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Abstract: Epidermal electronic systems (EESs) are a representative achievement for utilizing the
full advantages of ultra-thin, stretchable and conformal attachment of flexible electronics, and
are extremely suitable for integration with human physiological systems, especially in medical
hyperthermia. The stretchable heater with stable electrical characteristics and a uniform temperature
field is an irreplaceable core component. The inorganic stretchable heater has the advantage of
maintaining stable electrical characteristics under tensile deformation. However, the space between
the patterned electrodes that provides tensile properties causes uneven distribution of the temperature
field. Aiming at improving the temperature distribution uniformity of stretchable thermotherapy
electrodes, an orthotropic heat transfer substrate for stretchable heaters is proposed in this paper. An
analytical model for transient heat conduction of stretchable rectangular heaters based on orthotropic
transfer characteristics is established, which is validated by finite element analysis (FEA). The
homogenization effect of orthotropic heat transfer characteristics on temperature distribution and its
evolutionary relationship with time are investigated based on this model. This study will provide
beneficial help for the temperature distribution homogenization design of stretchable heaters and the
exploration of its transient heat transfer mechanism.

Keywords: orthotropic substrate; transient heat conduction; stretchable rectangular heater; uniform
temperature distribution

1. Introduction

As a representative of flexible electronics [1–4], the epidermal electronic system
(EES) [5,6] is a remarkable achievement that utilizes the full advantages of ultra-thin,
stretchable and conformal attachment, and is extremely suitable for integration with human
physiological systems. Among the many EESs with various functions [7,8], the structure
and function of the flexible epidermal heater are relatively simple, but it has an indispens-
able wide range of applications [9,10]. Especially in medical epidermal hyperthermia [11],
it plays an irreplaceable role, for example, hyperthermia accelerates wound healing [12,13],
subcutaneous tissue tumor treatment [14], heat control drug release [15], etc.

Flexible epidermal heaters have two flexibility strategies, i.e., material flexibility inno-
vation and structure flexibility innovation, which are utilized in most flexible electronics
and systems [16,17]. The device fabrication strategy of flexible material, namely organic
flexible electronics, mainly includes the highly elastic polymer materials filled with high-
conductivity nanowires or nanoparticles [18,19], stretchable organic polymers with high
conductive properties [20,21], two-dimensional high-conductivity materials [22], etc. Bene-
fitting from the intrinsic flexibility of the material, devices based on this fabrication strategy

Micromachines 2022, 13, 1324. https://doi.org/10.3390/mi13081324 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13081324
https://doi.org/10.3390/mi13081324
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-1912-1967
https://doi.org/10.3390/mi13081324
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13081324?type=check_update&version=1


Micromachines 2022, 13, 1324 2 of 12

have excellent stretchability properties. However, their obvious limitation is that the tensile
deformation will lead to the slippage of the fibers and micro-nano components in the
polymer matrix materials, which will make the electrical resistance vary dramatically under
stretching conditions. This leads to serious deterioration of the electrical properties of
the devices with flexible deformation. As for the flexible epidermal heater, the perfor-
mance degrading will lead to the mismatch between the temperature distribution and the
design value. Inorganic EESs, based on the fabrication strategy of flexible packaging of
patterned electronics, can transform large structural deformation into small strain through
thinned rigid material and malleable structural design, thus significantly improving the
stretchability of the devices and simultaneously providing excellent electrical properties
of metal-based or semiconductor-based inorganic electronics [23–25]. The electrical per-
formance of flexible epidermal heaters based on this approach will not deteriorate or
drift significantly with the flexible deformation. In order to ensure extensibility perfor-
mance, there is a certain spacing between the patterned electrodes of the flexible epidermal
heater [26,27] which will bring a certain inhomogeneity to the temperature distribution of
the heater. The temperature distribution uniformity is an important index to measure the
function of hyperthermia heaters. Inhomogeneous temperature fields will make it difficult
to render an effective hyperthermia result. Areas that are too hot may cause thermal
damage to the epidermal tissue, while areas with low temperature may not be effective as
a hyperthermia treatment [26].

