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Abstract: A low-g triggered micro-electromechanical system (MEMS) resonant acceleration switch
is designed, fabricated and tested in this paper for near-zero power wake-up applications. The
switch is actuated by ambient low-g vibration, consuming zero power while waiting for vibration at
its resonant frequency. A cantilever beam and proof mass structure is adopted in the switch. The
patterns of spiral cantilever beams are designed for low resonant frequency and threshold. Once
the vibration with resonant frequency exceeds the acceleration threshold of the switch, the movable
electrode becomes sufficiently displaced to contact the fixed electrodes and causes them to trigger.
The dynamic responses of the switch are tested on a piezoelectric stack. The experimental results
show that the switch closes under vibration at a frequency as low as 39.3 Hz and at an acceleration
threshold of 0.074 g. A wake-up sensor node connected to the switch can awaken when the switch is
under vibration as an intended characteristics.

Keywords: MEMS; acceleration switch; wake up; low-g; near-zero power

1. Introduction

Wireless sensor networks (WSNs) are now widely used in various areas such as in envi-
ronmental monitoring and intrusion detection [1]. However, further applications of WSN are
limited by their power. Sensor nodes powered by batteries can only work continuously for
several months, and it is inconvenient to replace batteries for large numbers of sensor nodes [2,3].

Reducing ineffective operating time is a possible way to save power when sensor
nodes are used to monitor the environment, so that the lifespan of these sensor nodes is
extended [2]. State-of-the-art sensor nodes are provided with isolated sensing modules to
monitor concerned events, such as sound [4–6], infrared radiation [7,8], temperature [9] and
vibration [10–13]. They awaken only when the event occurs. Such an approach can ensure
that the systems are kept in sleep mode most of the time, in order to increase their lifespan.

Vibration is a useful target among all these signals as it reflects the activities of vehicles
and people located nearby [14]. MEMS accelerometers have been used in previous studies
in order to monitor ambient vibration. However, these kinds of sensors must be powered
continuously [14–16]. Recent works used near-zero power sensors in order to overcome this
disadvantage. Piezoelectric material was used in some near-zero power sensors [10–12].
The piezoelectric sensors resonate at a specific frequency vibration, transforming kinetic
energy into electrical signals for wake-up applications. An aluminum nitride (AlN) piezo-
electric MEMS accelerometer is presented to monitor ground vibration [10]. It is designed
to resonate at the target frequency (160 Hz), and a voltage sensitivity for acceleration of
26 V/g is then achieved. However, the accelerometer requires a complicated Complemen-
tary Metal Oxide Semiconductor (CMOS) circuit in order to convert the sine voltage into
a step signal. Another approach is by using an acceleration switch that closes when the
intended vibration is detected. Most acceleration switches respond to an acceleration over
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2 g [17–19], so they are not practical in environmental monitoring as the ambient vibration
is usually less than 0.1 g. A rotational design MEMS resonant acceleration switch is ex-
plored to respond to vibration at frequencies between 30 Hz and 1000 Hz [13]. The switch
closes at a vibration lower than 1 g with a resonant frequency and consumes less than
0.1 nW when no vibration is presented. However, the switch needs to be electrostatically
tuned in order to reach a low resonant frequency that increases power consumption. Thus,
a switch that can be triggered by a low-frequency and low-amplitude vibration and that does
not require additional circuits or power in a standby state is needed for wake-up applications.

A resonant MEMS acceleration switch is described in this paper for wake-up appli-
cations. The switch is designed to close under vibration at a specific frequency so that it
can identify targets. A cantilever beam and proof mass structure is installed in the switch,
with beams designed in a spiral shape. A movable electrode is placed on the back of the
proof mass while the fixed electrodes are set on a glass substrate. The proof mass moves in
an out-of-plane direction generated by excitation. Different spiral shapes are compared in
this paper and a more appropriate pattern is chosen for a lower resonant frequency and
threshold in a specific area of the device. The switch is fabricated using silicon-on-glass
bonded wafers. As the experimental results on a shaker system show, the switch can be trig-
gered at a frequency as low as 39.3 Hz. The acceleration threshold at a resonant frequency
is also as low as 0.074 g. The switch was placed inside a sensor node so that it consumes
near-zero power in its standby state while the switch monitored the ambient vibration. The
main advantage of the switch proposed in this paper is that it can be triggered by a low-g
vibration at a specific frequency, thereby preventing false wake-ups, without any extra
power consumption in its standby state. This novel research is meaningful for extending
the operational life of the sensor nodes.

