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Abstract: Micromechanical resonant accelerometers based on electrostatic stiffness have the advan-
tage of it being possible to adjust their sensitivity by changing the detection voltage. However, there
is a high-order nonlinear relationship between the output frequency and the induced acceleration,
so it is difficult to obtain the theoretical basis to guide the microstructure design. In this study, the
dynamic equation for this type of accelerometer was established under the condition of the stiffness
of the folded beams being much less than that of the resonant beams. The sensitivity was obtained
first, and then silicon-based microstructures were fabricated, for which metal tube-shell vacuum
packaging was adopted. The two static driving capacitances were about 0.88 pF, and the detection
capacitances were about 0.38 pF in the experimental test. The sensitivity was 44.5 Hz/g when the
detection voltage was 1 V, while it was greater than 300 Hz/g when the detection voltage was 3 V.
With an increase in the detection and driving voltages, a coupling phenomenon occurred between
the vibration amplitude and frequency of the resonant beam. The double-stage folded beam failed at
a high detection voltage larger than 10 V. Through the experiment, a numerical simulation model for
the accelerometer was established, providing the basis for a closed-loop control circuit design.

Keywords: accelerometer; resonant frequency; electrostatic stiffness; sensitivity

1. Introduction

Electrostatic negative stiffness is widely used in the modal frequency matching of
micro-machined gyroscopes and resonant accelerometers [1,2]. After conducting mi-
crostructure fabrication, designers can tune the sensitivity of an accelerometer through
electrostatic negative stiffness [3]. The magnitude of the electrostatic negative stiffness is
related to the parameters of plate capacitance and loading voltage [4]. Electrostatic stiffness
resonant accelerometers mainly rely on two types of acceleration—the change in plate
facing area [5,6] and plate distance [7,8]. The area change type is an out-of-plane twist of
the microstructure beam, while the plate distance change type is an in-plane movement of
the microstructure beam; the former is more nonlinear than the latter. When electrostatic
negative stiffness is applied to accelerometer design, two movable micromechanical beams
are required [9]: one is a resonant frequency-sensitive beam, and the other is a movable
micromechanical beam that generates electrostatic negative stiffness. Both micromechan-
ical beams are portable; therefore, calculating the negative electrostatic stiffness directly
is difficult.

Due to the nonlinear relationship existing between the resonant frequency and the
stiffness of the micromechanical beam [10], directly obtaining the sensitivity, which intro-
duces complications in the structural design, is also difficult. As the electrostatic stiffness is
generated by the DC voltage loaded on the plate capacitor, a change in acceleration will
change the plate distance. An extremely large loading voltage will cause the plate to pull
in and cause the microstructure beam to fail [11]. In the design stage, attention should be
paid to the pull-in voltage of the plate [5]. The electrostatic stiffness resonant accelerometer
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can be used to realize the conversion of the loaded voltage into the electrostatic driving
force through the interface capacitance [3,12]. Following driving and detection capacitance
design is a necessary part of structural design [13]. Due to the parasitic capacitance be-
tween the microstructures [7], the driving electrode directly couples the driving voltage
signal to the detection electrode, meaning that an open-loop test cannot be used to directly
determine the resonant frequency. On the one hand, modulation and demodulation circuits
need to be used; on the other hand, the parasitic capacitance needs to be reduced in the
structural design.

This study introduces the principle of a resonant accelerometer based on electrostatic
negative stiffness and proposes a structural design principle under the condition of stiffness
constraints. Finite element simulation is used to validate the stiffness constraints, and the
size of the interface detection capacitance and drive capacitance is obtained simultaneously.
Static capacitance tests are conducted on the tape-out and packaged accelerometers, and a
frequency sweep test is carried out with a dynamic signal analyzer to validate the effect of
the DC voltage on the sensitivity. At the same time, the large detection voltage makes the
deformation of the double-stage folded beam irreversible, and the large driving voltage
used results in the coupling of the amplitude and the resonant frequency of the resonant
beam. With the computer dimension measurement method, the numerical simulation
model of the accelerometer is established, which provides the basis for the subsequent
design and experimentation of the control circuit.

