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Abstract: This paper presents the optimization design of a miniaturized five-element wide-angle
fisheye lens using a deep learning algorithm. Zemax optical design software was used to simulate and
optimize the wide-angle fisheye lens. A deep learning algorithm helped to find the best combination
of different lens materials. We first used six lens elements as an initial configuration to design minia-
turized wide-angle fisheye lenses using the optimization process. The optical system components
were gradually decreased to five lens elements. Both OKP4HT and polymethyl methacrylate (PMMA)
plastic aspheric lenses were selected to replace the second spherical glass lens in the original design.
We propose two types of wide-angle fisheye lens designs with four spherical lenses and one aspheric
lens. The results for these designs indicated a viewing angle of 174◦, a total length of less than 15 mm,
a spot size of less than 6 µm, lateral color within ±1 µm, field curvature within ±0.02 mm, and
F-θ distortion of ±3.5%. In addition, the MTF value was larger than 0.4 at the spatial frequency of
100 cycles/mm.

Keywords: wide-angle fisheye lens; deep learning algorithm; optimization design; modulation
transfer function (MTF)

1. Introduction

Generally, an optical lens system with a field of view (FOV) larger than 120◦ is called
a fisheye lens. Ultra-wide-angle fisheye lenses are refractive optical systems capable of
imaging an entire hemisphere or a near-180◦ field of view onto a flat image plane. Unlike
ordinary lenses, miniaturized wide-angle lenses are associated with unavoidable image
distortion. A common solution is to correct the captured image by image processing
to restore the original image. At present, the fisheye lens is widely used in panoramic
photography, monitoring systems, unmanned vehicles, etc.

Wood [1] presented the original fisheye lens structure. He used a pinhole in front of a
container filled with water to simulate fisheye viewing in water. Based on the structure
described by Wood, Bond [2] proposed a hemisphere lens that performed the same function
but used the glass material rather than a water container. A single hemispherical lens was
used to replace the water in the design proposed by Wood. In fact, the design by Bond
should still be considered a fisheye pinhole camera rather than a fisheye lens. After that,
attempts were made to eliminate the aberration found in Bond’s design. Hill [3] used
a negative-meniscus lens in the front to guide light into the stop aperture, then added
two lenses behind the stop for imaging and aberration control. Bond’s design was further
improved by replacing the flat plate with a negative-power meniscus lens. The negative
meniscus shape of the first element has become common on all modern fisheye lenses.
Beck [4] presented a fisheye lens design using a highly divergent meniscus lens as the first
element to produce light into a wide FOV and then used a convergent lens system to project
the FOV onto a camera’s image plane. To increase the viewing angle, Shimizu et al. [5]
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proposed a wide half-field angle—from 90◦ to 110◦—fisheye lens. This wide-angle fisheye
lens system includes a forward lens group of negative refractive power and a rearward
lens group of positive refractive power. The forward lens group of the fisheye lens system
comprises three negative meniscus lenses combined with a biconcave lens and a positive
lens. Li et al. [6] proposed a fisheye lens camera and a convex reflective mirror to form a
panoramic stereo imaging system. The optical axis of the fisheye lens is aligned with the
optical axis of the mirror. The system can generate acceptable 3D reconstruction results
within a certain depth range and facilitates a large vertical field of view for monitoring the
surrounding environment. In 2016, Sun and Tien et al. [7] reported the relative illumination
analysis of an ultra-wide angle lens design with seven lenses. They used F-θ distortion
to replace the optical distortion associated with the ultra-wide-angle lens. The ultra-wide
angle lens design results showed a total FOV of 160◦, F-θ distortion of less than 2%, and
relative illumination greater than 83%. In 2017, Yan and Sasian [8] designed a zoom fisheye
lens for circular and diagonal fisheye imaging. Compared with the current designs in the
market, the zoom fisheye lens has a large aperture while maintaining a simple structure
because it uses only 11 lens elements in the two groups. In 2019, Fan and Lu [9] reported
a simple design of a fisheye lens using two negative-meniscus lenses and three singlet
lenses. All their lenses were made of glass, with a total length of no more than 150 mm;
the resultant starting design of the fisheye lens led to a small field curvature, astigmatism,
and chromatic aberrations. However, the authors did not discuss the distortion issue in the
fisheye lens designs.

