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Abstract: Knowing exactly how much solar radiation reaches a particular area is helpful when
planning solar energy installations. In recent years the use of renewable energies, especially those
related to photovoltaic systems, has had an impressive up-tendency. Therefore, mechanisms that
allow us to predict solar radiation are essential. This work aims to present results for predicting
solar radiation using optimization with the Random Forest (RF) algorithm. Moreover, it compares
the obtained results with other machine learning models. The conducted analysis is performed
in Queretaro, Mexico, which has both direct solar radiation and suitable weather conditions more
than three quarters of the year. The results show an effective improvement when optimizing the
hyperparameters of the RF and Adaboost models, with an improvement of 95.98% accuracy compared
to conventional methods such as linear regression, with 54.19%, or recurrent networks, with 53.96%,
without increasing the computational time and performance requirements to obtain the prediction.
The analysis was successfully repeated in two different scenarios for periods in 2020 and 2021 in
Juriquilla. The developed method provides robust performance with similar results, confirming the
validity and effectiveness of our approach.

Keywords: random forest; solar radiation; hyperparameter optimization; neural networks; prediction

1. Introduction

Solar radiation (SR) is the primary source of energy in the world, affected only by
the atmosphere, biosphere, and hydrosphere [1]. It has an important impact on the global
scale; minor changes in SR trigger considerable changes in Earth’s weather [2], directly
affecting global temperatures. The most affected is the sea, resulting in corresponding
extreme phenomena such as the El Niño-Southern Oscillation [3,4]. Therefore, accurate
observations and analyses of both the temporal and spatial variability of SR are essential in
research on solar energy, building materials, and extreme weather and climate events [2,5].

In the last couple of years new techniques and algorithms have been developed to pre-
dict SR, including traditional models such as empirical models and theoretical parameter-
based approaches as well as newer models that apply machine learning (ML) and artificial
intelligence (IA) tools, using either data from weather stations on the ground or data
collected from weather satellites [6,7].

Sunshine hours are essential because their duration directly affects the amount of solar
radiation reaching the land surface. This can be seen directly in the seasons of the year
where the length of the day is affected; in the summer, the sunshine hours tend to be much
longer than in the winter. The shape of the earth affects the amount of light that reaches
the surface. Places near the equator receive the sun’s rays vertically and directly, while at
the poles the planet is tilted on its axis of rotation 23◦, and the surface receives much less
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light. The rotational motion is responsible for these variations; on clear days, the maximum
amount of radiation is reached at noon.

Angstrom et al. [8] first proposed the empirical A-P solar radiation prediction model,
and were first to establish a linear relationship between global solar radiation and sunshine
hours. This approach and its variants are widely used to estimate SR in different parts of
the world [6,8–11], as the models are very simple.

Today, with the constant development of artificial intelligence and machine learning
tools, many researchers have begun investigating and implementing these models to predict
climatological variables, including solar radiation. An example of this is artificial neural
networks (ANN), which play a fundamental role because they work in nonlinear time
series, and solar radiation is considered a nonlinear variable. They are used in models
where it is impossible to obtain data due to the lack of weather stations.

For the selected study area, which is the city of Queretaro, very few works have
investigated solar radiation prediction, leaving a great opportunity to learn about new
advances in the subject and apply them in this area. A key objective of this work is to
propose adjustments to the input parameters or hyperparameters of machine learning
algorithms that are traditionally set by default, which affects performance when generating
a prediction. Thus, we seek to create a simple function to optimize them automatically.

Prior work has been carried out to predict solar radiation using traditional ML al-
gorithms. However, this work considered the sunshine hours available during the day
and considered variables such as temperature, humidity of the zone (Querearo), and atmo-
spheric pressure. The presented model helps to automatically adjust the hyperparameters,
achieving an improvement in the time needed for prediction without incurring a very high
computational cost.

This paper aims to improve the RF algorithm using a simple fitting algorithm to find
the best input parameters, in turn using a regression analysis of solar radiation and other
meteorological factors (e.g., temperature, pressure, humidity). A comparative analysis
against other machine learning techniques such as linear regression, recurrent neural
networks, Adaboost, and support vector machine is presented. The most common metrics,
such as R2, MSE, and RMSE, are used to evaluate the performance. An advantage of this
improvement is that it is universal for RF, as it can be adjusted to all zones and various
combinations of additional climatic variables. Another advantage is the high level of
prediction without adjusting or modifying the data obtained. Despite being a tree-based
algorithm, it does not have too much overfitting.

Study Area

Mexico alone uses one-fifth of all the energy produced in Latin America, and demand
is growing. Most of this energy is produced through natural gas and oil; this is a significant
concern, as in order to achieve the proposed goals it is necessary to reduce the production
of pollutant gases by 40 percent by 2030 [12,13].

One of the ways to achieve this is through the implementation of renewable energies;
as development in this area has been slow, Mexico has a great potential for innovation and
development. By 2030, solar photovoltaic energy will account for about 30 GW of energy
annually through hybrid schemes of distributed PV power plants and mini-grid applications.

