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Abstract: Cyclic-olefin-copolymer (COC)-based microfluidic devices are increasingly becoming
the center of highly valuable research for in situ X-ray measurements due to their compatibility
with X-rays, biological compounds, chemical resistance, optical properties, low cost, and simplified
handling. COC microfluidic devices present potential solutions to challenging biological applications
such as protein binding, folding, nucleation, growth kinetics, and structural changes. In recent
years, the techniques applied to manufacturing and handling these devices have capitalized on
enormous progress toward small-scale sample probing. Here, we describe the new and innovative
design aspects, fabrication, and experimental implementation of low-cost and micron-sized X-ray-
compatible microfluidic sample environments that address diffusion-based crystal formation for
crystallographic characterization. The devices appear fully compatible with crystal growth and
subsequent X-ray diffraction experiments, resulting in remarkably low background data recording.
The results highlighted in this research demonstrate how the engineered microfluidic devices allow
the recording of accurate crystallographic data at room temperature and structure determination at
high resolution.

Keywords: COC; device fabrication; diffusion; room temperature data collection; serial crystallography

1. Introduction

The design, choice of material, and fabrication methods are important factors to be
considered in the manufacturing of microfluidic devices (MiDs), more specifically when
applied to X-ray experiments [1–5]. The rapid fabrication and low cost of the material need
to be suitable for processing and fabricating modern MiDs that allow for the arrangement
of microchannel geometries as integrated using computer-aided design (CAD) tools [6,7].
In contrast, these materials are proven to have chemical resistance and good mechanical
properties to withstand the applied pressures for handling the fluids. The above require-
ments are generally mandatory before the bonding, surface treatments/modifications, and
sealing steps for microchannels [8,9].

MiDs are fabricated from various advanced polymer materials used either individually
or in a combination in soft lithographic replication moldings. A non-exhaustive list of the
most-utilized polymers includes polydimethylsiloxane (PDMS) [10–12], Norland Optical
Adhesive 81 (NOA81) [13], OrmoComp® [14], hot embossing (e.g., perfluoroalkoxy-PFA)
and cyclic olefin copolymers (COCs) [15], and laser structuring (Kapton) [16]. With the
advent of more powerful and brighter X-ray sources, Kapton and COC-based devices have
received tremendous interest when integrated within sample environments due to their
X-ray compatibility and low background noise [2,5,17]. A manifest drawback of Kapton
or Kapton-metal devices lies in their difficult handling and fabrication procedures, which
prevents potential rapid prototyping. COC-based devices, on the other hand, combine both
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desired qualities: X-ray compatibility and rapid prototyping [18]. To avoid compromising
the advantageously low background properties of COC, the addition to the devices of
materials opaque to X-rays should be avoided. Furthermore, its qualities as a thermoplas-
tic make COC a simple element to handle for hot-embossing and injection molding of
microfluidic channels [1,4,19,20].

In macromolecular crystallography, the X-ray diffraction experiments consist of mea-
suring the intensities diffracted by a sample exposed to an X-ray beam. The detection
and measurement of these intensities are strongly dependent on the background noise
generated by diffusing elements crossed by the incoming X-ray beam. In this context and
to optimize MX experiments, the microfluidic devices need to be adapted to avoid adding
unnecessary noise to the experiments, which tends to be a difficult task because of the X-ray
absorption of most of the device materials used to make the devices [5,21]. In this ongoing
transfer process, a variety of fabrication approaches and multiple types of devices have
been developed [5,22,23]. Currently, the combination of state-of-the-art instrumentation to
adapt microfluidic-based sample-handling devices within experimental environments at
microfocusing X-ray end-stations from synchrotron and X-ray free-electron laser sources
is massively pursued, notably to gain further insights into the structural dynamics of
biomolecules [8,24–27]. In the current investigation, we developed X-ray-compatible MiDs
with highly reproducible geometric features suitable for diffusion-based crystal formation
for X-ray diffraction experiments at synchrotron sources [2,27,28]. The devices were in-
spired by previously reported developments, however providing the experimenter with an
optimized design that reduces the experimental background caused by the materials com-
posing the MiD. To the best of our knowledge, the MiD introduced in this work presents
features of thin layers of COC that are unprecedented in macromolecular crystallogra-
phy, ideal when experimenting at hard X-ray synchrotron facilities. High-quality X-ray
diffraction data were collected on protein crystals grown directly within the chip, with an
exceptionally low background recorded on the images, a clear advantage of the devices
while performing in situ macromolecular crystallography experiments.

