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Abstract: Cognitive radio (CR), which is a common form of wireless communication, consists of a
transceiver that is intelligently capable of detecting which communication channels are available to
use and which are not. After this detection process, the transceiver avoids the occupied channels
while simultaneously moving into the empty ones. Hence, spectrum shortage and underutilization
are key problems that the CR can be proposed to address. In order to obtain a good idea of the
spectrum usage in the area where the CRs are located, cooperative spectrum sensing (CSS) can be
used. Hence, the primary objective of this research work is to increase the realizable throughput
via the cluster-based cooperative spectrum sensing (CBCSS) algorithm. The proposed scheme is
anticipated to acquire advanced achievable throughput for 5G and beyond-5G Internet of Things (IoT)
applications. Performance parameters, such as achievable throughput, the average number of clusters
and energy, have been analyzed for the proposed CBCSS and compared with optimal algorithms.

Keywords: cluster-based cooperative spectrum sensing; achievable throughput; greedy heuristic
algorithm; cognitive radio network; 5G and beyond-5G IoT applications

1. Introduction

Cognitive radio (CR) is a relatively new long-haul radio innovation. After the software-
defined radio (SDR), which is, to a greater degree, gradually becoming a reality, CR will be
the more successful radio correspondence framework to be created [1–10]. The principal
focal point of this research work is the range designation issue, i.e., to accurately choose the
Secondary Users (SUs) to detect and use the Primary User (PU) channels for a wide variety
of situations [11–22].

Since the CR is being used to provide a strategy for utilizing the range more effectively,
range detection is a significant issue in 5G and beyond-5G IoT applications, and the
frequency band used is narrow band LTE (NB-LTE) [23–25]. The general framework is to
work adequately and to provide the necessary enhancement in range detection. The CR
range detection framework must have the option to successfully distinguish the additional
transmissions, recognize them and enlighten the central processing unit of the CR such that
the crucial move can be made.

This work addresses the following:

• Methods of increasing the throughput of SUs.
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• A discussion of the spectrum utilization problem.
• The proposal of cluster-based cooperative spectrum sensing (CBCSS) to perform

cooperative spectrum sensing in 5G and beyond-5G IoT applications.

To extract the minimum-sensing users, a closed-form expression is logically impractical,
and a number of security issues need to be considered. A higher dimensions vector is not
considered here since it increases the computational cost and makes the algorithm undesirable.

2. Literature Survey

The extraction of the number of minimum-sensing users in a closed-form expression
is analytically unfeasible. Therefore, the analytical formulation of the amount of saved
energy in each scenario must be considered. In addition, a greater number of security
issues are considered. The higher dimensions vector is not considered, and if considered,
it increases the computational cost, which makes the algorithm undesirable. There are
also practical protocol issues of synchronization and the estimation and tracking of the
traffic parameters. In addition to spectrum sensing to improve spectrum utilization, a
CR in a cognitive radio network (CRN) can sense available networks and communication
systems around it. The CRNs are composed of various kinds of communication systems
and networks and can be viewed as a sort of heterogeneous network. Dusit Niyato et al.
recommended a Bertrand game model to analyze the impacts of system parameters such as
spectrum substitutability and channel [7]. Nasif et al. offered an algorithm for opportunistic
spectrum sharing with multiple co-channel primary transmitters. The authors presented
a distributed collaborative algorithm for cognitive radios [14]. Quan et al. proposed a
soft computing-based algorithm that requires full consideration of the noise level of all
secondary users. The throughput performance of SUs in cognitive radio networks has been
analyzed [17]. Yue Wang et al. proposed an anti-jamming problem in the presence of a
smart jammer. This smart jammer learns the transmission power of the user and adjusts
its transmission power to maximize the damaging effect that is being analyzed [4,21].
Mohammad Rashid et al. developed a framework to learn the QoS performance measures
using a queuing analysis in the data link layer for infrastructure-based cognitive radio
users in the opportunistic spectrum access [12]. Song et al. considered the interference
temperature restriction and opportunistic spectrum allocation and suggested a suitable
framework for the joint spectrum allocation and power control to make use of the utilized
and underutilized licensed electromagnetic spectrum [19].