The miniaturization of optical lenses is a main theme in the development of optical
systems. Novel optical lenses with ultrathin structure and light weight are important for
the miniaturization of state-of-the-art optical systems. By replacing bulky conventional
lenses, researchers not only succeeded in demonstrating novel metalens designs but also
advanced the metalens-based optical systems with ultra-compact dimensions. To achieve
the purpose of miniaturization of the wide-angle lens, several studies on metalens have
been proposed. The metalens has become a breakthrough technology in the development
of miniaturized optical systems due to its outstanding characteristics, such as ultra-thinness
and cost-effectiveness [10]. Compared to conventional macro-scale optics manufacturing
methods, the micromachining process of metalens is relatively simple and more suitable
for mass production. In 2018, Colburn et al. [11] demonstrated a tunable Alvarez metalens
system with a large area focal length change for varifocal zoom imaging. The largest
focal length range is 6.62 cm at 1550 nm and 32.4 cm at 633 nm. In 2021, Zhang et al. [12]
proposed a high-efficiency and ultra-wide angle wavefront control technique for single-chip
planar optical elements. They demonstrated its potential in infrared polarization imaging
and laser beam scanning, with the largest diffraction-limited imaging (FOV up to 178◦) for
single-chip planar devices. In 2022, Luo et al. [13] reported a review of recent advances in
wide-angle metalenses, including operation principles, design strategies, and applications.
Nevertheless, it is still difficult to build a high-performance wide-angle lens, even when
using a meta-surface containing sub-wavelength substructures.

In recent years, experts from optical lens design-related fields have invested in the
deep learning application of artificial intelligence (AI). Deep learning is a subset of machine
learning, in which an artificial neural network (an algorithm inspired by the human brain)
learns from a large amount of data. Similar to the way we learn from experience, the deep
learning algorithm repeats a task and adjusts it slightly each time to improve the results.
Deep learning algorithms also scale the data, but the traditional machine learning saturates.
Thus, optical lens design is an area where deep learning can be used. We used the deep
learning toolbox in MATLAB, which provides a framework for lens design and selects the
suitable lens materials. Next, ZEMAX optical design software was used to optimize the
design of a miniaturized wide-angle fisheye lens. In the following sections, the design
of a miniaturized wide-angle fisheye lens, the design specifications and results, and the
problems involved in tolerance analysis are briefly introduced according to the manufac-
turing probability with the modulation transfer function (MTF). This paper presents a
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miniaturized wide-angle fisheye lens system design using an OKP4HT and polymethyl
methacrylate (PMMA) aspherical lens to reduce the aberrations and the number of lenses.
As mentioned above, many wide-angle fisheye designs and products are commercially
available, but most of them are designed with multiple glass lens combinations. In this
study, we propose an optimization method using two polymer aspheric lens structures
and a deep learning algorithm to achieve a miniaturized wide-angle fisheye design. We
also considered the use of fewer lens elements to eliminate the aberrations. Our optical
simulation results showed that the proposed lens system can meet the design requirements
and has a good performance. The main contribution of this paper is the description of a new
design method for a miniaturized five-element wide-angle fisheye lens, which combines a
deep learning algorithm and a damped least-square (DLS) optimization technique. The
proposed approach can achieve a a wide-angle fisheye lens design with good performance.

2. Design Method

The simplest optical system for aberration compensation is a two-lens-group structure.
A compact fisheye objective lens consists of six lenses [14]; the first lens element has a
convex surface facing the object and a concave surface facing the image plane. The second
lens is an aspherical lens and has a concave surface facing the object and a concave surface
facing the image. The third and fourth lenses are single lenses. The fifth and sixth lenses
combine to form a positive-power doublet lens. To start with, the Gaussian solution was
calculated according to the thin lens theory, and the two-lens group structure (a negative
lens group and a positive lens group) was determined by a deep learning algorithm.