2. Design

The switch is designed to close when stimulated by weak vibration with a resonant
frequency of the switch. As shown in Figure 1, there are four parts to the switch: a cantilever
beam, a proof mass, a glass substrate and electrodes. The spiral beams are used to lower
the resonant frequency of the switch. A movable electrode is attached to the back side
of the proof mass to contact the fixed electrodes on the substrate when it resonates after
sufficient displacement.
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Figure 1. Diagrammatic structure of the resonant acceleration switch.

As shown in Figure 2a, the metal electrode on the back of the silicon proof mass
is set apart from the fixed electrodes in the switch’s standby state. When the switch is
stimulated by ground vibration at a specific frequency, as in Figure 2b, the proof mass
moves downward by a sufficient distance for the movable electrode to contact the two fixed
electrodes, so that the two fixed electrodes are connected.
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Figure 2. Cross section of the resonant acceleration switch. (a) Standby state; (b) closed state.

The cantilever beam–proof mass structure in Figure 2a can be simplified as a spring-
mass-damping system with this kinetic equation [20]:

meq
..
z + Ceq

.
z + keqz = −meq

..
y (1)

where z is the displacement of a point on the cantilever beam relative to the glass substrate,
y is the absolute displacement of the substrate, meq is the equivalent mass, Ceq is the
damping coefficient and keq represents spring stiffness. The inertial force on the spring-
mass-damping system is −meq

..
y.

The resonant displacement of the proof mass under a simple harmonic excitation
y(t) = Y0ejωt is

z(t) =
ω2

ω2
res − ω2 + j2ζωresω

Y0ejωt (2)

where ω is the frequency of the excitation, ωres is the resonant frequency, ζ is the mechanical
damping coefficient and Y0 is the magnitude of the displacement. So, the resonant frequency
and the acceleration threshold ath can be represented by

ωres =

√
keq

meq
(3)

ath = 2Y0X0ζω2
res (4)

where X0 is the initial distance between the movable electrode and the fixed electrodes.
From Equations (3) and (4), the acceleration threshold of the switch is influenced by
the resonant frequency, which is determined by the equivalent mass and stiffness. The
threshold is also related to the initial distance between the electrodes.

To achieve a low resonant frequency and a low acceleration threshold, the patterns of
the cantilever beams and the proof mass should be carefully evaluated. These are usually
spiral beams. For the acceleration switches with spiral beams that are limited in a specific
occupied area, several patterns of cantilever beams are shown in Figure 3. The key point of
the switch design is to figure out which kind of pattern can achieve our goals in a limited
space with an easy fabrication process.



Micromachines 2022, 13, 1333 4 of 14Micromachines 2022, 13, x 4 of 15 
 

 

 
Figure 3. Top view of the different patterns of cantilever beams. (a) Square pattern; (b) regular hex-
agon pattern; (c) regular octagon pattern; (d) circle pattern. 

The definitions of the beam parameters in the square pattern are shown in Figure 4 
and Table 1. The beams are subjected to both torque and bending moments while vibrat-
ing, so the displacement of the proof mass 𝛿 under force 𝐹can be derived using Karl’s 
theorem. 𝛿 = 𝜕𝑈𝜕𝐹 = න 𝑇(𝑥)𝐺𝐼௣ 𝜕𝑇(𝑥)𝜕𝐹 𝑑𝑥 + න 𝑀(𝑥)𝐸𝐼௦ 𝜕𝑀(𝑥)𝜕𝐹 𝑑𝑥  (5)𝐼௣ = 𝑊𝐻ଷ (6)𝐼௦ = 𝑊𝐻ଷ12  (7)

where 𝑈 is the strain energy of the beams, and 𝑇 and 𝑀 are the torque and bending mo-
ments, respectively. 

Table 1. Structure parameters. 

Description Parameter 
Side length of device A 
Side length of mass 𝐿 

Beam thickness 𝐻 
Beam width 𝑊 

Interval of beams 𝑑 
Young’s modulus of silicon 𝐸 

Shear modulus of silicon 𝐺 
Moment of inertia of beam 𝐼௦ 

Polar moment of inertia of the beam 𝐼௣ 

Figure 3. Top view of the different patterns of cantilever beams. (a) Square pattern; (b) regular
hexagon pattern; (c) regular octagon pattern; (d) circle pattern.