Bin Wang et al. proposed an approach to enhance the performance of unlicensed users by
utilizing the licensed user spectrum in cognitive radio networks [3]. Minh-Viet Nguyen et al.
investigate the problem of resource allocation spectrum sensing methods, frequency se-
lectivity, spectrum allocation and frequency bands in cognitive radio relay networks [11].
Azarfar et al. proposed an auction approach along with an anticipated double spectrum
to augment the spectrum utilization in a CR network [2]. Li et al. recommended a new
cooperative spectrum sensing framework that would effectively combine spectrum sensing
and spectrum sharing [10]. Ruby et al. introduced a new hard two-bit overhead for each
individual user. Consequently, a balanced trade-off between the detection performance
and complexity was realized [18]. Dongyue Xue et al. proposed a scheduling algorithm to
reduce the spectrum sensing time for wireless mesh applications [6]. Changpeng Ji et al.
proposed a cross-layer cluster-based spectrum sensing algorithm to achieve better noise
density and slot length [5]. Li Yu et al. proposed a framework in order to increase the
performance of a CR network by using the cluster-based cooperative spectrum sensing
technique [9]. Parzy et al. employed a distributed resource allocation mechanism for CR
networks based on a novel competition methodology, which syndicates the benefits of
node competition and cooperation [16]. Nadine Abbas et al. presented the spectrum avail-
ability and scarcity in the radio spectrum for cognitive radio networks [13]. Tsakmalis et al.
extended an algorithm to increase the cognitive radio network throughput and reduce
the primary user interference through scheduling techniques [20]. Zhu et al. considered
the resource allocation issue in an OFDMA-based cognitive radio network and increased
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the coverage area of the antenna using several beam forming techniques to support the
secondary user in using the licensed user spectrum [22]. Orumwense et al. proposed a
cooperative technique to address the spectrum sensing issues of secondary users. The
primary user channel length, spectrum sensing time and slot length were all measured
for the spectrum allocation decision for secondary users [15]. Alberti et al. concluded
that the problem of sensor applications in cognitive radio networks is that the parameters
considered provide a short network lifetime and poor beamforming characteristics [1]. Hee-
jung et al. presented a survey on the next generation of Internet of Things (IoT) networks,
showing an increase in delay, network lifetime, packet delivery ratio and throughput [8].

In this paper, the heterogeneities in both PU channels and SUs are investigated. The
PU channel is characterized by channel idle probability and channel capacity, while the SU
is depicted by the energy detection threshold, received SNR and geographical location.

3. Cluster-Based Cooperative Spectrum Sensing (CBCSS)
System Model

Consider a CRN with N SUs and M PU channels. Each channel is exclusively used
by the PU. However, the PU is idle, and the SU can opportunistically utilize the channel
when it is available through spectrum sensing. Let M be the set of such PU channels and
N denote the set of SUs. Figure 1 demonstrates that the channel heterogeneity-spectrum
availability varies across the SUs. The SUs that are located far from the PU will only report
noise when the detection range of the PUs only covers part of the system. Hence, the CRN
is partitioned into clusters so that the SUs in each cluster are within the detection range of
the same set of PU channels.
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Figure 1. System model for CBCSS.

The vacant portion of the spectrum can only be allotted by a CR user. We use a
sampling frequency fs to sample the frequency.

H1
j : yi,j(k) = si,j(k) + ui,j(k) i = 1, 2, . . . . . . , N (1)

H0
j : yi,j(k) = ui,j(k) j = 1, 2, . . . . . . , N (2)

The false alarm probability Pf,(i,j) is defined as the probability of the SU j under H0
j ,

which is given by

Pf,(i,j) = Q ((
∈i

σ2
ui,j

− 1)
√

fs T
)

(3)
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The detection probability Pd,(i,j) is defined as

Pd,(i,j) = Q ((
∈i

σ2
ui,j

− 1 − γi,j)

√
fsT

2γi,j + 1
) (4)

In order to provide sufficient protection to the Pus, it is required to keep the detection
probability above a given threshold Qth, that is, Qd,j ≥ Qth. Hence,

m

∏
i=1

(1− Pd,(i,j)) ≥ Qth (5)

The SUs and PU channel’s allocation matrices are [Xs]N X K and [Xc]M X K . The ele-
ments xk

s,i and xk
c,j can be defined as:

xk
s,i


1 i f SU is with cluster

r
0 otherwise

(6)

xk
c,j


1 i f CHj is with cluster

r
0 otherwise

(7)