2.1. Wide-Angle Fisheye Lens Design

The two-lens-group structure was first calculated by finding a Gaussian solution
based on the thin lens theory. Next, the ZEMAX OpticStudio [15] optical design software
package was utilized to optimize the ultra-wide-angle fisheye lenses. The F-θ distortion is
a critical problem to be reduced in the optimization process. The F-θ distortion [16,17] is
expressed as

F −θ distortion =
H′ − H

H
× 100% (1)

where H′ is the height of a real image, and H is the height of the ideal image. H can be
calculated by

H = f × tan θ (2)

where f is the focal length of the lens, and θ is the half field of view in radians.
In our proposed lens design, the second lens was set as an aspheric surface. The

equation of aspherical surfaces can be written as

s =
cvy2

1 +
√

1− Pc2
vy2

+ By4 + Cy6 + Dy8 + Ey10 (3)

where s is the sag of the surface, cv is the vertex curvature of the surface, y is the vertical
distance from any point on the surface to the axis of revolution, P is the constant term of a
conicoid surface, B, C, D and E are the high-order coefficients of the aspherical surface. The
higher the order of the aspheric coefficient used, the more challenging the lens fabrication.
In the optimization process with aspheric coefficients, the order of the aspherical coefficients
was used until the 10th order, which contributed little to image quality improvement.

The damped least-squares (DLS) method automatically assigns a damping factor to
each parameter in a way that compensates for the relative sensitivity of the variables. Based
on the DLS method with good stability, we introduced an optimal enhancement coefficient
to achieve faster iteration and more accurate convergence. The optimal enhancement
coefficient was used to optimize the damped least-squares method. The advantage of
this approach is that it can be used to achieve faster iteration and convergence. The
average number of iterations in this method is less than 10, which greatly improves the
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solving speed. In addition, a merit function (MF) was used to assess the quality of the
wide-angle fisheye lens design. The merit function comprises a set of aberrations that
need to be corrected or minimized to certain values [18]. This function is a numerical
representation of the degree to which an optical system satisfies a specific target set. It is
usually impossible to simultaneously set all aberrations in the lens to zero; thus, the choice
of the aberrations and the selection of the targets for these aberrations is a critical part of
the design process. The value of the merit function is defined by the root sum square of the
weighted aberration values:

MF =

√
n

∑
i=1

[Wi(Xi − Ti)]2 (4)

where MF is the merit function, n is the total number of controlled Seidel aberrations, Wi is
the weight applied to the ith aberration difference of (Xi − Ti), Xi is the controlled Seidel
aberration, and Ti is the target value of the lens design. The goal in lens design is to make
this function zero. The larger the value, the further the lens is from the desired solution.
The computer program selects the controlled aberrations and weightings. The performance
of a miniaturized wide-angle fisheye lens is measured by a merit function, and the goal in
the optimization stage of the design is to determine the configuration of the wide-angle
fisheye lens system for which the merit function is the smallest over the region of interest
defined by the constraints. In other words, the objective of the optimization is to obtain the
global minimum value of the merit function. The merit function of the ZEMAX software
is used to set the curvature, air spacing, glass materials, and coefficients of the aspheric
surfaces as variables. The approach for optimizing two kinds of wide-angle fisheye lenses
by means of the merit function is described herein. First, the weights and targets of the
merit function set the variables such as curvature, air spacing, glass materials, coefficients
of the aspheric surfaces, etc. These are changed from time to time as the design proceeds,
to force the solution to proceed in a desirable way. When the result meets the expected
specification of a miniaturized wide-angle fisheye lens, the optimization process stops.
Otherwise, the above steps are repeated until better results are obtained.