2. Materials and Methods

The COC devices were fabricated in multiple steps. A photoresist master was pro-
duced using UV-lithography. The master was used to prepare a PDMS stamp applying soft
lithography, which was then employed to hot-emboss the PFA polymer. This PFA-stamp
was in turn utilized to hot emboss the COC polymer as a mold that could be bonded to
obtain the final sealed devices (Figure 1).
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Figure 1. Combination of soft lithography and hot-embossing techniques for COC microfluidic de-
vice fabrication. (a) The photolithographic master fabrication involves spin coating, baking, and en-
graving with a laser writer. (b) After development, the uncured photoresist is removed and the 
resulting microchannel is replicated using polydimethylsiloxane. (c) The replica is peeled off the 
master device, which is used as the template for the PFA-intermediate stamp, which transfers the 
structure onto the COC. 

2.1. Photo-Lithographic Master Fabrication 
The master mold fabrication process (Figure 1a) was initiated by spin coating a 3” 

silicon wafer with a negative photoresist (SU-8 2050, at 2500 rpm, Microchem Co., Saint-
Rémy-de-Provence, France). After pre-backing the coated layer for 1 min at 65 °C followed 
by 7 min at 95 °C, the inverse structures were engraved using a laser writer (KLOE-Dilase 
250), with structures previously drawn through some initial CAD design. The structures 
were again baked stepwise for 1 min at 65 °C and 5 min at 95 °C, before development 
under propylene glycol monomethyl ether acetate (PGMA). 

2.2. COC Device Fabrication 
The SU-8 masters fabricated above were used to transfer their inverse channel struc-

tures into PDMS molds by soft lithography (Figure 1b). The PDMS (Sylgard 184 kit, Dow 
corning CO, Midland, MI, USA) was mixed with a curing agent in a 10:1 ratio, poured 

Figure 1. Combination of soft lithography and hot-embossing techniques for COC microfluidic
device fabrication. (a) The photolithographic master fabrication involves spin coating, baking, and
engraving with a laser writer. (b) After development, the uncured photoresist is removed and the
resulting microchannel is replicated using polydimethylsiloxane. (c) The replica is peeled off the
master device, which is used as the template for the PFA-intermediate stamp, which transfers the
structure onto the COC.

2.1. Photo-Lithographic Master Fabrication

The master mold fabrication process (Figure 1a) was initiated by spin coating a 3”
silicon wafer with a negative photoresist (SU-8 2050, at 2500 rpm, Microchem Co., Saint-
Rémy-de-Provence, France). After pre-backing the coated layer for 1 min at 65 ◦C followed
by 7 min at 95 ◦C, the inverse structures were engraved using a laser writer (KLOE-Dilase
250), with structures previously drawn through some initial CAD design. The structures
were again baked stepwise for 1 min at 65 ◦C and 5 min at 95 ◦C, before development under
propylene glycol monomethyl ether acetate (PGMA).

2.2. COC Device Fabrication

The SU-8 masters fabricated above were used to transfer their inverse channel struc-
tures into PDMS molds by soft lithography (Figure 1b). The PDMS (Sylgard 184 kit, Dow
corning CO, Midland, MI, USA) was mixed with a curing agent in a 10:1 ratio, poured onto
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the SU-8 master placed in a Petri dish covered with aluminum foil to prepare a thin PDMS
mold. The mixture was degassed in a desiccator to remove all air bubbles before baking at
75 ◦C for 2 h. The cured PDMS mold could then be peeled off the master.