2. Principle of Accelerometer

The accelerometer structure layer is divided into two identical single-beam resonant
accelerometers at the middle symmetry point in the Y-axis direction, as shown in Figure 1.
Taking the upper part as an example, the structure layer includes a sensitive proof mass
with some damping holes, four folded beams (single or double stage) supporting the
suspended proof mass, a detection plate capacitor pair, two fixed-drive comb capacitor
pairs, a tuning fork resonant beam, and some fixed anchors(two anchors at the detection
end, two anchors for the driving comb, and two anchors for the double-end tuning fork).
The Y-axis direction is the drive and detection direction.
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Figure 1. Structural diagram of an accelerometer.

The equivalent diagram of one accelerometer (Figure 2) shows that the folded beams
are the sensing beams, and the two folded beams are a group. The tuning fork beam is
the resonant beam. The flat plates attached to the mass and the flat plates attached to the
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tuning fork beam form detection capacitor pairs, and the driving combs attached to the
tuning fork beam and the driving combs attached to the anchor form drive capacitor pairs.
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Figure 2. Equivalent diagram of an accelerometer.

Folded beams and proof-mass structural connect with detection voltage Vs. Both the
driving combs and the active tuning fork beam link with a driving voltage Vd + Va sin ωt.
The tuning fork beam potential is 0. The dynamic equation of the resonant beam is [14]:

m
..
y + ξ

.
y + ky = Fd + Fe (1)

In Formula (1), y is the modal displacement of the tuning fork beam, Fd is the elec-
trostatic driving force, k is the effective mechanical stiffness of the tuning fork beam, m
is the equivalent mass, and the damping coefficient is ξ. Fe is the electrostatic force of
the detection plate capacitance acting on the resonant beam. The total capacitance of the
detection plate is:

Cs =
εNhl

d0 − y1
=

εS
d0 − y1

(2)

In Formula (2), N represents the pairs of the parallel plate capacitance, d0 is the initial
distance between the two plates of the detection capacitor, y1 is the displacement of the
folded beam in the Y-axis direction, ε is the dielectric constant, h is the overlapping thickness
of the capacitor plates along the Z-axis direction, l is the overlap length of a single capacitor
along the Y-axis direction, and S = Nhl is the equivalent area of the two plates of the
detection capacitor.

The electrostatic force Fe is

Fe = ∑
1
2

∂Cs

∂y1
V2

s =
NεlhV2

s
2

(
1
d2

0
+

2y1

d3
0
+ o
(

y2
1

)
) (3)

The total capacitance of the drive comb Cd is

Cd =
N0εh(l0 + y)

d1
(4)

In Formula (4), N0 represents the pairs of capacitances of the driving comb, l0 is the
overlapping length of combs in the Y-axis direction, d1 is the distance between the comb
and the next comb in the X-axis direction,Vd is the DC driving voltage, and Va sin ωt is the
AC driving voltage. The electrostatic driving force Fd is

Fd = ∑
1
2

∂Cd
∂y

(Vd + Va sin ωt)2 =
1
2

N0εh
d1

(Vd + Va sin ωt)2 (5)
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Substituting Equations (3) and (5) into Equation (1) and ignoring the higher-order
terms of the electrostatic force, we have

m
..
y + ξ

.
y + ky =

1
2
=

N0εh
2d1

(Vd + Va sin ωt)2 +
εSV2

s

2d2
0

(6)

In Formula (6), the equivalent stiffness of the resonant beam ke f f is

ke f f = k− εSV2
s

d3
0

(7)

According to Formula (7), under the detection of a plate loaded with Vs, the corre-
sponding resonant frequency decreases when the equivalent stiffness of the resonant beam
decreases, and the level of reduction is related to Vs and d0. The resonant accelerometer
can be designed by establishing the relationship between the acceleration a in the Y-axis
direction and the initial distance d0.

According to Figure 2, the folded beams and the resonant beam were under an
acceleration effect, which made the solution for the distance d0 more complicated. The
equivalent stiffness ks was much smaller than the modal stiffness k, and the detection
proof mass ms was much larger than that of the resonant beam m. Under the action of
the electrostatic driving force, the resonant beam performedhigh-frequency sinusoidal
periodic vibration about the fixed equilibrium position, and the equivalent low-frequency
displacement was 0.