To address this problem, using the materials with orthotropic heat conduction charac-
teristics as the flexible substrate or encapsulation of the stretchable heater can significantly
improve the uniformity of temperature distribution [28–30]. Li et al. proposed the thermal
management design of inorganic light-emitting diodes (µ-ILEDs) with orthotropic substrate
and its integration with skin, which demonstrated excellent thermal management ability
verified by theoretical analysis [29,30]. Shi et al. proposed a thermal protection substrate
for wearable electronics based on orthotropic characteristics and phase change temperature
manipulation, which can reduce the peak temperature by more than 85% compared with
the conventional substrate [31]. The orthotropic thermal meta-material formed by the mate-
rials with significant thermal conductivity differences by the way of alternately stacking
arrangement has a splendid effect on heat flux manipulation [32]. The orthotropic substrate
with in-plane thermal conductivity larger than off-plane thermal conductivity can better
manipulate the heat flux uniformly diffused in all directions to the in-plane direction, so as
to realize the temperature distribution on demand. It is a solution with low micro-nano
fabrication process requirements and terrific thermal management effect, which has been
utilized in the temperature distribution regulation of the flexible electronics heat transfer
system [33]. For the heat conduction system of flexible epidermal heaters, the establishment
of the corresponding analytical heat conduction model is a convincing and systematic
approach to investigate the thermal manipulation effect [34–36]. In our pre-sequence work,
the steady-state heat conduction model of stretchable thermal heaters is established and the
factors affecting the temperature distribution are systematically investigated [37]. However,
for the heating system composed of flexible materials with low thermal conductivity, the
transient evolution model of temperature distribution variation with time makes more
sense to clarify the thermal transfer process.

Here, an analytical model is established for the orthotropic transient heat conduction
process of stretchable rectangular heat sources in order to investigate the heat flux ma-
nipulation mechanism and the temperature distribution homogenization effect with time
variation. The analytical model of the transient temperature distribution is deduced in
Section 2, based on Fourier heat conduction model and linear superposition principle. The
corresponding finite element analysis (FEA) verification is carried out in Section 3. The
parameters that affect the instantaneous temperature distribution uniformity are systemati-
cally investigated in this section. The conclusion and discussion are present in Section 4 of
the article.
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2. Analytical Modelling

The schematic diagram of the stretchable rectangular heater embedded in the hyper-
elastic materials is shown as Figure 1a. Considering the periodic structure of the heater, the
temperature distribution of the whole structure can be obtained by linear array of that of
the single repeatable unit heater with encapsulation and substrate, as shown in Figure 1b.
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Figure 1. (a) Schematic diagram of the stretchable rectangular heater embedded in the hyper-elastic
materials. (b) Explosion diagram of a single period heater with encapsulation and substrate.

In the analytical model, the planar heat source is used to model the stretchable heater,
because the cross-sectional thickness of the heater is much smaller than the cross-sectional
width and the length of the heater in the in-plane direction, as shown in Figure 2. The
coordinate origin of the analytical model is set at the geometric center of the single unit, as
shown in Figure 2a. Considering the geometric symmetry of the unit, a quarter of the heat
conduction model was selected for investigation, as shown in Figure 2b,c.
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Figure 2. (a) A single period schematic diagram of the stretchable rectangular heater. A quarter
schematic diagram of the heater (b) with encapsulation and substrate and (c) structural parameters.

The three-dimensional transient heat conduction in a quarter period of the stretchable
rectangular heater can be expressed askx1

∂2T
∂x2 + ky1

∂2T
∂y2 + kz1

∂2T
∂z2 = ρ1Cp1

∂T
∂t , 0 < z < z1, 0 < x < a, 0 < y < a,

kx2
∂2T
∂x2 + ky2

∂2T
∂y2 + kz2

∂2T
∂z2 + Q = ρ2Cp2

∂T
∂t , z1 < z < z2, 0 < x < a, 0 < y < a.