For an optical lens design, the starting point is to choose the symmetrical fisheye lens
designed with reference to the relevant US patents [14,19–21]. We used the ZEMAX and
MATLAB software to simulate and analyze this system. The design specifications of a
miniaturized wide-angle fisheye lens are listed in Table 1. In order to accept more light
into the lens, the f-number was selected to be 2.8, and the FOV was larger than 170 deg.
The first element of the wide-angle lens needs a larger diameter to accept light from an
extremely wide angle. The effect focal length (EFL) was larger than 0.6 mm, and the MTF
was higher than 30% at a spatial frequency of 100 lp/mm. The field curvature should be
less than 0.5 mm, and the spot size was less than 5 µm. The F-theta distortion was less
than 5%, and the lateral color was less than 2 µm. The total length of the miniaturized
wide-angle fisheye lens was less than 20 mm. To meet the design specifications for the
miniaturized wide-angle fisheye lens system, the ZEMAX software was used with merit
functions for optimizing the MTF performance and F-theta distortion of the lens system.
The initial configuration of the miniaturized wide-angle fisheye lens system is shown in
Figure 1. We used the initial design parameters from the patents in the United States of
America as design values to form a six-lens-element fisheye system and then decreased the
fisheye lens system to a five-element lens. In our design cases, the first, the third, the fourth,
and the fifth lenses were spherical lenses, the second component was an aspheric lens
(using OKP4HT or PMMA material), and the last element was cover glass for the image
sensor. From the technical point of view of optical design, the position of the aspheric
lens has great influence on the performance of an optical system [22,23]. To find the most
effective position among all the possibilities is one of the important tasks of optical lens
designers. In the proposed optical system, selecting the second element as an aspheric lens
could effectively eliminate optical aberrations. The last one was a protective cover glass for
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the image sensors. The cover glass also plays a vital role in optical recording devices to
help camera users capture the sharper images they want.

Table 1. Design specifications of a miniaturized wide-angle fisheye lens.

Items Design Requirements

F/# 3.0

FOV(◦) >170◦

EFL (mm) >0.6 mm

MTF (%) at 100 lp/mm >30%

Field curvature (mm) <0.5 mm

Spot size (µm) <5 µm

Total length (mm) <20 mm

F-θ distortion (%) <5%

Lateral Color (µm) <2 µm
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Figure 1. Initial configuration of the miniaturized wide-angle fisheye lens system.

2.2. Deep Learning Algorithm

Due to the discreteness and diversity of the lens materials, it is difficult to deal with
them in optical lens design software. In the optimization process, it is usually necessary
to allow a continuous optimization of the lens variables, even if only a discrete number
of glass materials exist, and then fix them at some point in the process. Although these
traditional glass variables help to select approximate lens combinations for a first-order
optical layout, there may be other more appropriate methods when the goal is to directly
optimize the variables or predict them in machine learning applications. We applied a
deep learning (DL) algorithm to process the lens data in the wide-angle fisheye lens design.
Deep learning is a subfield of machine learning based on artificial neural networks [24–27].
The first challenge of applying DL to optical design is that a deep neural network (DNN)
model can be trained to predict the response of a given design, but the opposite is not
possible. A second challenge in applying DL to optical lens design concerns the model
uncertainties involved in DNNs and their implication on the correctness and optimization
of the designs. However, this issue has remained unaddressed [28]. It can be solved by a
deep learning strategy trained to extrapolate data from the lens design database, which
can be used to directly select the lens design starting point from the required first-order
specifications of the thin lens. There are potential benefits in borrowing some of the tools
used in machine learning and deep learning practice and applying them to a wide-angle
lens design. Since a deep neural network is trained to extrapolate data from lens design
databases, it can be used to obtain a selection of a wide-angle lens design starting points
directly from the desired first-order specifications. The deep learning method trains a
deep neural network (DNN) model, which learns the mapping from the required input
specifications of all required lens variables [29].

The DNN model takes the required first-order specifications (such as lens structure
and field of view) as the input and directly infers all the variables required to fully define
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the lens design, namely, curvature, thickness, refractive index and Abbe number. A single
DNN model captures the representation of multiple shot sequences characterized by the
sequence of the lens elements. We successfully trained our DNN model on 106 different
lens materials. The framework with the training process is illustrated in Figure 2. We also
propose a lens selection method from the practice of deep learning and used the ZEMAX
software to integrate it into the wide-angle fisheye lens design. Our proposed method is a
promising design tool for wide-angle lens optimization.
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3. Results and Discussion

We present a miniaturized wide-angle fisheye lens system with five lens elements
and chose both OKP4HT and PMMA materials for an aspheric lens to replace the second
spherical lens. A lens designer wants to know whether the image structure will meet the
specifications. The optical transfer function (OTF) provides the most common link between
the lens aberration contents and the questions asked by the optical designer. The OTF was
used to obtain information about the contrast in the images of specific objects. The basic
object used in defining the OTF was a sinusoidal intensity distribution. The MTF is the ratio
of the modulation contrasts in the object and image of a sinusoidal pattern. We optimized
these two miniaturized fisheye lens designs and present herein the optimization design
results; the MTF curve is also discussed. In addition, tolerance analysis is a very important
step in optical system design. Since it is impossible to manufacture all optical elements
perfectly, tolerances must be specified so that the optical elements can be manufactured
within the set tolerances. Tolerances will degrade the design merit function and also
affect image quality. Therefore, a well-specified tolerance can maintain a good system
performance and also make it easier to manufacture the optical components.