The definitions of the beam parameters in the square pattern are shown in Figure 4
and Table 1. The beams are subjected to both torque and bending moments while vibrating,
so the displacement of the proof mass δ under force F can be derived using Karl’s theorem.

δ =
∂U
∂F

=
∫ T(x)

GIp

∂T(x)
∂F

dx +
∫ M(x)

EIs

∂M(x)
∂F

dx (5)

Ip = WH3 (6)

Is =
WH3

12
(7)

where U is the strain energy of the beams, and T and M are the torque and bending
moments, respectively.

Table 1. Structure parameters.

Description Parameter

Side length of device A
Side length of mass L

Beam thickness H
Beam width W

Interval of beams d
Young’s modulus of silicon E

Shear modulus of silicon G
Moment of inertia of beam Is

Polar moment of inertia of the beam Ip
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Figure 4. Diagram defining the dimensional variables of the square pattern.

As L � W + d, the beams in one turn can be considered as four straight beams with
equal lengths. Each beam can be divided into li1 and li2 with the vertical line as the dividing
point. So,

D =
A
2
− (n + 1 − i)d − 2(n − i) + 1

2
W (8)

D is the vertical distance between the beam and the center of gravity of the proof mass.
As a result, the torque and bending moments along beam li1 can be presented as

T(x) = FD(0 ≤ x ≤ D)
M(x) = Fx(0 ≤ x ≤ D)

(9)

As there two centrosymmetric beams, the displacement δi1 of beam li1 under force F is

δi1 = ∂U
∂F =

∫ T(x)
GIp

∂T(x)
∂F dx +

∫ M(x)
EIs

∂M(x)
∂F dx

=
∫ D

0
FD
GIp

·D·dx +
∫ D

0
Fx
EIs

·x·dx

= 1
2 FD3

(
1

GIp
+ 1

3EIs

) (10)

So, the total displacement of the proof mass is

δ4 =
n

∑
i=1

8δi1 (11)

The stiffness of beams keq can be represented by the displacement of the proof mass δ
under force F:

keq =
F
δ4

(12)

As mbeam � mmass, thus
meq ≈ mmass (13)
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Then, the resonant frequency of the switch is defined by its geometric parameters:

f =
1

2π

√
keq

meq
=

1
2π

√
F

mmass ∑n
i=1 8δi1

(14)

Other patterns of beams can be calculated with similar methods.

δi1 =
1
2

F(L2 − L1)

[
D2

GIp
+

L2
2 + L2

1 + L1L2

3EIs

]
=

1
2

FL2

(
D2

GIp
+

L2
2

3EIs

)
(15)

δ6 =
n

∑
i=1

12δi1 (16)

δi1 =
1
2

F(L2 − L1)

[
D2

GIp
+

L2
2 + L2

1 + L1L2

3EIs

]
=

1
2

FL2

(
D2

GIp
+

L2
2

3EIs

)
(17)

δ8 =
n

∑
i=1

16δi1 (18)

δc =
1
2

F(L2 − L1)

[
D2

GIp
+

L2
2 + L2

1 + L1L2

3EIs

]
= πDF

[
D2

GIp
+

(2πD)2

3EIs

]
(19)