The way to measure the solar energy potential of a territory is through measuring the
solar radiation. According to [12,14] Mexico is located between 15° and 35° north latitude,
as can be seen in Figure 1, belonging to the most favored region for solar resources. It
receives a daily average of 5.5 to 6.3 kWh

m2 and a solar energy generation of 114.2 GWh [14].
This represents 60% more than the real potential of countries such as Germany [12]. The
northwestern part of Mexico has excellent potential for solar PV power generation. Average
daily irradiation in the region can exceed 8 kWh

m2 in spring and summer [13].
According to the [15], only systems that convert 15% of the electrical energy, such

as a 25 km2 PV plant in the state of Chihuahua or the Sonora desert (0.03% of Mexico),
could supply Mexico’s electricity needs. The typical direct isolation of northern Mexico is
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equivalent to the best deserts in North Africa and the southwestern United States, where
many utility-scale solar power plants are being built today. As shown in Figure 1 the central
region of the midwest has abundant solar resources, as does the Baja California peninsula.

Figure 1. Solar atlas map of Mexico [16].

For this work, we chose the city of Queretaro, the capital of the state of the same name.
It is located in the geographical center of Mexico, at 20.612137◦ N, 100.410217◦ W, with
an average altitude of 1820 m above sea level. In the rainy season, the city is very cloudy,
while in the dry season it is partly cloudy, and it is hot all year round.

In [17], the author details Queretaro as having the potential to produce an additional
1178 GW

h , which places it in fifth place in the Bajío region and above countries such as
Germany. However, it currently only produces 8 GW

h through biomass, or just 0.6% of its
potential [12]. The clean energy source with the most significant potential for the state of
Queretaro is geothermal energy, which can produce up to 649 GW

h . Next in potential are
wind and solar energy, possibly producing 250 GW

h and 191 GW
h , respectively [18]. Recent

studies have calculated that the capacity for the city to generate energy through sunset is
between 6 KWh and 7 KWh [19].

2. Related Works

This section presents a compilation of the different types of machine learning algo-
rithms used to predict the solar radiation variable.

In order to carry out this review of the state of the art, academic search engines such as
Scopus, IEEE, Semantic Scholar, and MDPI were consulted. In addition, other innovative
search engines such as Google Scholar, Microsoft Academic, and Connected Papers were
used on account of their significant power and robustness. The use of Mexican institutional
repositories such as those of the Autonomous University of Queretaro (UAQ) and the
National Polytechnic Institute (IPN) were used; based on their importance, an analysis of
scientific journal articles, conference readings, books, and theses of all degrees (PhD and
Masters) was carried out. The works were filtered according to the following keywords:

• Machine learning (RF, SVM, ANN, Kernel regression) algorithms for solar radia-
ton prediction

• Hybrid algorithms (combination of many algorithms) for solar radiaton prediction

Table 1 below contains the results of the search; the following representative character-
istics were broken down:

• The performance metrics used by the authors identified the most used approaches,
namely, R2, MAPE, MSE, and the accurac of models based on these approaches. Other
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performance metrics, such as the MAE or MBE, were reported as well, although only
in three articles.

• Models that only predicted one type of variable (SR vs. SR and wind) have a better
outcome than those that try to predict two or more variables.

• The most used ML types were identified, as were the extra algorithms used to improve
their performance, with heuristic and evolutionary algorithms being the most common.

• The type of solar radiation most studied in these works was global radiation, with
direct or diffuse radiation mentioned in only two articles.

• In order to determine which types of hyperparameters were used in each model, the
most representative alternatives for optimizing the RF algorithm were considered. In
Section 3.5, we provide a list of the hyperparameters we used and how each affected
performance in this study.

Pang et al. [20] used the recurrent network algorithm (RNN). The authors used
Alabama weather data to feed the model and predict solar radiation. A comparison
between RNN and MLP was realized. They used input variables such as radiation and
temperature and calculated others such as the hours of the day. They obtained an R2 of
0.983 and an RMSE of 41.2 against an R2 of 0.974 and an RMSE of 55.7 for the ANN. They
proposed using variables that affect prediction, such as cloudiness, and their application to
control models

Zhu et al. [21] compared an LSTM algorithm and a convolutional neural network
(CNN). Unlike other research works, they used images instead of historical data. They
achieved a 0.93% prediction efficiency and an RMSE of 29.92. The advantage of using
images is that they obtain a good result even in very cloudy or rainy conditions.

Shamshirband et al. [22] performed a comparative analysis of the different algorithms
that make use of ANNs. They were able to find the following disadvantages: MLP-based
networks cannot capture long-term memory due to their architecture, as the hidden layers
are not connected, making their performance poor when working with time series. LSTM
networks improve upon this disadvantage, and are thus used in prediction work thanks to
their robustness.

Tree-based methods are very popular because of their easy implementation and be-
cause it is possible to optimize prediction by adjusting the hyperparameters. Meng et al. [23]
used an RF algorithm to perform RS predictions in Xingtai City, northern China; they used
three datasets, one with sunny days, one with cloudy days, and a third with rainy days.
The regression results on each data set were averaged to obtain the final results. They
obtained an accuracy of 95% for sunny days, 90% for cloudy days, and 82% for rainy or
snowy days.

Lee et al. [24] presented an investigation comparing different machine learning tree
models (RF, Bagged Tree, and Boosted Tree), reporting an R2 of 97% with an RMSE of 59.27
compared to an SVM algorithm and Gaussian regression. They used data from sixteen
different stations. They noted that their results do not show a preferred model that stood
out from the others, while concluding that the tree-based models perform well.