3.1. Aspheric Lens Using the OKP4HT Material

The OKP4HT plastic material has the features of a high refractive index of 1.632 for
thinner lenses and a low Abbe number of 23 for the correction of chromatic aberrations.
We used the Zemax optical design software to simulate and optimize optical lens systems
based on the DLS and genetic algorithms. Table 2 shows the lens data of a miniaturized
wide-angle fisheye lens using an OKP4HT aspherical lens and four glass spherical lenses.
It presents the radius, thickness, lens material, and lens diameter of each element. We
selected the third and fourth surfaces as aspheric surfaces. First, the “cone” of the surface
that needed to be changed into an aspheric surface was set as a variable and had to be
optimized [30]. Second, the menu of “surface type” was set as “even asphere”. Then, we
gradually set the fourth and higher-order coefficients as variables and ran the optimization
until the result was significantly good. The optimized fourth-order aspherical coefficients
were −0.003 for the third surface and 0.010 for the fourth surface. The optimized conic
constant of the OKP4HT aspherical lens were −19.021 and −0.997 for the third and fourth
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surfaces, respectively. Our design configuration of the miniaturized wide-angle fisheye
lens system is shown in Figure 3. There are five lens elements, including an aspheric lens
(the second lens) and four glass spherical lenses. The results of the fisheye lens system
design showed a total length of 15.0 mm, half-FOV of 87◦, and EFL of 0.69 mm. The spot
size diagram shows how light rays were focused on the ideal imaging surface. Figure 4
shows the spot diagrams of a wide-angle fisheye lens using one OKP4HT aspherical lens.
A spot size of 6.11 µm for the off-axial angle was computed by the ZEMAX optics software.
It indicated the RMS spread of the images at three field angles of 0◦ (on-axis), 71◦, and
87◦. The blue, green, and red dots represent wavelengths of 0.4861, 0.5876, and 0.6563 µm,
respectively. The wavelength was set in the visible range of F, d, and C, which corresponded
to 486.1, 587.6, and 656.3 nm, respectively. Optical distortion is one of the important quality
assessment requirements. Usually optical distortion becomes large with the increasing of
the FOV. In this work, the F-theta distortion was within ±3.5%, and the field curvature was
within ±0.04 mm, as shown in Figure 5. The lateral color was within ±1.0 µm, as shown in
Figure 6. The optical transfer function (OTF) is an important indicator of a lens performance.
The OTF describes both the amplitude and the phase of a signal. In most cases, the modulus
of the OTF can be expressed as MTF, which is often used as a mechanism for specifying the
required image quality. The Zemax optical lens design software can compute the data of
the geometric modulation transfer function as a function of field position. Figure 7 shows a
plot of the MTF versus spatial frequency for three field positions. The spatial frequency is
expressed in terms of cycles per millimeter. Different color lines represent different fields
of view. The black line is a plot for the ideal lens system. The blue, green, and red lines
represent tangential (abbreviated to T) and sagittal (abbreviated to S) directions for the 0◦,
71◦, and 87◦ cases, respectively. Figure 7 also shows a larger than 0.4 MTF value for the
spatial frequency of 100 cycles/mm at the half-field angle of 87◦. The maximum MTF value
was 0.78 for the half-field angle of 0◦. Figure 8 shows the design results of the tolerance
analyses in different fields of view. Tolerance analysis was used to evaluate the production
ability of the wide-angle fisheye lens; for this analysis, all parameters were assumed to have
the same probability within plus and minus tolerances. We reviewed the data generated by
the tolerance analysis and considered the tolerance budget. When necessary, the tolerance
budget and the replications of the analysis were modified. For the cumulative probability of
90%, the tangential MTF values at the half FOV for the 0◦, 71◦, and 87◦ cases corresponded
to 0.72, 0.48, and 0.41, respectively. This means that 90% of the MTF values in 100 trials
were between 0.41 and 0.72.