From Equations (10) and (14), we understand that reducing the width and thickness
of the cantilever beams can lower the resonant frequency of the switch. However, this
paper will not focus on such parameters as they are mainly determined by fabrication
ability. Here, we mainly focus on the impact of different patterns. Proper patterns can
increase the mass of the proof mass and the length of the cantilever beams, which also lead
to a lower resonant frequency and a lower acceleration threshold, as Equation (14) shows.
The resonant frequencies of the switches with different shapes of beams are calculated in
MATLAB 2017 (Natick, MA, USA), as shown in Figure 5; the size of each switch is limited
in 6 ∗ 6 mm; the thickness of beams and the proof-mass is set at 50 µm; and the width
and intervals of the adjacent beams are set at 40 µm and 20 µm separately, which are out
of fabrication consideration. The resonant frequency of the switch with the square spiral
beams is the lowest, while the switch with the circle spiral beams is the highest. The reason
for such results is because the square spiral pattern has a lower stiffness of beams and
a larger mass because of the greater utilization of space. The switch with the three-turn
square spiral beams achieves the lowest resonant frequency 31 Hz, which is only 56% of
the lowest resonant frequency of the circle spiral pattern.
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However, the disadvantage of the square spiral pattern is the stress concentration at
its corners, which may cause the switch to break during fabrication or use. Chamfers are
added at the corners of the beams in order to solve this problem, as shown in Figure 6a.
COMSOL Multiphysics 5.4 (Stockholm, Sweden) simulation results of the stress distribution
are shown in Figure 6b,c. Details of simulation are described in Appendix A. The maximum
stress at the corners of the square spiral pattern is over 10.6 MPa, yet that of the circle spiral
pattern is only 3.4 MPa. If chamfers are added at corners of the square spiral beams, the
maximum stress at the corners will decrease to 6.6 MPa, as shown in Figure 6c.
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The resonant frequencies and maximum displacements of the proof mass relative
to the basement are also simulated, as shown in Figure 7. The amplitude of excitation
is 0.01 g and the damping ratio is 0.1 in the simulation model. The damping ratio is an
approximation that is obtained by comparing measurement results for the proof mass
displacement with the simulation results. The geometric parameters of the devices are
shown in Table 2. All of the devices are designed as two spiral beam circles around the proof
mass. The switch with chamfered beams has little to sacrifice in the resonant frequency
and the maximum displacement compared to the square spiral pattern switch, as shown
in Figure 7. The maximum stress at the corner is decreased by nearly 40%, as shown in
Figure 6. As a result, the square spiral pattern with chamfered corners is a better design, as
it reaches a balance between a low resonant frequency and a low stress concentration.

Table 2. Geometric parameters.

Description Value

Side length of device 6 mm
Thickness of mass 50 µm

Beam thickness 50 µm
Beam width 40 µm

Interval of beams 20 µm
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Another fatal factor that prevents the MEMS structure from resonating at a low
frequency is that the first-order eigenfrequency and the second-order eigenfrequency may
become too close to influence the vibration direction of the silicon proof mass. The reason
for this is because the limited volume of the MEMS device makes the out-of-plane stiffness
and the in-plane stiffness of the silicon beams become close. The hollow beam is used
here to separate the first-order eigenfrequency from the second-order as it enlarges the
in-plane stiffness of the beams with little influence on the out-of-plane stiffness, as shown
in Figure 8. The simulation results of the eigenfrequencies are shown in Figure 9. The
first-order eigenfrequency of the normal beam switch is 38.6 Hz and the second-order
eigenfrequency is 50.2 Hz, which are too close. Figure 9b shows the simulation results after
the hollow beams are used in the device. The second-order eigenfrequency changes from
50.2 Hz to 93.6 Hz, while the first-order eigenfrequency stays at around 40 Hz.
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3. Fabrication

The overall device fabrication comprises fifteen steps, as shown in Figure 10. A silicon
wafer with a thickness of 400 µm was used in the fabrication. After initial cleaning, the
wafer was wet etched 200 µm to form a cavity for the proof mass moving. Chromium and
gold were deposited and patterned on the cavity surface of the silicon wafer, with 50 nm
and 350 nm thicknesses, respectively, by evaporation and the lift-off process. The size of the
electrode is 3 mm × 3 mm. The 50 nm-thick chromium and 350 nm-thick gold were also
deposited and patterned on a 500 µm-thick glass substrate to form fixed electrodes. The
two parallel fixed electrodes were designed as a special shape for better contact, as shown
in Figure 1. The glass substrate was wet etched 0.7 µm in the next step in order to prevent
the silicon proof mass from adhering to the glass substrate after it was released. Then, the
silicon wafer was bonded onto the glass substrate. This was followed by chemical polishing
in order to thin the silicon wafer down to 250 µm thickness. Finally, an inductively coupled
plasma (ICP) etching was used on the silicon wafer in order to release the device forming
the graphics of the switch.
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An optical photograph and SEM image of the switch are shown in Figure 11. The structure
of the switch was released without damage or adhesion. The proof mass sags 163 µm under the
gravity measured by a white light interferometer, which is 4.9% deviated from the simulated
value 155 µm. The experimental result is basically the same as the simulated result.
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resonant acceleration switch.