Hybrid algorithms, which are the combination of two or more different algorithms, are
not limited to machine learning alone, and can combine traditional statistical algorithms
such as linear regression and Pearson correlation models with metaheuristic or optimization
algorithms such as Grey Wolf or Monte Carlo optimization.

Eseye et al. in [25] proposed a novel model based on Wavelet-PSO-SVM, obtaining
data from meteorological sources and statistical models. To perform their calculation, they
divided their dataset for the four seasons of the year and obtained the following results: in
winter, an RMSE of 0.73 for a horizon of 3 hours; in spring, an RMSE of 0.76; in summer,
1.024; and in winter, 0.8598. These results demonstrate the effectiveness of this approach
for short-range prediction models.
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Table 1. Research papers with metrics used with most common machine learning algorithms.

Year Reference Classification Algorithm Kernel
(only for SVM) R2 Mean Absolute

Error (MAE)
Root Mean

Square Error (RMSE)

2017 Quej et al. [26] Machine Learning SVM/ANFIS/
ANN RBF 0.689 1.973 2.678

2018 Gupta et al. [27] Hybrid RF + Genetic – 24.45 – 47.74

2019 Ghazvinian
et al. [28] Hybrid SVM + PSO RBF 9.01–0.141 – 19.10

2019 Srivastava
et al. [29] Machine Learning Random Forest – – 15.74 65.08

2020 Sun et al. [30] Tree Based Adaboost – – 8.41
2020 Pang et al. [20] Neural Network RNN/MLP – 0.983 – 41.2
2021 Zhu et al. [21] Neural Network CNN, LSTM 30 0.958 23.89
2021 Aljanad et al. [31] Hybrid BPNN-PSO – 0.7537 – 1.7078
2021 Philibus et al.[32] Hybrid ANN/SVM RBF 0.9112 0.1842 0.1014
2022 Faisal et al. [33] Neural Network RNN, LSTM, GRU – 128 0.918 0.958

2022 Brahma et al. [34] Deep Learning Multi-Step CNN
Stacked LSTM – 68.62 9.721 9.859

3. Theoretical Bases

This section presents the methods used to determine the correlations between the
weather variables in a preliminary dataset analysis and presents several of the essential
features of Random Forest (RF), including optimization of the hyperparameters, the al-
gorithm, and the most common metrics used to check the performance of the machine
learning algorithms used in this article.

3.1. The 80–20 Rule

The Pareto principle, sometimes called the 80–20 rule, is a fundamental principle of
distribution and is based on the principle that, statistically speaking, many activities in the
world can be explained in this way. There are other ways to partition training data, such as
the training–validation–test ratio of 80–10–10. There are no studies where either is required
as a general rule. In this research, we consider the method of scaling the data for the first
iteration of the dataset with 38,000 solar radiation data points measured per minute. In
order to simplify the results, a new dataset was reformulated, with the maximum values
for each hour considered. The results obtained were very similar for both cases, and in
order to simplify the process, remembering that it may be used with a low resource system,
the 80–20 split was considered [35].

3.2. Pearson Correlation

Correlation is a measure taken from statistics that serves to measure or calculate how
close two variables are to each other. The most popular method is the Pearson product–
moment correlation, which allows the linear relationship between two variables to be
observed. Many works have indicated that a Pearson value equal to zero does not imply
that the variables are independent of each other [36,37].

3.3. Distance Correlation

A recent significant contribution to the field of statistics is the distance correlation,
which serves as a measure of dependency between two paired random vectors that do not
necessarily have to be of the same dimension. It was introduced by Szekely et al. [38] to deal
with a deficiency in the Pearson correlation involving dependent variables that can have a
value of zero, which can lead to the mistaken conclusion that the relationship between two
variables are uncorrelated when in fact the correlation is merely a nonlinear one.

Distance correlation addresses this issue by measuring the strength of the association
between nonlinear random variables. The distance correlation is from 0 to 1, where 0
implies independence between X and Y and one implies that the linear subspaces of X and
Y are equal. This extends Pearson’s correlation because it can detect nonlinear associations
and works in a multidimensional way.
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3.4. Random Forest for Regression

RF is one of the most widely used machine learning algorithms due to its simplicity. It
can be used in the areas of regression and classification. It is one of the class of supervised
learning algorithms and SVMs, which includes naive Bayes algorithm and other tree-based
algorithms such as Adaboost. It was first developed and proposed by Breiman et al. [39] at
the University of California in 2001.

RF consists of combined decision trees that generate a more accurate and stable
prediction; in general, the more trees in the ensemble, the more robust the results. This
model increases the randomness of the decision tree model and grows the trees; instead of
splitting a node, it searches for the best feature among a random subset of features.

The important feature used in this project is the out-of-bag error or OOBE, also known
as the generalization error, which is a kind of cross-validation already included in the
algorithm, namely, the average prediction error of the first observations. The OOBE is used
to estimate the generalization capability of the algorithm [23]:

OOBE =
1
N

N

∑
i=1

(Yi − Ŷ)2 (1)

The last characteristic is the variable importance measure (VI), which is obtained by
permuting a feature and averaging the difference using the OOBE before and after the
permutation over all the trees [40]:

VI(Xj) =
1
q

q

∑
l=1

(OOBEl −OOBEl) (2)

where OOBE is the average of the estimated OOBE. Figure 2 presents the general structure
of the operation of the RF algorithm.

