly doubles the success rate when the
impact perturbations are applied.

The verification simulation results of the single-leg stance and the stepping will be
analyzed next, because the double-leg stance is less challenging than others.

The ZMP curves in two single-leg stance simulations are given in Figure 11, respec-
tively. Figure 11a depicts that the trained global self-stabilizer regulated the ZMP to the
center of the support zone when no impact perturbation is applied. Figure 11b shows
that the ZMP exceeded the support zone boundary with the farthest distance of 87.7 mm
after the impact, and the global self-stabilizer reduced the ZMP’s oscillation amplitude and
finally recovered the flat-foot contact of the robot.

The joint angles in the same simulations are shown in Figure 12, wherein the joint limits
are marked with horizontal lines. The moments of impact and restoration of equilibrium
are also marked with vertical lines in Figure 12b. Figure 12a shows that the knee joints
approach the joint limit between 15 s and 17 s, and the global self-stabilizer distributes the
motion of the knee joints to the ankle joints.

Screenshots of the single-stance stability verification simulation with impact using the
virtual prototype in Adams are shown in Figure 13.
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Figure 13. Screenshot of single-stance stability verification simulation with impact.

The action-switching process of the global self-stabilizer is given in Figure 14. The
switching of

..
xC,

..
yC, xZMP and yZMP without impact are given in Figure 14a,b. When the
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sagittal impact is applied, the global self-stabilizer will use FX and MY actions to replace
..
xF and

..
θT1, respectively (for the lateral impact it will use FY and MX to replace

..
yF and

..
θT2,

respectively). The switching process is shown in Figure 14c,d.

Micromachines 2022, 13, x FOR PEER REVIEW 21 of 27 
 

 

 

Figure 14. Action switching of the global self-stabilizer during single-leg stance. (a) Action switching 

on the x-axis without impact; (b) action switching on the y-axis without impact; (c) action switching 

on the x-axis with impact; (d) action switching on the y-axis with impact. 

In the case of single-leg stance, the global self-stabilizer dynamically mixed TC and 

TB controllers in the case of no impact; in the presence of impact, the global self-stabilizer 

combined the four types of controllers, TC, TB, FE and TE. The controller parameters were 

also adjusted according to the system state. The switching rules were implicitly contained 

in value functions obtained from training process, and the results are equivalent to ex-

ploring different combinations of actions or parameters for calculating adjustments in dif-

ferent locations of the system space. Therefore, the global self-stabilizer obtained a 

stronger stability than the original controller used to generate the training data. 

The simulation data of single-leg stance with impact were sampled using a Gaussian 

function (standard deviation 5 mm). The probabilities of the distribution of the simulation 

success rate with respect to the ZMP position and the support surface flip angle are shown 

in Figure 15. From Figure 15a, it can be seen that the robot is basically guaranteed to be 

stable when the ZMP is within the support zone. The area circled by the contour with an 

80% success rate is about 1.8 times the size of the support zone, indicating that the global 

self-stabilizer makes it possible for the robot to recover its balance even when the ZMP is 

out of the support zone. Figure 15b shows that the robot has 100% stability when the flip 

angle θS1 is less than 6° and θS2 is less than 5°; the success rate of recovering balance grad-

ually decreases as the flip angle rises. Figure 15 also shows that the robot has stronger 

robustness to resist sagittal disturbances than lateral disturbances in single-leg stance. 

  

Figure 14. Action switching of the global self-stabilizer during single-leg stance. (a) Action switching
on the x-axis without impact; (b) action switching on the y-axis without impact; (c) action switching
on the x-axis with impact; (d) action switching on the y-axis with impact.

In the case of single-leg stance, the global self-stabilizer dynamically mixed TC and
TB controllers in the case of no impact; in the presence of impact, the global self-stabilizer
combined the four types of controllers, TC, TB, FE and TE. The controller parameters
were also adjusted according to the system state. The switching rules were implicitly
contained in value functions obtained from training process, and the results are equivalent
to exploring different combinations of actions or parameters for calculating adjustments
in different locations of the system space. Therefore, the global self-stabilizer obtained a
stronger stability than the original controller used to generate the training data.

The simulation data of single-leg stance with impact were sampled using a Gaussian
function (standard deviation 5 mm). The probabilities of the distribution of the simulation
success rate with respect to the ZMP position and the support surface flip angle are shown
in Figure 15. From Figure 15a, it can be seen that the robot is basically guaranteed to be
stable when the ZMP is within the support zone. The area circled by the contour with an
80% success rate is about 1.8 times the size of the support zone, indicating that the global
self-stabilizer makes it possible for the robot to recover its balance even when the ZMP
is out of the support zone. Figure 15b shows that the robot has 100% stability when the
flip angle θS1 is less than 6◦ and θS2 is less than 5◦; the success rate of recovering balance
gradually decreases as the flip angle rises. Figure 15 also shows that the robot has stronger
robustness to resist sagittal disturbances than lateral disturbances in single-leg stance.
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Figure 15. Success rate contour map of single-leg stance simulation with impact. (a) Success rate
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The joint angles in one stepping simulation are shown in Figure 16 which depicts
that the robot has periodic trajectories of joint angles. In addition, there are also irregular
fluctuations due to the changing ground tilt perturbation imposed by the moving platform.
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Figure 16. Joint angle in random stepping. (a) Roll joint angle; (b) pitch joint angle.