The PDMS molds were further used as templates for fabricating perfluoroalkoxy (PFA)
stamps via hot embossing. PFA polymer granulates (grade PFA FLEX 8515UHPZ-Dyneon
GmbH, Burgkirchen an der Alz, Germany) were hot-pressed to PFA sheets of ~500 µm
using a LABOPRESS P150H hot press. The PFA was centered in a metal frame sandwiched
by two Kapton foils in the preheated hot press and cured for 5 min. The hot plates were
heated at 300 ◦C and pressed together to reach a force of ca. 0.6 kN for 20 s, allowing the
PFA to melt slowly before increasing the force to 10 kN, maintained for 10 s. Next, the
pressure was released down to a force of 5 kN slowly before being increased again to 10 kN.
After reaching 10 kN, the system was maintained stable until the end of the 5 min overall
process. The polymer was actively cooled, and the finished sheet was removed at room
temperature. A similar protocol was applied to prepare COC polymer granulates (grade
COC-8007X10-Dyneon GmbH) into sheets of ~700 µm, with small variations regarding the
force (ca. 6 kN instead of 10 kN) and the hot plate temperature (160 ◦C instead of 300 ◦C).

The PDMS mold with the micro-structured channel was pre-baked for 15 min in
between two Kapton foils at low forces (0.1 kN) and 200 ◦C. After releasing the force, a
piece of PFA sheet was placed on top of the baked PDMS stamp, here again, sandwiched
by two Kapton foils and placed into the hot press for hot embossing. The upper plate
of the press was heated to 325 ◦C, while the lower plate was kept at 200 ◦C. The curing
time and force were set to 7 min and 0.3 kN, respectively. After curing, both plates were
cooled to room temperature while keeping the stack under pressure. Subsequently, the
inverted structured PFA sheet was hot-pressed into the 700 µm-thick COC sheet, the COC
sheet placed onto the PFA stamp, and the upper and lower plates both heated to 220 ◦C for
10 min at a force of ca. 0.2 kN. The plates were then left to cool to room temperature before
removing the structured COC sheet (Figure 1c). Inlet and outlet holes (0.8 mm) were drilled,
and the sheets were prepared for solvent bonding. The bonding step followed a previously
reported procedure [9], where the two halves of the COC device were chemically sealed
before being placed on the PDMS, sandwiched between two Kapton foils, and pressurized
at a force of 0.9 kN and a temperature of 65 ◦C for 8 min. The final device was then actively
cooled to room temperature.

2.3. Sample Loading and Crystallization

The sample was injected into the MiD using tubing (LDPE micro medical tubing,
Scientific Commodities; inner and outer diameter of 0.38 mm and 1.09 mm, respectively)
connected to the inlet and outlet of the chip and on a mass flow controller for easier
control of the injection (Figure 2a). The injection process was confirmed by injecting two
colored dyes (red E129 and blue E133, Mallard Ferriere, Noisy-le-Sec, France) to mimic
the precipitant and protein solutions (Figure 2b), respectively, with the observation of the
mixing under a digital microscope (VHX Keyence, Osaka, Japan). After validation of the
injection protocol, HEWL Lysozyme (Sigma-Aldrich, Saint Loius, MO, USA) crystals were
grown inside the chip by diffusion after injecting the protein solution (~10 mg/mL) in
the chip previously loaded with the crystallization solution (1 M NaCl, 35% w/v Ethylene
Glycol, 12.5% w/v PolyEthylene Glycol-3350, 50 mM NaOAc/HOAc). The crystals of
the protein grew after 14 h with dimensions distributed around the size of the channels,
between 20 and 50 microns in the largest dimension (Figure 2c).
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temperature. (d) Handling of the MiD and its holder at the experimental station of the PROXIMA-1 
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2.4. Data Acquisition, Processing, and Structure Determination 
X-ray diffraction data were recorded on the PROXIMA-1 beamline at Synchrotron 

SOLEIL [29], equipped with an Eiger-16M (Dectris GmbH) and a three-rotation-axis Smar-
Gon goniometer (SmarAct GmbH). For collecting diffraction data with reduced back-
ground noise, the direct beam stopper and the upstream beam pinhole were brought to 
~7 mm from the sample. In this configuration, the rotation angle of the chip around the 
Omega-axis was limited to ±40° around the mounted position to avoid a potential collision 
with the hardware (Figure 2d). The nature and design of the MiD present minimum dif-
fusing material to the incoming X-ray beam, resulting in close to noise-free diffraction 
experiments (Figure 3). 