Tree 1 Tree 2 Tree n

Bagging (sample & feature)

Bagging Training Data

Mean in regression

Prediction

Figure 2. Random Forest regression tree.
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3.5. Hyperparameter Optimization

Hyperparameters are the settings that the user can arbitrarily configure before starting
the training process to optimize the performance of the model, e.g., in the case of tree-
based algorithms, the number of estimators and the number of decision trees. In contrast,
model parameters, such as weights in the case of neural networks, are learned during the
model training process. Hyperparameters are already available by default for most existing
programs or libraries. However, these are not always the most appropriate. It is impossible
for the user to determine which are optimal ahead of time, making the science of machine
learning a trial-and-error endeavor.

In the beginning, the tuning of these hyperparameters was more dependent on experi-
mental results than on theory. Over time, various combinations of hyperparameters were
tested until the best result was achieved, which led to the fundamental problem of overfit-
ting. If a model is very well optimized for a particular data type, it becomes be challenging
to fit varied or new data types. One way to avoid this is through the cross-validation
of results.

When searching for a universal algorithm to apply to new problems, the hyperparam-
eter fitting problem can be seen as an optimization problem in which optimizing model
performance involves optimizing the objective function. There are different algorithms for
hyperparameter optimization.

3.6. Finding the Best Combination of Tunable Hyperparameters for the Random Forest Regressor

In a Random Forest approach, there are three main parameters to adjust:

• n_estimators In general, more estimators is better, although it has the disadvantage
of decreasing yield. As is evident, more trees leads to a longer computation time. One
of the great challenges of this algorithm is to find the critical number of decision trees
where the best accuracy is obtained while balancing the computation time.

• max_features This is the maximum number before cutting to a new node. If certain
trees consider a different subset of features than others, the correlation between those
two groups should be minimal. This is desirable because it allows the influence of
each feature to be assessed individually.

• maximum_depth Having trees with too much depth effectively leads to overfitting.
There is a critical depth at which trees are split deep enough to obtain a useful
fit without being overly influenced by individual values. A depth constraint can
be created by adjusting the parameters (min_samples_split), (min_samples_leaf),
(min_weight_fraction_leaf), or (max_leaf_nodes), rather than specifying a preset value
for the depth.

To find the best hyperparameters, a programming function named RF optimizer
Algorithm 1 is presented; the inputs are n = the number of estimators, f = the number of
features, and s = the number of samples, which are then proceed to find the best score using
the fitness function of the model.

In Figure 3, the flowchart shows the way in which the program works to extract the
data from the dataset and divide it into test, training and validations sets, after which
the machine learning algorithms are applied, including hyperparameter optimization for
random forest and Adaboost and metrics validation.
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Algorithm 1 Stages of the proposed Random Forest Optimizer.
Input: estimators, features, samples.
Output: model, bestE, bestF, bestS.

1: Function RF Optimizer(x, y)

2: best_score = f loat . initialize score

3: for all n do

4: for all f do

5: for all s do

6: model = RF(oob_score = True, estimators = n, f eatures = f , samples =
s, njobs = −1)

7: model. f it(x, y) . (b), n

8: if model.oob_score ≥ best_score : then

9: best_score, bestModel, bestE, bestF, bestS← model.oobscore,model, e, f , s

10: return model, bestE, bestF, bestS . calculated values

Start

Train 
Dataset

Test 
Dataset

Adaboost
Random
Forest
RNN
SVM

s in 
try_s

f in 
try_f

Calculates
Optimal

Parameters

Model
Validation:

• RMSE
• MAPE
• R^2

End

Calculate new 
hyperparameters

Validation
Dataset

Prepare 
Dataset

Split feature
number

Leaf node
samples

Number of
decisión trees

Hyperparameters

Selection of representative 
features

n in 
try_n

return

best
estimators, 

features, 
samples

Number of
estimators

True

True

True

Figure 3. Flowchart with the proposed improvements applied to random forest regression algorithms.

3.7. Statistical Metrics for Data Validation

In this subsection, we present metrics and indicators for evaluating prediction models;
these were selected from the state-of-the-art review in Section 3. Then, we determine the
accuracy of the data. Although the most reliable metrics for predictions are MAPE and
accuracy, we include four of the most popular metrics obtained from the review of previous
works in [32].

The mean square error (MSE) is perhaps the most straightforward function that can be
calculated in machine learning. It takes the difference between the model predictions and
the actual data or ground truth, squares it, and applies the average to the entire dataset.
MSE can never be negative:

MSE =
1
N

N

∑
i=1

(yi − ŷ)2 (3)



Micromachines 2022, 13, 1406 9 of 25

The root mean square error (RMSE) calculates the goodness of fit, which is related to
preventing very high errors:

RMSE =
√

MSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷ)2 (4)

The mean absolute percentage error (MAPE) serves the function of calculating the
absolute error in percentage of predicted or observed variables [41]:

MAPE =
1
N

N

∑
t=1

∣∣∣∣yi − ŷ
yi

∣∣∣∣ ∗ 100 (5)

The mean absolute error (MAE) is an indicator of the performance of the prediction
model, achieved by observing how close the predicted variables are to the observed variables:

MAE =
1
N

N

∑
i=1
|yi − ŷ| (6)

R-squared, or the coefficient of determination, is the statistical measure that measures
in percentage how close the data are to the regression line [42]:

R2 = 1− ∑(yi − ŷ)2

∑(yi − ȳ)2 (7)

These indicators provide insight into the effectiveness of machine learning models if
the value of the statistical indicator is zero, as in the ideal case.