Consider the following two vectors:
Sk represents the set of SUs in cluster k

Sk = {i
∣∣∣xk

s,i = 1, ∀ i ∈ N} (8)

Bk denotes the set of PU channels sensed and utilized by the SUs in cluster k

Bk = {j
∣∣∣xk

c,j = 1, ∀ j ∈ M} (9)

Thus, the total throughput is given by

Rk(Sk, Bk) = ∑
j£Bk

T− τ

T
P
(
Hj ) Cj(1−Qk

f,j(Sk , Bk)) (10)

where P(Hj) is the idle probability for channel j, Cj is the transmission capacity for channel
j, and

Qk
f,j(Sk, Bk) = 1− ∏

i∈Sk

(1− Pf,(i,j)(
τ

bk
)) (11)

To represent the assignment policy, a three-dimensional matrix ANXMXK is defined as

An
ijk


1 i f i ∈ Sk and j ∈ Bk

−
0 otherwise

(12)

The problem is formulated and given as

maxXsXc, = ∑
k

Rk (Sk (Xs ), Bk(Xc)) (13)

∑K
k=1 xk

s,i= 1, ∀ i (14)

∑K
k=1 xk

c,j= 1, ∀j (15)

∑i ∈Sk
xk

s,i ≥ m, ∀k (16)
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The optimization problem can be solved in polynomial time if and only if the cor-
responding decision problem can be solved. Thus, the proof of the algorithm for an
optimization problem is equivalent to proving its corresponding decision problem.

4. Results and Discussion
Simulation Parameters

The simulation results have been presented for the proposed cluster-based cooperative
spectrum sensing with a greedy heuristic Algorithm 1 (GHA) based on the analytical
expressions established in the previous section. The performance features such as the
achievable throughput, average count of clusters and energy of the proposed cluster-based
greedy heuristic algorithm have been appraised and linked with the conventional optimal
algorithm using MATLAB. The assumptions made in the study are given in Table 1.

Algorithm 1: Greedy algorithm

Input:
GK (Xk ∪ Yk,∈k),. mk
Initialization: Sk = Xk, Bk = Ø, A(k−1), l←1, Xk

s = [1] and Xk
c = [0]

yl = arg maxy∈Yk deg(y)
while |Sk| ≥ mk and |Yk| > 0
yl = arg max

y∈ Yk
Bk

ifdeg(y)mkthen
break;
else
Pk = 1;
Bk ← Bk ∪ yl ; Γk[l] = Rk(Sk,Bk);
xk

c,yl
= 1;

xk
s,i = 0; ∀ i ∈ ψylr

; update Ai j k;
end if
Find l*=arg maxl Γk[l];
Sk = ∩ l∗

l=1ψylr
;Bk =

{
CH Pk[l] , CH Pk[2] . . . . . . . . . . . . . . . . . . . . . . . . CH Pk[l∗]}.

return rules

Table 1. Simulation parameters.

Description Range

Simulation Area 1200 × 700 m

Primary Users (M) 50

Secondary Users (N) 40

Cluster Size 25 users/cluster

Number of Clusters 04

Transmission Range 250 m

Packet Size 165 bytes

Mobility Model Random Waypoint

Node Pause Time 5 s

Sampling Frequency 6 MHz

Sensing Time 3–4 ms

In Figure 2, the node setup vs. cluster formation for the proposed CBCSS is plotted.
The simulation area of 1200 m is used for the X-axis, and 700 m is used for the Y-axis for
the proposed CBCSS.
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Figure 2. Simulation node setup vs. cluster formation.

Figure 3 shows the total sensed PU channels (M) vs. the achievable throughput graphs
for diverse values N = 20, N = 25, N = 30, where N represents the number of secondary
channels. The number of sensed PU channels (M) is used for the X-axis, and the attainable
throughput is used for the Y-axis.

Micromachines 2022, 13, x FOR PEER REVIEW 7 of 11 
 

 

Figure 3 shows the total sensed PU channels (M) vs. the achievable throughput 
graphs for diverse values N = 20, N = 25, N = 30, where N represents the number of sec-
ondary channels. The number of sensed PU channels (M) is used for the X-axis, and the 
attainable throughput is used for the Y-axis. 