Figure 2. Overview of the workflow implemented at Synchrotron SOLEIL for developing and using
the MiDs. (a) Injection sample for loading crystallization and protein solutions in the chip with
careful inspection under a digital microscope. (b) Confirmation of the injection protocol using two
colored solutions. (c) Appearance of protein crystals inside the channels after 14 h growth at room
temperature. (d) Handling of the MiD and its holder at the experimental station of the PROXIMA-1
beamline for collection of in situ serial crystallography diffraction data.

2.4. Data Acquisition, Processing, and Structure Determination

X-ray diffraction data were recorded on the PROXIMA-1 beamline at Synchrotron
SOLEIL [29], equipped with an Eiger-16M (Dectris GmbH) and a three-rotation-axis Smar-
Gon goniometer (SmarAct GmbH). For collecting diffraction data with reduced background
noise, the direct beam stopper and the upstream beam pinhole were brought to ~7 mm from
the sample. In this configuration, the rotation angle of the chip around the Omega-axis
was limited to ±40◦ around the mounted position to avoid a potential collision with the
hardware (Figure 2d). The nature and design of the MiD present minimum diffusing
material to the incoming X-ray beam, resulting in close to noise-free diffraction experiments
(Figure 3).
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Figure 3. Diffusion background of the COC chip loaded with water (chip-water), empty of any liquid
(chip-air), in comparison with classical air scattering (no chip), as recorded at the beamline PROXIMA-1
of Synchrotron SOLEIL. The values of overflows, maximum intensity, and averaged intensity for the
water-loaded chip are indicated in the bottom-right inset.

Following the procedure of small-wedged serial crystallography, a total of 21 datasets
were collected on independent crystals, with an oscillation of 0.05◦ and exposure time
of 0.01 s per image, at an X-ray energy of 12.67 keV. During collection, the crystals were
illuminated with 3.8 · 1010 photons/sec distributed over 40 × 20 micron2, corresponding
to an overall dose of approximately 1.8 kGy per crystal. Calculations for dose deposition
were performed by RADDOSE-3D [30]. Data collection details are summarized in Table 1.

Table 1. Data and refinement statistics. Values in parentheses correspond to the highest resolution shell.

DATA COLLECTION

Space group P43212
Unit cell parameters (Å, ◦) a = b = 79.61, c = 37.88, α = β = γ = 90

Resolution (Å) 56.28–1.83 (1.86–1.83)
No. of observed reflections 306,732 (4445)
No. of unique reflections 11,146 (525)

Completeness (%) 100 (99.4)
Rmerge 0.111 (0.578)
Rmeas 0.113 (0.614)
Rpim 0.021 (0.2)
〈I/σ(I)〉 22.2 (2.8)
CC1/2 0.999 (0.884)

Multiplicity 27.5 (8.5)
Wilson B factor (Å2) 28.68

REFINEMENT

Rfree 0.19
Rwork 0.17

r.m.s.d., bond lengths/angles (Å, ◦) 0.008/0.92
Ramachandran (favored/allowed, %) 99.21/0.79

Average B factor (Å2)
Overall 29.18

For protein residues 27.73
For water 44.52
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Data were processed with XDS [31] through the autoProc package [32], before being
converted to MTZ format by POINTLESS [33], and scaled and merged by AIMLESS [34],
as implemented within the autoProc procedure, taking as the resolution cutoff criteria
CC1/2 >= 0.85 and I/sig(I) >= 2.5 in the outermost resolution shell. A total of 21 datasets
were processed, scaled, and merged with no special attention provided to differentiate
which data were better than the others. The crystals belonged to P43212, with unit cell
parameters 79.62 Å, 79.62 Å, 37.89 Å, and contained one molecule per asymmetric unit.

Structure factor amplitudes were obtained by TRUNCATE [35,36]. Rotational and
translational functions were calculated and compared by MOLREP [37] using the PDB
coordinates 1LYZ as a template model. The solved structure was then run through rounds
of refinement with BUSTER [38] and manual model building using Coot [39]. The final
model contained 129 residues at a resolution of 1.83 Å, with a final R factor and Rfree values
of 17% and 20%, respectively (Table 1). The final model was validated by Molprobity [40].