4. Materials and Methods

This section explores the study area and how the data were acquired, including
the climatological characteristics of the area, the tools used to process the data, and the
requirements when working with the data to perform predictive analysis.

Dataset

The data were collected and compiled from the University Network of Atmospheric
Observatories (RUOA), campus Juriquilla, Queretaro, which belongs to the National Au-
tonomous University of Mexico. Its policy explains that it is open data for public access.
There is only one observatory in the city, located at the following coordinates: 20.7030◦ N,
100.4473◦ W, altitude 1945 m.a.s.l. The process of recording data is as follows: the data
acquirer is programmed to record data every minute, and after one hour it delivers an
average. The variables recorded are wind speed, wind direction, air temperature, atmo-
spheric pressure, rain, relative humidity, and SR. These date can be found on the following
website: [43]. The captured data used here were from the years 2020 and 2021, which allows
a comparison analysis to be carried out in order to check the performance of the algorithm.

The dataset consists of 52,698 samples, with the maximum of each value in each hour
as follows:

• SR: W
m2

• Temperature: ◦C
• Humidity: measured in percent
• Barometric pressure: Hg
• Wind direction: measured in degrees
• Wind speed: km

h
• Sunrise/sunset: Queretaro Time (GMT-5)
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After adding the UNIXTime column, it was necessary to transform the date in
DD/MM/YYYY format to MM/DD/YYYY and then convert it to UnixTime with a batch tool.

This research only takes sunshine hours into account in order to filter out the night-
time radiation data captured by the weather sensors of the station, which do not have a
significant impact on the prediction.

By capturing the sunrise and sunset times in the database, it is easy to provide the
algorithm with this functionality through Equation (8):

DayLength = Sunset− Sunrise (8)

Figure 4 below represents the methodology followed to perform solar radiation pre-
diction with different algorithms. All of these steps are broken down and reflected in the
results in Section 5.

Historical
Data, 2021
Juriquilla

Historical
Data, 2020
Juriquilla

Hawaii
DataSet

Extarct, 
Trasnform, 

Load

Exploratory
analysis

Preprocessing
of data

Supervised
machine 
learning

models for
regression

Performance 
analysis

Predicted
Results

• Random
Forest

• Adaboost
• Xgboost
• Recurrent-

Network
• LSTM
• SMV

Divide 
Dataset
into Test 
and 
Training 
Dataset

• Transform
into correct
Data types.

• Clean Null
values with
normalization

• Trasnform
Negative 
values into
Positive.

• Trasnform
data into
dataframes.

Common
Performance 
ML metrics:
• MSE
• RMSE
• MAPE
• R²
• Accuracy

• Create a 
correlation
matrix of all
the weather
features.

• Show 
distribution
values with
solar 
radiation a 
the main
fucntion

Figure 4. Graphical representation of the methodology.

5. Results

This section presents the results obtained from this research and follows the methodol-
ogy presented in Figure 4.

Nevertheless, before performing the analysis it is necessary to prepare the data, main-
tain a high-level structure to use with any method, and ensure that our results have the
same integrity. We used a previously described method for this, with the following steps:

• Remove corrupt or unreadable data;
• Replace all non-numerical data in all columns with numerical and floating values;
• Replace all missing or zero values through normalization techniques;
• Apply label coding to all columns.

To determine the subset, we start by splitting the original set into training and test
sets in the ratio 80–20%. This subset consists of samples of all features with a fixed
random generator to provide homogeneous results across all ML models, transforming an
unbalanced training dataset into balanced data subsets.

5.1. Heat Map and Pearson Correlation

After the reading and adequate data transformation are complete, the next step is to vi-
sualize them. As a first step, a correlation matrix is constructed to identify the relationships
between the most significant variables. This can be observe in Figure 5.
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Figure 5. Correlation matrix plot for the all the weather variables.

As it appears in Figure 5, with a score of 0.56, the Pearson correlation matrix shows
that there might be a relationship between solar radiation and temperature, and to a less
extent with humidity, with a score of−0.47. Values between +1 and−1 (for example, r = 0.8
or −0.4) indicate that there is variation around the line of best fit. Pressure, with a score of
−0.04, indicates a slight relationship, although pressure is strongly related to temperature
at −0.55 and humidity at 0.47; this behavior can be seen in Figure 6.

Figure 6. Scatter plots of SR as a function of various features.
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5.2. Distance Correlation

Because the Pearson coefficent is not sufficient to state that there is a relationship
between two variables, additional metrics such as the correlation distance were used. The
following Table 2 shows the obtained values of the correlation distance for the Queretaro
2021 dataset.

Table 2. Results for correlation of distance between SR and temperature, humidity, and pressure.

Distance Correlation Values

Temperature vs. SR 0.557138
Pressure vs. SR 0.063914

Humidity vs. SR 0.459387473802509

The following conclusions can be drawn from this data exploration:

• The higher the detected temperature, the higher the amount of SR; this can be seen from
the Pearson correlation value R of 0.56 and the relationship observable in Figure 7a
between radiation and temperature on hourly and weekly scales. The distance correla-
tion of 0.55 means that there is a relationship between temperature and SR.