, (1)

where the heat flux density Q can be expressed by a series of independent variables, it can
be obtained as

Q = Q0Q1(x, y)Q2(z)Q3(t), (2)

where the Q0 is the surface heat flux density, Q2(z) = δ(z − z1) with δ denoting the Dirac
function, Q3 (t) represents the mode of the electronic. Q1(x, y) illustrates the effecting range
of the stretchable rectangular heater which can be divided into three parts with SI, SII
and SIII:

Q1(x, y) =
{

1, (x, y) ∈ (SI ∪ SII ∪ SIII),
0, (x, y) /∈ (>SI ∪ >SII ∪ >SIII).

(3)
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The natural convection boundary conditions are applied into the top and bottom
surface and the four sides are set as adiabatic boundary condition, which yields

kz1
∂T1
∂z

∣∣∣
z=0

= h1T1,

−kz2
∂T2
∂z

∣∣∣
z=z2

= h2T2,
∂Ti
∂x

∣∣∣
x=0, a

= 0, i = 1, 2,
∂Ti
∂y

∣∣∣
y=0, a

= 0, i = 1, 2.

. (4)

Considering the perfect contact at the interface of two layers, the heat continuity
condition can be written by kz1

∂T1
∂z

∣∣∣
z=z1

−
= kz2

∂T2
∂z

∣∣∣
z=z1

+
,

T1|z=z1
− = T2|z=z1

+ .
(5)

The initial temperature condition of the structure is set by

Ti|t=0 = 0 , i = 1, 2. (6)

In order to calculate the inhomogeneous equation in Equation (1), the homogeneous
equation should be taken into consideration at first, which giveskx1

∂2T
∂x2 + ky1

∂2T
∂y2 + kz1

∂2T
∂z2 = ρ1Cp1

∂T
∂t , 0 < z < z1, 0 < x < a, 0 < y < a,

kx2
∂2T
∂x2 + ky2

∂2T
∂y2 + kz2

∂2T
∂z2 = ρ2Cp2

∂T
∂t , z1 < z < z2, 0 < x < a, 0 < y < a.

. (7)

Based on the method of separation of variables, the solution of Equation (1) can be
obtained as

Ti(x, y, z, t) = Xi(x)Yi(y)Zi(z)Φi(t), i = 1, 2. (8)

Substituting Equation (8) in Equations (4), (5) and (7), the separation equations for the
function X(x) and Y(y) are

1
Xi(x)

∂2Xi
∂x2 = −ω2, 0 < x < a,

1
Yi(y)

∂2Yi
∂y2 = −ψ2, 0 < y < a,

∂Xi
∂x

∣∣∣
x=0, a

= 0, ∂Yi
∂y

∣∣∣
y=0, a

= 0, i = 1, 2.

, (9)

and the separation equation for Z(z) are

1
Z1(x)

∂2Z1
∂z2 = −ζ1

2 , 0 < z < z1 ,
1

Z2(x)
∂2Z2
∂z2 = −ζ2

2 , z1 < z < z2 ,

kz1
∂Z1
∂z

∣∣∣
z=0

= h1Z1,−kz2
∂Z2
∂z

∣∣∣
z=z2

= h2Z2,

Z1|z=z1
− = Z2|z=z1

+ , kz1
∂Z1
∂z

∣∣∣
z=z1

−
= kz2

∂Z2
∂z

∣∣∣
z=z1

+
.

. (10)

The separation equation for time item is

1
Φi(t)

∂Φi
∂t

= −λ2. (11)
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The coefficient can be obtained by Equation (8) as following

λ2 =
kz1

ρ1cP1

(
kx1

kz1
ω2 +

ky1

kz1
ψ2 + ζ1

2
)
=

kz2

ρ2cp2

(
kx2

kz2
ω2 +

ky2

kz2
ψ2 + ζ2

2
)

. (12)

Based on the boundary conditions in Equations (9) and (10), the common solutions for
X, Y and Z can be expressed as

X1n = X2n = cos(ωnx), ωn = nπ
a ,

Y1m = Y2m = cos(ψmy), ψm = mπ
a ,

Z1p = A cos(ζ1z) + B sin(ζ1z),
Z2p = C cos(ζ2z) + D sin(ζ2z).