3. Results and Discussion
3.1. COC Devices for Diffusion-Based Crystallization

The overarching goal of the present study was to fabricate microfluidic devices de-
signed for both diffusion-based crystallization of macromolecular crystallography and
for in situ diffraction experiments at hard X-ray synchrotron sources. Crystallization by
diffusion places in contact a precipitating agent with the protein sample in a convection-
free environment such as presented by small microfluidic channels within microfluidic
chips. Microfluidic devices for diffusion experiments have been reported in the past [1],
introducing the concept of the fabrication of small channels and exploring the possibilities
for diffraction experiments. The design of the channels and composition of the chips,
however, have strongly influenced the quality of the recorded data and most likely affected
the diffraction limit collected on the studied protein crystals.

In the current production process, COC was favored over other materials to fabricate
a diffusion-based crystallization device made of microfluidic channels with typical cross-
section dimensions of 30 µm in width, 50 µm in height, and over a diffusion length
of 3 mm (Figure 4a). The production of COC structures using replication techniques
comfortably presents channels with resolutions of over 100 microns, but to our knowledge,
structures with a controlled channel width in the order of 10–30 µm and a total thickness of
100–300 µm have not yet been achieved at the industrial level. The main difficulty in
transferring such small features comes from the large amount of polymer that must be
displaced during replication, combined with its high viscoelastic constraints.

To prepare COC devices with small cross-sections, the initial design of the channel was
made into a photo mask from which a SU-8 master was fabricated by UV-photolithography.
PDMS molds of these masters were used as stamps for hot embossing PFA imprints with
the inverse channel structure, which, in turn, were used for hot embossing COC molds
(Figure 1). Hot embossing refers here to a method whereby thermoplastic materials are
heated above their glass transition temperature (Tg), where they become viscous and
moldable. The softness of PDMS when placed under higher pressures causes physical
constraints and deformation, which can lead to replication errors if PDMS is used as the
master. Consequently, the use of PFA (Tg~90 ◦C, Tm = 290 ◦C) was chosen as an intermediate
stamp to transfer the micropattern onto COC (Figure 4b,c). Another advantage of using
PFA lies in its elasticity and weak adhesion to substrates, hence allowing for an easier
detachment from the brittle COC.

While COC is resistant to most polar solvents (e.g., ethanol and acetone), it is highly
deformed by non-polar solvents such as cyclohexane or decahydronaphthalene hydrocar-
bons, which penetrate the COC polymer and cause swelling by spacing the polymeric
chains. The COC sheets become sticky until all solvent has evaporated, making it possible
to press together both surfaces to form a stable bond due to residual solvent penetrating the
remaining non-sticky COC surface and jamming with the solvent-spaced polymer chains
(Figure 4d).
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ualized under digital microscopy after enclosing the COC chip in a light-weight chip 
holder for easier handling (Figure 2a). The sample is classically loaded at slow speeds to 
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on the mass flow controller. Loading two differently colored solutions to mimic the diffu-
sion process shows a homogeneous gradient (Figure 2b). 

Figure 4. Stepwise fabrication of the microfluidic device setup. (a) Schematic representation of the
MiD with the details of the dimensions for the channel cross-section (30 µm) and full length (3 mm)
indicated in the diagram. The resulting parts of the manufacturing consist of (b) the PFA mold
coming out of the PDMS, (c) the COC sheet with the PFA features, and (d) the final device after
bonding the COC channels with the COC sheet. The inlet in (d) is a zoomed photo of the COC device,
highlighting the details and small dimensions of the chip.

3.2. Sample Injection, Crystal Formation, and Diffraction Studies

Before loading crystallization and sample solutions in the COC-type MiD, two ded-
icated inlets and outlets were added at the extremities of the chip (Figure 4a), on which
PDMS blocks were plasma-bonded for easier tubing. The viscosity of the solutions strongly
affects their injection in the microchannels, which may impair the crystallization process.
The sample loading procedure was therefore validated by flow experiments visualized
under digital microscopy after enclosing the COC chip in a light-weight chip holder for
easier handling (Figure 2a). The sample is classically loaded at slow speeds to avoid the
appearance of air bubbles in the MiD and to fill all the thirty-two channels in parallel. The
pace of injection is adjusted by a mass flow controller that exploits pressure differences.
In the current chip design, as little as ~1 µL of the precipitant solution was sufficient to
occupy all the microchannels and reach the outlet, after which, approximately 0.5 µL of
protein-containing solution can be injected using a pressure difference of 3 mBar on the
mass flow controller. Loading two differently colored solutions to mimic the diffusion
process shows a homogeneous gradient (Figure 2b).