 
Figure 3. Number of sensed PU channels (M) vs. achievable throughput. 

Figure 4 shows the amount of PU channels (M) vs. the average figure of cluster 
graphs for N = 20, N = 25, N = 30. The number of PU channels (M) is used for the X-axis, 
and the average number of clusters is used for the Y-axis.  

 
Figure 4. Number of PU channels (M) vs. average number of clusters. 

0 5 10 15 20 25 30 35 40 45 50
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Number of PU channels M

A
ch

iv
ab

le
 th

ro
ug

hp
ut

 Throughput vs number of sensed PU chanels

 

 
N=20
N=25
N=30

0 5 10 15 20 25 30 35 40 45 50
-1

0

1

2

3

4

5

6

Number of PU channels M

A
ve

ra
ge

 n
um

be
r o

f c
lu

st
er

s

Average number of clusters vs number of PU channels

 

 
N=20
N=25
N=30

Figure 3. Number of sensed PU channels (M) vs. achievable throughput.

Figure 4 shows the amount of PU channels (M) vs. the average figure of cluster graphs
for N = 20, N = 25, N = 30. The number of PU channels (M) is used for the X-axis, and the
average number of clusters is used for the Y-axis.
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It is apparent that when the number of PU channels rises, the average figure of clusters
also rises because the number of clusters formed relies heavily on the detection range of
the PU.

Figure 5 shows the count of the PU channel (M) vs. achievable throughput graphs for
optimal N = 20, greedy N = 20, optimal N = 40 and greedy N = 30 ranges. The number of PU
channels (M) is used for the X-axis, and the achievable throughput is used correspondingly
for the Y-axis.
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It has been perceived that the suggested algorithm attains an almost ideal performance,
with an extreme performance loss of 4.6% for the achievable throughput.

Figure 6 shows the number of iterations vs. energy (bits/J) graph for optimal and
greedy algorithm techniques. The number of iterations is used for the X-axis, and the
energy is used correspondingly for the Y-axis.
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From the comparison graphs, it has been detected that the energy saved is expressed
as a function of the number of iterations. Clearly, the number of iterations surges as the
energy declines. The time necessary for sensing the PU channel is known as an iteration.

The results of the comparison between the proposed system and the existing systems
are shown in Table 2. The simulation parameters, such as achievable throughput, the
average number of clusters and energy, have been associated.

Table 2. The comparison of the existing methods and proposed CBCSS.

Parameters Song et al. [7] Ruby
et al. [12] Li et al. [15] Nadine

et al. [17]
Proposed
CBCSS

Achievable throughput 92.73% 84.83% 90.24% 82.90% 96.87%

Average number of clusters 2 1 3 3 5

Energy 1.87 bits/J 3.64 bits/J 0.94 bits/J 6.23 bits/J 0.23
bits/J

Table 2 reveals that the proposed CBCSS for 5G and beyond 5G IoT applications has
high achievable throughput (96.87%), a high average number of clusters (5) and less energy
(0.23 bits/J) than the existing schemes. Based on the simulation result, it is concluded
that the proposed CBCSS algorithm provides a better solution for the SUs and is suitable
for utilizing the PU channels effectively in 5G and beyond-5G IoT applications. Thus,
the overall performance analysis suggests that the CBCSS algorithm for the cooperative
spectrum sensing with a greedy heuristic algorithm for 5G and beyond-5G IoT applications
in CRN performed well and achieved good performance in terms of achievable throughput,
the average number of clusters and energy. Hence, for the effective 5G and beyond-5G IoT
communication applications, the CBCSS scheme can enable additional benefits, such as the
maximum achievable throughput.

5. Conclusions

In order to capitalize on the achievable throughput of cognitive radio networks, a
CBCSS with GHA has been offered for 5G and beyond-5G IoT applications. The CBCSS
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algorithm was suitably developed. Performance parameters, such as achievable through-
put, the average number of clusters and energy, have been scrutinized for the proposed
CBCSS algorithm. In comparison with the ideal algorithm, the recommended CBCSS with
GHA showed an achievable throughput of 96.87%. Thus, the proposed greedy algorithm
performed better in terms of high achievable throughput and low energy.
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