• Humidity has an inverse or negative relationship with RH compared to temperature,
and is potentially significant and cannot be ignored as a potential driver in the climate
system. This can be observed in Figure 7 on both the hourly time scale and to a lesser
extent on the weekly scale.

• Based on both the Pearson and distance correlations, pressure does not seem to have a
direct relationship with SR, although it is related to temperature and humidity. Related
work can be found in [44].

• The variables of wind speed and direction variables are not relevant for this study;
while a correlation can be observed, this does not mean imply any causality.

• While Queretaro is a city without significant seasonal changes, during the rainy and
summer period significant changes can be observed, as can be seen in the weekly
graphs in Figure 7.

• The weekly time scale is the best for forecasting. The month-to-month variations
are substantial and do not capture the seasonal changes over the course of the year.
Minute time scales are helpful for more refined work such as PV control systems.
Hourly time scales are good, although they can be noisy if not filtered properly.
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Figure 7. Hourly and Weekly mean data with SL as the principal feature.

5.3. Machine Learning for Solar Radiation Prediction

It is desirable to obtain an optimized RF-based algorithm that is able to predict values
of SR for a number of inputs. As mentioned in Section 2, there are several different models
to choose from, and more than one may be appropriate. From the previous analysis
involving testing of the different models and evaluation of their performance in predicting
SR, the most appropriate models are:

• Recurrent NN regression
• SVM regression
• Random Forest regression
• Adaboost regression
• Optimized RF regression
• Optimized Adaboost regression

5.4. Simple Linear Regression

Linear regression is one of the most widely used methods in data science for estab-
lishing relationships between dependent and independent variables employing a straight
line. As such, it serves as a benchmark to compare performance against more advanced
ML models. The accuracy obtained in this research was 55.23%, and the R2 score was 0.55.
Figure 8 shows the regression plot and the graph from the predicted versus the real data.
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Figure 8. Regression plots for (a) the linear regression model and (b) the test data.

5.5. Recurrent Neural Network Regression

Neural networks for prediction can be adapted to many problems; in this case, RNN
with default values was used, although we were aware that this method may not be the
most suitable for the proposed model. Figure 9a displays the regression of the model.
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Figure 9. Regression plots for (a) the RNN model and (b) the test data using RNN regression.

From Figure 9a,b it is possible to see the poor results obtained using standard parame-
ters. Again, RNN could not properly train on the data, and every point was moved to the
zero position. It would be possible to obtain better results with this algorithm if different
input values for biases, numbers of neurons, or activation functions were provided.

5.6. Support Vector Regression

The prediction results obtained by SVM were inferior, with an accuracy score of −51%
and an R2 of −0.51 for the 2021 dataset. According to the technical documentation, a
negative R2 result means that the model had terrible training. Because R2 compares the
goodness of fit of the model (SVM) with that of the null hypothesis in the regression (a
horizontal line), the experiment was repeated throughout with the other two datasets,
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obtaining similar performance (see Tables 5 and 6). The run time for this algorithm was
extremely long.

Regression and comparison plots were performed in order to compare the methods.
Figure 10a shows that the data could not be adjusted to the horizontal line. Figure 10b
again shows the null results obtained by the base SVM algorithm. Re-testing the SVM with
other kernels, SVR (kernel = “linear”, C = 100, gamma = “auto”) or SVR (kernel = “poly”,
C = 100, gamma = “auto”, degree = 3, epsilon = 0.1, coef0 = 1), achieved similarly poor
performance. While further optimization of SVM was beyond the scope of this paper,
interested readers can find further studies involving SVM for solar radiation prediction
and forecasting in [45,46].

0 200 400 600 800 1000

Actual solar radiation (w/m2)

11.00

11.25

11.50

11.75

12.00

12.25

12.50

12.75

13.00

Pr
ed

ic
te

d 
so

la
r r

ad
ia

tio
n 

(w
/m

2)

SVM Regression Plot

(a)

(b)
Figure 10. Regression plots for (a) the MPL model and (b) the test data using MPL regression.
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5.7. Random Forest Regression

To perform this regression, only the default hyperparameters provided by the library
(n_estimators = 100, max_samples = None) were used as a basis for comparison against the
optimized RF algorithm.

The data obtained using RF as a regression model had a 90.34% accuracy score and
an R2 of 0.907. Figure 11a evinces improved training data, while Figure 11b exhibits an
improved fit between the test data and the predicted data. While there are areas where the
algorithm fails, the accuracy is much improved overall.
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Figure 11. (a) Regression plot and (b) model validation plot for the RF algorithm.
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5.8. Adaboost Regression

Adaboost is another tree-based machine learning algorithm; it achieved an efficiency
score of 89.13 %, although it seems from Figure 12a that the regression of the training results
vs. the actual data does not work very well. This could explain the large MAPE number as
well. In Figure 12b, it is noticeable that the predicted data are well adjusted to the real data.
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Figure 12. Regression plots for (a) Adaboost regression library and (b) the predicted results vs. the
real data.
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5.9. Optimized Hyperparameters Random Forest

Using the proposed improvements presented in Section 3.6 and applying the algorithm
proposed in Section 1, the following results were obtained after determining the best
parameter values as seen in Table 3. In Figure 13b, a slight improvement can be observed,
with 94.68% in accuracy and a R2 of 0.94, which is a small but significant improvement
against 90.34% achieved with the traditional RF, which is already quite good.
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Figure 13. (a) Regression plot for the method proposed in Algorithm 1 and (b) validation plot for the
method proposed in Algorithm 1.