4. Testing

A piezoelectric stack (THORLABS, Newton, United States) and a Laser Doppler Vi-
brometer (LDV, Polytec, Karlsruhe, Germany) were used to measure the dynamic behavior
of the switch. The LDV system measures the out-of-plane absolute displacement of the
proof mass when the device is excited by a piezoelectric stack. The input voltage of the
piezoelectric stack is recorded at the same time in order to calculate the absolute dis-
placement of the substrate. The experimental set is shown in Figure 12a. The relative
displacement Z can be calculated by the absolute displacement of the proof mass minus
the absolute displacement of the substrate.

Micromachines 2022, 13, x 11 of 15 
 

 

 
(a) (b) 

Figure 12. (a) The experimental setup of the piezoelectric stack; (b) comparison of the simulation 
result and the experimental result of the relative displacement versus the excitation frequency. 

The electrical performance was tested with the apparatus shown in Figure 13. The 
switch was affixed flatly on the moving element of a BRÜEL & KJÆR Mini-shaker Type 
481. The direct current power source and the reference resistor were connected to the 
switch in series to measure the electrical characteristics, as shown in Figure 13b. The 
switch is closed when the voltage on the reference resistor is over 2 V, while the voltage 
output of the power source is 3.1 V. The minimum acceleration when the switch is closed 
is the acceleration threshold. 

 
(a) (b) 

Figure 13. (a) The experimental setup of the shaker system; (b) test circuit of the electrical perfor-
mance. 

The experimental results at the excitation frequency from 33 Hz to 59 Hz are shown 
in Figure 14a. The acceleration threshold is under 39.3 Hz, the excitation is 0.074 g and the 
threshold is lower than 0.15 g under excitation with 37–41 Hz frequency. The experimental 
acceleration threshold is higher than the simulation result. However, the dynamic behav-
ior of the proof mass (movable electrode) is basically consistent with the simulation results. 
It can be speculated that when the acceleration of excitation is small, although the movable 
electrode can move to the fixed electrode, the contact force between the electrodes is in-
sufficient, resulting in a large contact resistance of the switch, which is not completely 
closed. Only when the acceleration of the excitation increases to bring in sufficient contact 
force, the contact resistance of the switch is reduced to below 300 Ω and the voltage across 
the reference resistor can exceed 2 V, which means the switch is closed. 

Figure 12. (a) The experimental setup of the piezoelectric stack; (b) comparison of the simulation
result and the experimental result of the relative displacement versus the excitation frequency.

As shown in Figure 12b, the amplitude–frequency characteristics were measured in
the air while excitation of the switch is 0.01 g at the different frequencies. The resonant
frequency of the switch is 39.3 Hz, a 3% deviation from the simulation result 40.5 Hz. The
maximum relative displacement between the proof mass and the substrate is 16.7 µm, a
6.6% deviation from the simulation result, which was 17.8 µm. The experimental result is
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basically consistent with the simulated value. The deviation is speculated to be caused by
fabrication errors, which lead to narrowed cantilever beams. Compared with the simulation
results, the experimental result also verifies that the resonant frequency of the switch under
this pattern is lower than that of other patterns under the same processing level and the
same occupied area.

The electrical performance was tested with the apparatus shown in Figure 13. The switch
was affixed flatly on the moving element of a BRÜEL & KJÆR Mini-shaker Type 481. The
direct current power source and the reference resistor were connected to the switch in series
to measure the electrical characteristics, as shown in Figure 13b. The switch is closed when
the voltage on the reference resistor is over 2 V, while the voltage output of the power source
is 3.1 V. The minimum acceleration when the switch is closed is the acceleration threshold.
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The experimental results at the excitation frequency from 33 Hz to 59 Hz are shown in
Figure 14a. The acceleration threshold is under 39.3 Hz, the excitation is 0.074 g and the
threshold is lower than 0.15 g under excitation with 37–41 Hz frequency. The experimental
acceleration threshold is higher than the simulation result. However, the dynamic behavior
of the proof mass (movable electrode) is basically consistent with the simulation results. It
can be speculated that when the acceleration of excitation is small, although the movable
electrode can move to the fixed electrode, the contact force between the electrodes is
insufficient, resulting in a large contact resistance of the switch, which is not completely
closed. Only when the acceleration of the excitation increases to bring in sufficient contact
force, the contact resistance of the switch is reduced to below 300 Ω and the voltage across
the reference resistor can exceed 2 V, which means the switch is closed.

To verify the speculation above, the contact resistance and ON time of the switch
were also measured by the test system in Figure 13a. The frequency of excitation was
set as 39.3 Hz. When the switch was stimulated, voltage across the reference resistor was
collected to calculate the contact resistance using Equation (17).