(13)

By substituting ωn and ψm in Equation (13) into Equation (12), the eigenvalues ζ1 and
ζ2 can written by  ζ1 =

√
ρ1cp1

kz1
λ2

nmp −
kx1
kz1

( nπ
a
)2 − ky1

kz1

(mπ
a
)2,

ζ2 =
√

ρ2cp2
kz2

λ2
nmp − kx2

kz2

( nπ
a
)2 − ky2

kz2

(mπ
a
)2.

(14)

Substituting Z1p and Z2p into the separation boundary condition in Equation (10), it
can be obtained by:


−h1 kz1ζ1 0 0

0 0 kz2ζ2 sin(ζ2z2)− h2 cos(ζ2z2) −kz2ζ2 cos(ζ2z2)− h2 sin(ζ2z2)

cos(ζ1z1) sin(ζ1z1) − cos(ζ2z1) − sin(ζ2z1)

−kz1ζ1 sin(ζ1z1) kz1ζ1 cos(ζ1z1) kz2ζ2 sin(ζ2z1) −kz2ζ2 cos(ζ2z1)




A

B

C

D

 =


0

0

0

0

 (15)

By setting the coefficient A = 1, then the B, C and D can be calculated, and Z1p and Z2p can
be expressed as 

Z1p = cos(ζ1z) + h1
kz1ζ1

sin(ζ1z),

Z2p =
[
cos(ζ1z1) +

h1
kz1ζ1

sin(ζ1z1)
]

cos[ζ2(z− z1)]

+ kz1ζ1
kz2ζ2

[
h1

kz1ζ1
cos(ζ1z1)− sin(ζ1z1)

]
sin[ζ2(z− z1)].

(16)

From Equation (15), the eigenvalue equation including ζ1 and ζ2 can be calculated by

kz2ζ2 tan[ζ2(z2 − z1)]− h2

h2 tan[ζ2(z2 − z1)] + kz2ζ2
+ (

ζ1kz1

ζ2kz2
)(

kz1ζ1 tan(ζ1z1)− h1

h1 tan(ζ1z1) + kz1ζ1
) = 0 (17)

Therefore, the temperature increment satisfying the homogeneous governing equation
can be obtained as

Ti(x, y, z, t) =
∞

∑
p=1

∞

∑
n=0

∞

∑
m=0

Xn(ωnx)Ym(ψmy)Zip(z)Φ(t), i = 1, 2. (18)

Submitting Equation (18) into Equation (1), the following relation can be obtained:

∞
∑

p=1

∞
∑

n=0

∞
∑

m=0
Xn(ωnx)Ym(ψmy)Z1p(z)

(
∂Φ(t)

∂t + λ2Φ(t)
)
= 0

∞
∑

p=1

∞
∑

n=0

∞
∑

m=0
Xn(ωnx)Ym(ψmy)Z2p(z)

(
∂Φ(t)

∂t + λ2Φ(t)
)
= 1

ρ2cp2
Q

(19)

Based on the orthogonality of eigenfunctions, the operators S1 and S2 can be ex-
pressed as {

S1 = ρ1cp1
∫ a

0

∫ a
0

∫ z1
0 Xn(ωnx)Ym(ψmy)Z1p(z)dxdydz

S2 = ρ2cp2
∫ a

0

∫ a
0

∫ z2
z1

Xn(ωnx)Ym(ψmy)Z2p(z)dxdydz (20)
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Therefore, the equation about Φ(t) can be written by(
∂Φ(t)

∂t
+ λ2Φ(t)

)
=

FnmHp

Nn(ωn)Nm(ψm)Np
Q0, i = 1, 2, (21)

where
Fnm =

∫ a
0

∫ a
0 Xn(ωnx)Ym(ψmy)Q1(x, y)dxdy

=
∫W1

0 Xn(ωnx)dx
∫ a−W2

a−W2−∆t Ym(ψmy)dy

+
∫W1+∆t

W1
Xn(ωnx)dx

∫ a−W2
W2

Ym(ψmy)dy

+
∫ a

W1+∆t Xn(ωnx)dx
∫W2+∆t

W2
Ym(ψmy)dy

(22)