When applying the crystallization and sample solutions, the inlet and outlet tubing
need to be sealed to preserve the injected solutions from vaporing out. In the current
experiments, Lysozyme crystals were confirmed to grow directly within the channels of the
chip, reaching dimensions approximately the width of the channels 14 h after injections
(Figure 2c). Moreover, the crystals appeared to be distributed at the center of the chip,
confirming the efficacy of the injection process. After confirming the appearance of the
crystals, the chip was mounted on the PROXIMA-1 beamline of Synchrotron SOLEIL for
X-ray diffraction experiments. The central localization of the crystals had the unforeseen
advantage of helping to quickly identify the positive crystallization hits for faster data
collection procedures. The method of serial small-wedged data recording [41] was used to
automate and simplify the procedure.
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The structure of the Lysozyme was solved by the molecular replacement method
applied to the recorded data merged from 21 independent crystals (Table 1). The MiD
design and conception allow for minimizing the background noise originating from the
interaction of the incoming X-rays with the material composing the chip (Online Resource 1).
Consequently, the flux deposited on the in situ crystals could be lowered to 3.8 · 1010

photons/sec without affecting the quality of the diffraction experiments. By reducing the
flux of the incoming X-ray beam, the deposited dose on each crystal could be lowered to
1.8 kGy, which is several orders of magnitude smaller than the Garman limit (30 MGy) [42]
and, therefore, has the marked advantage of slowing down the impact of radiation damages
on the crystals.

The strategy to record small-wedged diffraction data was favored over faster still-
image raster scanning methods to increase the partial completeness of each of the data
on all crystals and, therefore, reduce the number of required crystals before obtaining
the fully complete merged data. The final structure of the Lysozyme did not emphasize
any markable conformational changes amenable to X-ray radiation damage, resulting in
crystallographic statistics of good quality (Table 1). Overall, the 1.83 Å resolution electron
density of the protein is clearly defined around all amino acids, including at the disulfide
bridges, a classical trademark of radiation damage (Figure 5). The absence of noticeable
damages in the electron density demonstrates the applicability of the MiD in combination
with small-wedged serial crystallography for damage-less structural studies.
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4. Conclusions

With the advances in technologies, the field of structural biology is in constant evo-
lution and needs to adapt different methodologies in an integrated approach to combine
the information coming from various sources before unraveling complex mechanisms. Mi-
crofluidics stands as a promising technique perfectly adapted to biological material, notably
due to its malleable nature and infinite possibilities of design, which could be reshaped
to fit any analysis method. In the current study, the design and fabrication process of a
microfluidic device of small dimensions were shown to be perfectly suitable for diffusion-
based crystallization and further in situ crystal analysis at X-ray diffraction sources. The
performances of the chip in terms of miniaturization, background scattering, handling, and
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industrialization are much more favorable when compared to previously reported devices.
The device consumes a small volume of sample at the phase of crystallization and takes
advantage of small-wedged in situ serial crystallography for minimizing the amount of
data to acquire for a complete dataset. The use of COC as the source material of the chip,
its small dimensional design, and its transparency to energies ranging from infra-red, deep
ultra-violet, to X-rays are all arguments that push toward the exploitation of these devices
for complementary biological analysis techniques. The current work provides yet further
emphasis on the fantastic potential and adaptability of microfluidics when combined with
the experimental stations implemented at synchrotron radiation sources. Future COC MiD
developments at our facilities will encompass the incorporation of additional inlets for
diffusion experiments of the newly formed crystals with potential drug targets. By func-
tionalizing the chip with such optional diffusion routes, fragment-based drug discovery
and dynamical studies will become possible.
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