Table 2. Lens data of a miniaturized wide-angle fisheye lens using an OKP4HT aspherical lens and
four glass spherical lenses.

Surface No./Type Radius (mm) Thickness (mm) Material Diameter (mm)

1 STANDARD 0.115 1.232 LASF18A 10.886
2 STANDARD 0.392 2.269 5.062
3 ASPHERICAL 0.067 0.544 OKP4HT 4.918
4 ASPHERICAL 0.587 2.475 3.660
5 STANDARD 0.174 0.889 SF6 4.078
6 STANDARD −10.127 2.855 4.026
7 APERTURE STOP Infinity 0.576 1.084
8 STANDARD 0.323 1.109 N-AK34 1.842
9 STANDARD −10.684 0.368 SF66 1.982

10 STANDARD −10.217 1.500 2.220
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Figure 7. Modulation-transfer-function (MTF) curves of a miniaturized wide-angle fisheye lens
combined with an OKP4HT aspherical lens. The blue, green, and red lines represent the tangential
and sagittal (T = tangential; S = sagittal) directions for the 0◦, 71◦, and 87◦ cases, respectively.
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Figure 8. Cumulative probability vs. modulation transfer function (MTF) for a fisheye lens combined
with an OKP4HT aspherical lens. For the cumulative probability of 90%, the tangential MTF values
at the half FOV for the 0◦, 71◦, and 87◦cases correspond to 0.72, 0.48, and 0.41, respectively.
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3.2. Aspheric Lens Using Polymethyl Methacrylate Material

PMMA is known as plexiglass or acrylic glass. PMMA has a refractive index of 1.49 at
589.3 nm and a light transmittance of 92% in the visible spectrum [31]. PMMA absorbs UV
light at wavelengths shorter than 400 nm and infra-red wavelengths higher than 2800 nm.
These properties make it an excellent replacement for glass as an optical material. The data
of a miniaturized wide-angle fisheye lens using a PMMA aspherical lens are presented
in Table 3. The optimized fourth-order aspherical coefficients were −0.002 for the third
surface and 0.005 for the fourth surface. The optimized conic constant of the OKP4HT
aspherical lens was −20.008 and −0.749 for the third and fourth surfaces, respectively.
In this study, the configuration of a miniaturized wide-angle fisheye lens system with
an aspherical lens is shown in Figure 9. It consisted of five lens elements including a
PMMA aspheric lens. Our design can be improved using aspheric surfaces without adding
additional lenses. Since adding more aspheric surfaces will increase the manufacturing
cost of the components and the tolerances, it is best to keep the number and degree of
aspheric surfaces to a minimum. The fisheye lens system design results showed a total
length of 14.5 mm, half FOV of 87◦, and EFL of 0.89 mm. The spot size was 2.185 µm, as
shown in Figure 10. The distortion was within ±3.0%, and the field curvature was within
±0.02 mm (Figure 11). The lateral color was within ±1.0 µm, as shown in Figure 12. The
MTF plot is shown in Figure 13; according to it, the MTF value was larger than 0.6 for
the spatial frequency of 100 cycles/mm at the field angle of 174◦. The MTF value of this
design was found to be higher than that of the previous one. The results of the tolerance
analysis at different fields of view are shown in Figure 14. For the cumulative probability
of 90%, the tangential MTF values at the half field of view of the 0◦, 71◦, and 87◦cases
corresponded to 0.67, 0.58, and 0.43, respectively. In other words, 90% of the 100 trials
showed MTF values between 0.43 and 0.67. As described above, Tables 2 and 3 present
the lens design data of the miniaturized wide-angle fisheye lens using an OKP4HT and
PMMA aspherical lens combined with four glass spherical lenses, respectively. In the two
design cases, the materials of four glass lenses were the same, but the materials and the
diameter-to-thickness ratio of the second plastic aspheric lens were different.