Hp =
∫ z2

z1

Z2p(z)Q2(z)dz = Z2p(z1) (23)

Nn(ωn) =
∫ a

0
X2

n(ωnx)dx =

{
a, ωn = 0

a/2, ωn 6= 0
(24)

Nm(ψm) =
∫ a

0
Y2

m(ψmy)dx =

{
a, ψm = 0

a/2, ψm 6= 0
(25)

Np = ρ1cp1

∫ z1

0
Z2

1p(z)dz + ρ2cp2

∫ z2

z1

Z2
2p(z)dz (26)

According to the initial condition in Equation (6), Φ(t) can be calculated by

Φ(t) =
Fnm Hp

Nn(ωn)Nm(ψm)Np
Q0Pnmp, (27)

where

Pnmp =
∫ t

τ=0
e−λ2

nmp(t−τ)Q3(τ)dτ =
1− e−λ2

nmpt

λ2
nmp

. (28)

Therefore, the temperature increment of the stretchable rectangular heater can by
expressed as

Ti(x, y, z, t) =
∞

∑
p=1

∞

∑
n=0

∞

∑
m=0

Q0
Xn(ωnx)Ym(ψmy)Zip(z)

Nn(ωn)Nm(ψm)Np
Fnm HpPnmp, i = 1, 2. (29)

3. Results and Discussion

The analytical model of transient heat conduction based on orthotropic characteristics
is verified by FEA in this section. The stretchable rectangular copper heater is encapsulated
in the middle layer by the encapsulation and the substrate, which are composed of 0.5 mm
thick silicone (e.g., Ecoflex00-10, Smooth-On, Inc., Macungie, PA, USA). The width and
thickness of the heater are 0.2 mm and 1 nm, respectively, as shown in Figure 2c. The
dimensions of structural parameters a, W1 and W2 marked in the figure are 3 mm, 1.4 mm
and 0.8 mm, respectively. The input power applied to the heater of one quarter period is
0.02 W, and the surface heat flux is 2.381× 104 W·m−2. The natural convective heat transfer
coefficient above the encapsulation layer and below the substrate is taken as 15 W·m−2·K−1.
The conductivity, density, and specific heat capacity of Ecoflex and copper used in this
model are 0.16 W·m−1·K−1, 1.07 × 103 kg·m−3, 1.7 × 103 J·kg−1·K−1 and 394 W·m−1·K−1,
8.92 × 103 kg·m−3, 0.39 × 103 J·kg−1·K−1, respectively. A 3D transient heat conduction
FEA model based on ABAQUS is established. The heater is discretized using a shell element
DS4 with a defined thickness of 1 nm. The encapsulation and substrate are discretized
using DC3C8 element. The element dimension of the whole model was set to a consistent
0.05 mm with a total number of 10,000, and the convergence of the simulation results was
verified. Compared with the much smaller unit size of 0.005 mm, the deviation of the
simulation results was less than 0.1%.
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The transient heat conduction characteristics of stretchable heater systems and the
homogenization effect of orthotropic characteristics on temperature distribution are inves-
tigated via above analytical and FEA models. Since the temperature distribution at the
interface between the heater and the skin is a main indicator for the hyperthermia effect, we
focused on the temperature results at the substrate bottom surface. For the substrate bottom
surface of the periodic stretchable heater, the temperature time evolution of the isotropic
and orthotropic heat conduction of the repeatable unit geometric center (point marked in
red in Figure 2b) are demonstrated in Figure 3a,b, respectively. For substrates with isotropic
heat conduction characteristics, the thermal conductivity in three directions is the same
0.16 W·m−1·K−1. For the orthotropic substrate, the thermal conductivity in the y-direction
is increased to 1.6 W·m−1·K−1, while the thermal conductivity in other two directions
remains unchanged. Here, the time when the temperature reaches 99% of the steady-state
temperature is defined as the steady-state time. The results of temperature evolution with
time shown in Figure 3 show that the steady-state temperature and steady-state time of
the geometric center at the bottom surface of the isotropic substrate are 66.9 ◦C and 292 s,
respectively. The steady-state temperature of the orthotropic substrate is 71.9 ◦C, and the
steady-state time is 256 s. The analytical model results and the FEA results are verified by
mutual matching.
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To show the effect of orthotropic substrates in improving the uniformity of temperature
distribution, Figure 4 demonstrates the transient temperature distributions variation of
isotropic and orthotropic substrates bottom surface (t: 60 s, 200 s and 400 s). As can
be seen from the temperature distribution of the orthotropic heat conduction substrate
in Figure 4a, the temperature distribution at different times has obvious inhomogeneity
with the temperature difference of over 10 ◦C. For the orthotropic substrate shown in
Figure 4b, under the same input power condition, the temperature distribution uniformity
is significantly improved, and the temperature difference seems to be no more than 3 ◦C.