Vre f

Rre f
=

V − Vre f

Rcon
(20)

Where Vre f and Rre f are voltage on the reference resistor and its resistance, respectively.
Rcon is the contact resistance and V is the output voltage of the DC power supply (UNI-T,
Dongguan, China). As the experimental results show in Figure 14b, the contact resistance
decreases as the excitation acceleration increases and the ON time increases at first and
then decreases. When the acceleration of the excitation is 0.103 g, the ON time reaches its
maximum value, which is 280 µs. When the excitation acceleration exceeds 0.116 g, the
contact resistance is less than 50 Ω. Such results show that the contact resistance is closely
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related to excitation acceleration, which explains the difference between the simulation
threshold and the experimental threshold.

The switch was also tested under vibration with multi-frequency. The test system is the
same as in Figure 13, the acceleration of the standard accelerometer and the voltage across
the reference resistor were collected. Figure 15 shows the test results under excitation with
(a) 25 Hz and 50 Hz, and (b) 25 Hz, 40 Hz and 50 Hz. The maximum value of the excitation
acceleration in each test remains consistent with a peak value of 0.28 g. The experimental
results show that the device has the ability to screen out the vibration component with a
specific frequency in the multi-frequency excitation, which is the resonant frequency of the
switch. In this experiment, the switch could not be closed under excitation without a 40 Hz
vibration component and could be closed under excitation with a 40 Hz vibration component.
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Figure 14. (a) Comparison of the simulation result and the experimental result of the acceleration
threshold versus the excitation frequency; (b) experimental results of the contact time and the contact
resistance versus the excitation acceleration.
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Figure 15. Experimental result of the voltage across the reference resistor and the excitation accelera-
tion in time domain: (a) 25 Hz and 50 Hz excitation; (b) 25 Hz, 40 Hz and 50 Hz excitation.

When the switch is connected to a sensor node, as shown in Figure 16a, the wireless
microcontroller of the sensor node will be powered off in its standby state. The circuit
schematic of such a sensor node is shown as Figure 16b. To overcome the disadvantage
that the switch cannot keep its closingstate, a low dropout regulator (LDO) LD39050 (Stmi-
croelectronics, Geneva, Switzerland) is used in the sensor node. The capacitor connected
with the MEMS switch will be charged as the switch closes when the specific vibration
is detected, then the LD39050 will awaken and power the wireless microcontroller. The
sensor node was tested using the test system shown in Figure 13. The test results of the
sensor node’s power supply current are shown in Figure 16c. The average standby current
of the whole sensor node is 4.09 nA, so that the power consumption is only 14.7 nW. A
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working mode that uses the acceleration switch as a vibration detector reduces the standby
power consumption of the sensor nodes by a great extent.
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5. Discussion

From the results of the experiment, we understand that the proposed switch still has
some limitations, such as the contact characteristics. The contact resistance of the switch is
larger than 50 Ω when the acceleration is lower than 0.116 g. The contact of the electrodes is
unstable as the movable electrode needs to contact the two fixed electrodes at the same time
for conduction to occur. In the future, the contact process of the switch will be analyzed and
optimized. Further applications of the switch will also be explored, such as the combinations
of switches using AND and OR logic to detect complicated vibration signatures.

6. Conclusions

In this paper, a resonant acceleration MEMS switch aiming for a low-g acceleration
threshold and a low resonant frequency was designed, fabricated and tested. The patterns
and geometric dimensions of the switch were designed for a low threshold and a reso-
nant frequency. The stress concentration and eigenfrequencies were also simulated and
optimized. The acceleration threshold of the proposed switch was 0.074 g. The resonant
frequency turned out to be as low as 39.3 Hz. The standby power consumption of the
switch was zero power as it was physically opened in its standby state. The switch was
demonstrated to be able to work in a completed sensor node that responded to vibration
with specificcharacteristics.
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Appendix A

Detailed Simulation
The simulation was conducted using COMSOL Multiphysics. Firstly, gravity was

loaded onto the whole device. Then, a sinusoidal prescribed acceleration was added onto
the anchor of the cantilever beams for the simulation vibration excitation. A free tetrahedral
mesh was used in the model. Finally, we studied the performance of the switch in a
stationary, frequency domain and using time dependent steps.
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