Table 3. Results obtained after determining the best features for the RF algorithm.

Parameters Values

estimators 500
features 4

leaf samples 2
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5.10. Numerical Results

In order to obtain accurate results, it is necessary to present the values of the metrics
and indicators. The pseudocode used to calculate the regression metrics proposed in the
“metrics” subsection is provided below. It is possible to estimate each parameter using
prediction and training as inputs.

Table 4 contains the values of the calculated metrics for all the studied models using
the 2020 dataset. The optimized RF model has the best performance at 94%, followed by the
non-optimized RF model at 90%; in last place is SVM with −54% accuracy. Other studies,
such as [29], obtained similar results when implementing RF for SR prediction. The values
obtained here validate the regression plots, as in the case of LR and MPL; the values tend
to zero not because of null values, but rather as a reflection of the difficulty these models
had in providing good predictions.

Table 4. Results obtained on Juriquilla, Queretaro dataset for the year 2020.

Model Mean Square Error
(MSE)

Root Mean Square
Error (RMSE)

Mean Absolute Error
(MAE) R2 MAPE Accuracy %

Linear regression 51,603.39 227.16 186.96 0.55 3.045478× 1015 55.48
RNN Regression 52,577.32 229.29 180.48 0.53 4.286 53.96
Support Vector

Machine 184,469.84 429.499 264.49 −0.51 9.440542× 1013 −51.46

Random Forest 6184.61 78.64 34.44 0.907 90.52 90.34
Adaboost 12,899.40 113.57 74.69 0.89 2.597892× 1014 89.13
Proposed

Optimization (RF) 5799.60 76.15 34.41 0.94 2.322810× 1014 94.68

Proposed
Optimization
(Adaboost)

19,903.65 141.08 81.20 0.82 1.666626× 1014 82.46

As discussed in the methodology section, it is necessary to validate these results in
different scenarios. Table 5 shows the results calculated for the same area in 2021. This
dataset, although incomplete, led to similar results as those found with the previous
dataset, with the proposed optimized RF having roughly 95% accuracy and the other
models continuing to behave the same.

Finally, a standard dataset with data from Hawaii for the year 2016 was used as the
basis for Table 6 where, again, very similar results to the previous ones are obtained and RF
obtained a 93% accuracy. Checking the results in this way at two different sites and times
further validates the results presented in this article.

Table 5. Results obtained on Juriquilla, Queretaro dataset for the year 2021.

Model Mean Square Error
(MSE)

Root Mean Square
Error (RMSE)

Mean Absolute Error
(MAE) R2 MAPE Accuracy %

Linear regression 52,610.75 229.37 191.35 0.56 1.304530 × 1014 56.37
RNN regression 45,120.43 212.41 154.95 0.53 7.47 53.78
Support Vector

Machine 129,502.15 359.86 181.60 −0.33 1.316907 × 1014 −33.57

Random Forest 5573.45 74.655 33.638 0.92 2.500177 × 1014 92.54
Adaboost 12,899.40 113.57 74.69 0.89 2.597892 × 1014 89.13
Proposed

Optimization (RF) 5011.19 70.78 33.44 0.95 1.596019 × 1013 95.98

Proposed
Optimization
(Adaboost)

11,715.85 108.239 68.68 0.89 3.832331 × 1013 89.915

Table 6. Results obtained from Hawaii training dataset for the year 2016.

Model Mean Square Error
(MSE)

Root Mean Square
Error (RMSE)

Mean Absolute Error
(MAE) R2 MAPE Accuracy %

Linear Regression 38558.61 196.36 148.77 0.62 41.23 61.27
Random Forest 6601.40 81.249 32.041 0.93 0.2196 93.34
MLP Regression 46466.07 215.55 155.25 0.531 36.93 53.14

Support Vector Machine 137867.73 378.080 203.02 −0.421 0.7810 −42.12
Proposed Optimization

(RF) 6170.84 78.554 32.66 0.93 0.49 93.68
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6. Discussion

This section presents a discussion of the results obtained in comparison to the results
obtained by other authors.

Although multiple previous works are related to improving the performance of pre-
diction models, this work is distinguished by presenting two main contributions. The
first contribution is that the proposed model considers the sunshine hours variable, which
affects the quality of the solar radiation measured in certain zones. This variable can be
calculated using public data from automated weather stations. The second contribution is
the presentation in this work of an optimized RF algorithm with the best hyperparameters
obtained by Algorithm 1. This contribution can be compared and contrasted with the
results of previous works using Table 7.

Table 7. Comparison of similar works involving solar radiation prediction.