In order to quantitatively investigate the effect of orthotropic substrate on improving
the uniformity of temperature distribution of stretchable heaters, Figure 5 demonstrates the
temperature distributions along the y-direction (x = 0 mm) and x-direction (y = 0 mm) of the
isotropic and orthotropic substrate bottom surface at different times (t: 60 s, 200 s and 400 s).
For the temperature distribution along the y-direction (x = 0 mm) path, the heat conduction
system of isotropic substrate at different times has the highest temperature at the heater
pattern metal and the lowest temperature at the geometric center of the unit. In 60 s, the
temperature varies from 49.9 ◦C to 38.7 ◦C, and the temperature difference is 11.2 ◦C. In
200 s, the temperature varies from 75.2 ◦C to 64.0 ◦C, and the temperature difference is
11.8 ◦C. In 400 s, the temperature varies from 78.0 ◦C to 66.8 ◦C, and the temperature differ-
ence is 11.2 ◦C. For the orthotropic heat conduction system, the temperature distribution
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and the difference along the y-direction (x = 0 mm) path varies significantly, and the highest
temperature point shifts to the edge of the unit. In 60 s, the temperature varies from 49.0 ◦C
to 47.0 ◦C, and the temperature difference is 2.0 ◦C. In 200 s, the temperature varies from
72.0 ◦C to 70.0 ◦C, and the temperature difference is 2.0 ◦C. In 400 s, the temperature varies
from 73.8 ◦C to 71.9 ◦C, and the temperature difference is 1.9 ◦C. In the three selected times,
the temperature difference decreased from more than 11 ◦C to 2 ◦C and below, with a
reduction ratio of more than 82%. The results indicate that the orthotropic heat conduction
strategy of increasing the thermal conductivity in the y-direction has a markable effect on
the homogenization of the temperature distribution in the y-direction of the stretchable
heater. The temperature distribution uniformity along the x-direction (y = 0 mm) path
of the substrate with different heat conduction strategies also shows obvious differences.
For the isotropic substrate, the temperature difference at three times is about 8.3 ◦C (60 s:
47.0 ◦C to 38.7 ◦C; 200 s: 72.3 ◦C to 64.0 ◦C; 400 s: 75.1 ◦C to 66.8 ◦C). For the orthotropic
substrate, the difference drops to about 3.8 ◦C (60 s: 50.8 ◦C to 47.0 ◦C; 200 s: 73.8 ◦C to
70.0 ◦C; 400 s: 75.7 ◦C to 71.9 ◦C), with a reduction ratio of around 54%. This indicates
that increasing the thermal conductivity in the y-direction can improve the temperature
distribution uniformity in the x-direction, but the homogenization effect is inferior to that
in the y-direction.
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Since the temperature difference is the main index we are most concerned about, we
extract the evolution of the maximum temperature and the minimum temperature at the
bottom isotropic and orthotropic substrate surface with time, and then obtain the evolution
of the temperature difference with time, as shown in Figure 6. The results demonstrated
in Figure 6a show that the orthotropic heat conduction strategy can reduce the maximum
temperature and increase the minimum temperature of the substrate surface, thereby
achieving the purpose of reducing the temperature difference and homogenizing the
temperature distribution. The temperature difference decreases from 11.8 ◦C to 4.0 ◦C, and
the time for the temperature difference to reach stability is shortened from 22 s for isotropic
conduction to 10 s for orthotropic conduction, as shown in Figure 6b. This indicates
that the orthotropic heat conduction of the stretchable heater is a beneficial strategy for
improving the temperature uniformity and accelerating the heat transfer system to reach
the steady state.
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difference with time at the bottom isotropic and orthotropic substrate surface.