Table 3. Lens data of a miniaturized fisheye lens using a polymethyl methacrylate (PMMA) aspherical lens.

Surface No./Type Radius (mm) Thickness (mm) Material Diameter (mm)

1 STANDARD 0.106 0.956 LASF18A 9.914
2 STANDARD 0.352 2.099 5.368
3 ASPHERICAL 0.006 0.387 PMMA 5.176
4 ASPHERICAL 0.628 2.350 3.682
5 STANDARD 0.172 2.291 SF6 3.568
6 STANDARD −0.096 1.919 2.952
7 APERTURE STOP Infinity 0.483 1.112
8 STANDARD 0.214 0.928 N-LAK34 1.682
9 STANDARD −0.754 0.477 SF66 1.854
10 STANDARD −0.330 1.500 2.716

Traditionally, computer-optimized optical design uses a numerical merit function to
represent the optical performance of the simulated system. The traditional design method
involves maximizing the nominal performance of the design and then adding the manufac-
turing tolerance to the nominal parameters as a separate step, so that the resulting system
can still meet the specification requirements during manufacturing. Moore [32] verified
that optimization using the hybrid merit function produces different forms of designs
that may have lower nominal performance but higher as-built performance. However,
we applied different lens material combinations to add an aspherical polymetric lens by a
deep learning algorithm. We observed that the performance of a miniaturized wide-angle
fisheye lens using one PMMA aspherical lens and four spherical lenses was better than that
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of a fisheye lens using an OKP4HT aspherical lens design, in terms of RMS spot radius,
field curvature, distortion, and MTF values.
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Figure 9. Design of a miniaturized wide-angle fisheye lens using a polymethyl methacrylate (PMMA)
aspheric lens to replace a glass spherical lens.
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Figure 10. The spot size of a miniaturized wide-angle fisheye lens using a polymethyl methacrylate
(PMMA) aspheric lens. The image also shows the RMS spread of the images at three field angles of 0◦,
71◦, and 87◦. The blue, green, and red dots represent wavelengths of 0.4861, 0.5876, and 0.6563 µm,
respectively.
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Figure 11. Field curvature (left) and distortion (right) of a miniaturized wide-angle fisheye lens using
a polymethyl methacrylate (PMMA) aspheric lens.
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metalenses to obtain more compact ultra-wide-angle fisheye lenses. 

Figure 13. Modulation transfer function (MTF) of wide-angle fisheye lenses using a polymethyl
methacrylate (PMMA) aspherical lens. The blue, green, and red lines represent the tangential and
sagittal (T = tangential; S = sagittal) directions for the 0◦, 71◦, and 87◦cases, respectively.
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Figure 14. Cumulative probability vs. modulation transfer function (MTF) for fisheye lenses using
a polymethyl methacrylate (PMMA) aspherical lens. For the cumulative probability of 90%, the
tangential MTF values at the half field of view for the 0◦, 71◦and 87◦cases correspond to 0.67, 0.58,
and 0.43, respectively.
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4. Conclusions

We designed a miniaturized wide-angle fisheye lens that couples the ZEMAX software
with a deep learning algorithm to achieve the design requirements. In this work, we
proposed two types of miniaturized wide-angle fisheye lens optimization designs using
four spherical lenses and one aspheric lens. To meet the design specifications for the
miniaturized wide-angle fisheye lens system, the ZEMAX software was used with merit
functions for optimizing the MTF performance. The design results of the two cases showed
a full viewing angle of 174◦, a total length less than 15 mm, a spot size less than 6 µm,
lateral color within ±1 µm, field curvature within ±0.02 mm, and F-theta distortion within
±3.5%. The lens designers must figure out which lens tolerances they can apply and predict
the production yields. For the tolerance analysis, the MTF value was larger than 0.4 at the
spatial frequency of 100 cycles/mm. We compared the design results of two miniaturized
wide-angle fisheye lenses. The fisheye lens system combined with a PMMA aspherical lens
was found to perform better than the system with an OKP4HT aspherical lens, despite also
the latter meeting the design specifications. These design results show that deep learning
can help design novel wide-angle fisheye lenses. In the future, we can introduce metalenses
to obtain more compact ultra-wide-angle fisheye lenses.
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