Author ML Model Used Variables Hyperparameter Optimization Method

Our Work Optimezed RF SR, Temp, Hg, RH, sunshine hours Custom Function 1
Chaibi et al. [47] Optimized RF Hg, SR, Temp, RH, sunshine fraction Bayesian Optimization

Zuo et al. [48] LSTM Hg, WindSpeed, Temp, RH, Aerosol optical depth Bayesian Optimization
Sreekumar et al. [49] SVR Cloud cover, cloud movement, wind speed and

temperature PSO

Rahman et al. [50] ANN SR, Temp, Hg, RH Modified ADAM

Fuselero et al. [51] NARX avg temp, rainfall amount, RH, wind direction, wind speed,
and sunshine duration Gaussian Regression

Of the sources mentioned above, the algorithm presented by Chaibi et al. obtained 94%
accuracy using Bayesian optimization [47]. Zou et al. used a radically different approach
involving an LSTM algorithm and meteorological variables such as relative humidity and
Aerosol Optical Depth instead of daylight hours, obtaining 90% prediction accuracy [48].
Sreekumar et al., considered cloud movement and cover for their prediction, achieving
97.11% accuracy [49]. Rahman et al. [50] achieved a respectable 98% accuracy using the
same variables as ours except for sunshine hours with a simple neural network and a
modified ADAM optimizer. The best scores we found were reported by Fuselero et al. [51],
who obtained 98% prediction accuracy using the same input variables. However, our
work nonetheless presents excellent performance using the proposed optimization method,
reporting an accuracy of 95.98%.

Different machine learning algorithms were used in this study and obtained different
results despite using the same dataset. This may be due to several factors.

• Regarding the distribution of data, for example, SVM-based algorithms tend to have improved
performance on small datasets; on the contrary, as can be seen in our results, tree-based
algorithms (RF, Adaboost, XGboost) tend to achieve excellent results on larger datasets.

• In the preliminary inspection of the data, we found several instances in which no data
was collected, especially in December and early January, presumably due to a lack of
personnel to maintain the site. Much time was consumed ensuring that the dataset was
complete and that the information was accurate and reliable, beyond the preparation
described in this article.

• Another reason is that the parameter selection of the machine learning models could
not find the optimal global solution.

• Performing a statistical analysis of the data is essential, especially for time series,
including finding the mean, maxima, and minima of the data, checking its variance,
and determining whether the type of regression or prediction method is appropriate.

• Several articles have pointed out that different meteorological factors such as air
temperature, relative humidity, wind speed, and precipitation are closely related to
solar radiation, although the effects and the degrees to which they affect it can vary
according to the different regions or countries under investigation.

• Differences in the implementation of algorithms can directly affect both performance and the
obtained results. There are many ML libraries available for research such as that described in
this article, including libraries such as Pytorch, scikit-learn, and SciPy, among others.
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7. Conclusions

In this study, historical meteorological data were collected for the last two years for the
city of Queretaro in the Juriquilla area, both daily and with an interval of one hour. Models
were chosen according to the collected literature, and regression and prediction studies of
the models were performed. The ability of the RF algorithm to use historical feature values
allows it to outperform other deep learning models in time series applications. It achieved
up to 95% prediction accuracy. An essential limitation at the time of the study was the lack
of reliable data. Although there are different stations around the city, none have standards
for data collection, making it challenging to create datasets and achieve consistent results.
We determined that the climate in this area is very favorable for such a study, as it is very
consistent most of the time, which helped to create a very accurate model.

Based on our experiments, it can be concluded that:

• There is a relationship between the variables of SR and temperature, as proven by
simple linear regression; this relationship is dependent on the humidity in the city.

• The simple linear regression model has a good fit at the time of prediction.
• The random forest regression model has the best fit, as at the beginning of SR predic-

tion the proposed optimization only managed to obtain a 3–4% increase (depending
on the used dataset).

• Our results can serve as a basis for future experiments, work with other types of neural
networks such as recurring ones, application of kernel regression, etc.

• The data obtained in this study can be used in solar control systems, such as PV MPPT
systems, to optimize their efficiency.

• Our results can optimize the placement of renewable energy plants throughout the
state of Queretaro.

Future Work

Future work will involve an exhaustive statistical analysis of time series to determine
whether tree-based algorithms are best for this application. Such work could focus on
expanding the scope of the present study to other areas, such as wind and humidity studies.

With the data obtained here, it may be possible to generate accurate forecasting and
nowcasting models of climatological variables, specifically, solar radiation.

Use of other ANN models, such as recurrent neural networks (RNN), could be investi-
gated, as these achieve excellent results on time series and nonlinear data.

Generating an empirical prediction model and taking into account characteristics
(temperature, pressure, humidity) that are not entirely independent by incorporating their
mutual relationships and influences into the algorithm could create a more realistic model.

Applying these models to weather station websites would allow us to determine
which algorithms perform better in real time.

A more accurate RF model could represent an alternative if more emphasis were
placed on the following areas.

• Tree-based models allow for extracting the importance of different characteristics in
determining the regression model. By looking at the importance of the different fea-
tures, it is possible to understand whether the two models assign the same importance
to different parameters.

• The RF algorithm performed very well from the beginning, without any need to
optimize hyperparameters or specific data; yet, this selection was purely arbitrary,
without any way to check whether they were the most suitable for the task.

• Iterating through a list of arbitrary values and choosing the one that provides the best
results is not the best approach to optimization. It would be beneficial to spend more
time tuning, perhaps including an analytical method for determining optimal values.

• Other features, such as ozone and contaminant gases, could be considered, as these
features are known to impact light transmission through the atmosphere, especially
at certain wavelengths.
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From the data, it appears that the following drawbacks characterize RF regression:

• It is characterized by a high variance in prediction
• It appears to systematically overestimate SR after sunset

Neural networks used for prediction can be adapted to many problems; in this case,
we used multiple perceptron regression with its default values, even knowing that these
may not be the most suitable for this model.
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