As it is concluded in Figure 5, increasing the thermal conductivity in the y-direction
does not demonstrate the same effect of temperature homogenization in the x-direction
and the y-direction. In order to systematically explore the influence of thermal conductivity
in x and y directions on temperature distribution, the evolution of temperature with
time and thermal conductivity ratio ky/kx is calculated, as shown in Figure 7, including the
temperature extremum evolution and the corresponding temperature difference. According
to the conclusion obtained in Figures 3 and 6, the time for the transient heat transfer system
to reach the steady state exceeds 200 s, while the time for the temperature difference to
reach the stable state is much shorter. The steady-state temperature difference value with
different thermal conductivity ratios is marked in Figure 7b. With the increment of thermal
conductivity ratio ky/kx from 1 to 10, the time for the temperature difference to reach the
steady state is reduced from 22 s to 12 s (ky/kx: 1 to 6), and then remains basically stable
(ky/kx: 6 to 10). The steady-state temperature difference decreases continuously with the
increase in the thermal conductivity ratio, from 11.7 ◦C to 4.0 ◦C.
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Figure 7. Evolution of (a) the maximum and minimum temperatures and (b) the temperature
difference with time and the ratio of ky/kx at the substrate bottom surface.

Further, the evolution of temperature with time and thermal conductivity ratio kz/ky
is plotted in Figure 8 to explore the influence of off-plane (i.e., z-direction) thermal con-
ductivity on enhancing the uniformity of temperature distribution. With the increment
of thermal conductivity ratio kz/ky from 1 to 10, the time for the temperature difference to
reach the steady state is slightly reduced from 22 s to 17 s. The steady-state temperature
difference increases from 11.7 ◦C to 15.0 ◦C with the increase in the thermal conductivity
ratio, which indicates that the temperature distribution uniformity is further deteriorated.
The reason for this phenomenon is that the in-plane thermal conductivity of the substrate
remains unchanged, the off-plane thermal conductivity is increased, and the heat flow
is regulated to the off-plane direction, resulting in the temperature distribution on the
bottom substrate surface much more easily influenced by the patterned configuration of
the stretchable heater.
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4. Conclusions

This paper proposes an analytical model for transient heat conduction of stretchable
rectangular heaters based on orthotropic transfer characteristics, which is validated by FEA.
The orthotropic heat transfer characteristics are utilized to enhance the temperature inho-
mogeneity of inorganic stretchable heaters, which is caused by the space of the patterned
stretchable electrodes. The temperature distribution at the interface with the skin is the
key to the effect of the hyperthermia electrode. This paper focuses on the temperature
distribution at the bottom substrate surface of the stretchable heater and its evolution with
time. The results show that increasing the thermal conductivity in the y-direction can signif-
icantly improve the uniformity of temperature distribution during the heating process, and
the uniformity effect in the y-direction is better than that in the x-direction. This orthotropic
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heat transfer strategy can significantly shorten the time for temperature difference to reach
the steady state. Furthermore, the influence of thermal conductivity ratios in different
directions (ky/kx and kz/ky) on temperature distribution and time evolution is investigated.
Increasing the thermal conductivity in the in-plane direction is helpful to improve the
uniformity of temperature distribution, while increasing the thermal conductivity in the
off-plane direction has the contrary effect. The establishment of a transient heat transfer
model in this paper and the investigation of temperature homogenization effect based on it
have valuable guiding significance for the structure design of stretchable heaters and the
mechanism research of transient heat transfer process.
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