The action switching in the sagittal and lateral planes are given in Figure 17. The
action switching processes in two planes are similar. Where the CoM action is dominant
during the double-legged stance period, the ZMP action is dominant during the single-leg
stance period, and the inertial force action is used before and after the swing foot hits
the ground.
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6. Experiment Results

In this section, experiments are conducted firstly for stability training, followed by
stability verification experiments using the trained global self-stabilizer to show the effects.

6.1. Stability Training Experiment

The global self-stabilizer obtained from the simulation was transplanted to the robot
to reduce the wear of mechanical parts by frequent training experiments. The parameters
that need to be transplanted include the parameter set Ψ of the basis function, the value
function V and the connection weight matrix Hi of the RBF network.

The stability training experiments of three motions were performed using the bipedal
part of the GoRoBoT-II robot. The total number of experiments and the number of successes
for each motion under different perturbation conditions are given in Table 9.

Table 9. Parameters and results of stability training experiments.

Platform Moving Parameter
(Angle, Angular Velocity

and Acceleration)

Success/Overall

Double-Leg Stance Single-Leg Stance Stepping

±7◦ ±10◦/s, ±20◦/s2 11/12 17/24 16/54
±14◦ ±15◦/s, ±30◦/s2 17/24 10/30 -
±20◦ ±20◦/s, ±40◦/s2 7/12 - -
±20◦ ±25◦/s, ±60◦/s2 2/6 - -

The transplanted global self-stabilizer was trained using the obtained experimental
data, and the procedure and the parameters to be learned are similar to the simulation
training in 5.1.

6.2. Stability Verification Experiment

For the three motions of double-leg stance, single-leg stance and stepping, twenty
stability validation experiments were conducted, and the disturbances were generated
according to the fourth, second, and first row parameters in Table 9, respectively. The
corresponding success rates are 75%, 60% and 55%, respectively. Accordingly, the success
rates of the model-based balance controller in the experiments were improved by 16.7%,
26.7% and 25.4%, respectively.

The distributions of the experimental data in the platform phase space are shown in
Figure 18, where the unstable points indicate that the robot met the unstable condition in
Equation (19) within 3 s, while the stable points indicate that the robot did not fall over
within 3 s. The phase space of the motion platform was divided into the stable region, the
unstable region and the transition region. It can be seen that the stable region of all three
motions is larger than the size of the unstable region and the transition region, indicating
that the trained global self-stabilizer gained the ability to resist external perturbations.
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The ZMP curves that were obtained in three random experiments for each motion are
given in Figure 19, which shows that the trained global stabilizer can restore balance even if
the ZMP is out of the support zone. In addition, the corresponding experiment screenshots
are shown in Figure 20.
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In summary, the trained global self-stabilizer obtained the self-stabilization capability
to cope with the random amplitude-limited perturbations under different motions. In
addition, the stabilization capability was stronger than that of the model-based balance
controllers after the training process, which indicates that the global self-stabilizer extracted
and generated the control strategy that was most beneficial to maintain the robot’s balance
based on the training data, and obtained a better state/action mapping.
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7. Conclusions

A general model of a stability training system with a training platform is designed
for legged robots with an arbitrary number of legs and an arbitrary configuration. The
application of the proposed idea was given from three perspectives: system variable
determination, action set construction and model-based controller designs for training
data generation. A global self-stabilizer capable of learning from different sources of
training data in a high-dimensional continuous system space was proposed to address the
stability training problem of legged robots. The overall task of keeping the robot stable
is broken down into three modules: action selection, adjustment calculation and joint
motion mapping, in which the action selection and adjustment calculation modules use the
Q-learning algorithm, and the joint motion mapping module uses a modified RBF network.

Stability training simulations and experiments of the global self-stabilizer were con-
ducted by taking the bipedal robot, GoRoBoT-II, as an example (it should also be noted
that the application of the proposed training method was not limited by the size of robot).
The training data that were generated from 18 controllers were used for training the
global self-stabilizer.

Stability verification simulations and experiments were conducted for the trained
global self-stabilizer, and the following conclusions can be obtained:
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1. Simulation verification showed that the success rates of the trained global self-
stabilizer, in three kinds of motion, under different disturbances, were higher than
that of the model-based balance controller, with an improvement of at least 9.4%.

2. Experiment verification showed that the trained global self-stabilizer could keep
the robot balanced under the random amplitude-limited tilt perturbation. The suc-
cess rates of the stability verification experiments could reach 75%, 60% and 55%,
respectively, which were higher than the success rates obtained using the model-
based balance controller during the training data generation (58.3%, 33.3% and
29.6%, respectively).

3. The trained global self-stabilizer obtained different action combinations from the
training data, and also continuously switched parameters according to the system
state. This indicates that the designed global self-stabilizer was able to explore bet-
ter state–action mapping from the training data and had the ability to learn and
evolve continuously.

In summary, the proposed global self-stabilizer was able to accomplish the stability
training task under compound perturbations and explore better action combinations from
multiple different sources of training data. In the next step, we will put the trained global
self-stabilizer into a real, unknown environment for further experiments.
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