When the acceleration in the Y-axis direction is 0, for the detection capacitance system,

1
2

εSV2
s

(d0 − ∆d)2 = ks·∆d (8)

When the acceleration in the Y-axis direction is not 0, the following holds true:

1
2

εSV2
s

(d0 − (y1 + ∆d))2 = ks(y1 + ∆d)−ms·a (9)

In Equations (8) and (9), ∆d and y1 are the displacements of the folded beam and the
proof mass in the Y-axis direction when the acceleration is 0 and not 0, respectively. The
actual design should consider the pull-in effect of the plate capacitor; that is, the value d0
should be as large as possible, but if it is too large, the detection of the output signal will
become difficult. Generally, it will satisfy y1 + ∆d� d0. After expansion with the Taylor
series, the relationship between displacement y1 + ∆d and acceleration a can be obtained
as follows:

y1 + ∆d =
ms·a

ks − εSV2
s

d3
0

+

εSV2
s

2d2
0

ks − εSV2
s

d3
0

(10)

The resonant frequency fe of the resonant beam is:

fe =
1

2π

√√√√√ k− εSV2
s

(d0−y1)
3
(

1− −∆d
d0−y1

)3

m
(11)

where

∆d =

εSV2
s

2d2
0

ks − εSV2
s

d3
0

, y1 =
ms·a

ks − εSV2
s

d3
0

(12)
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Sensitivity η is expressed as

|η| ≈ δ fe

δa
≈ 3εSV2

s /2π√(
kd4

0 − εSV2
s d0
)
·m

ms

2ksd2
0 − 3εSV2

s /d0
(13)

where the frequency is related to the structural parameters and the detection voltage.
The sensitivity can be improved by adjusting the loading voltage Vs, but the sensitivity
is nonlinear with Vs. The greater the stiffness of the folded beam ks is, the smaller the
sensitivity will be. It is necessary to configure the parameters reasonably in the structural
design. The preceding analysis was conducted under the condition ks � k—that is, the
influence of the tuning fork beam on the resonant frequency due to the electrostatic force
and inertial force can be ignored.

3. Structural Design of Accelerometer

Theoretical analysis shows that when the stiffness of the folded beam is much lower
than that of the resonant beam, the influence of the vibration displacement of the resonant
beam on the detection capacitance can be ignored, and this constraint should be considered
in the structural design. The tuning fork resonant beam and its connecting parts are
shown in Figure 3. The dimensions of each key position are marked with symbols, and the
stiffness and equivalent mass of the resonant beam corresponding to the operating mode
can be calculated.
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For a double-ended tuning fork (DETF) beam, the stiffness k and equivalent mass m
can be expressed as

k =
256E×W3 × h

15L3 (14)

m =
128
315

ρ× L×W × h + ρ× Aact × h (15)

In Formula (15), the in-plane effective area of the additional plate Aact is

Aact = L1 ×W1 + L2 ×W2 + n1 × L3 ×W3 + n2 × (L4 ×W4 + n3 × L5 ×W5) (16)

In Formulas (14)–(16), E is the Young’s modulus of silicon, ρ is the density, Aact is the
area of the additional structure, n1 is the number of comb capacitors, n2 represents the
pairs of parallel plate capacitances, n3 is the number of parallel plate capacitors, and other
parameters are as shown in Figure 3.
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In the simulation, attention was paid to the influence of the length L and width W of
the tuning fork beam on the resonant frequency. Finite element simulation of the resonator
structure was performed using CoventorWare software [15]. First, the 3D model was
constructed according to the microstructure’s ideal process flow, and the resonant beam’s
anchor points were constrained to be fixed, and then the modal simulation of the resonator
structure was carried out. The first-order in-plane mode of the resonant structure is shown
in Figure 4. When the length of the tuning fork beam was 700 µm and the width was 8 µm,
the theoretically calculated resonant frequency was 38,296 Hz, the simulated frequency was
35,136.1 Hz, and the error was 8.99%. The stiffness of the resonance beam obtained from the
simulation was 153.04 N/m and the theoretically calculated stiffness was 163.0439 N/m.
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Figure 4. Finite element simulation of resonator.

The detection proof mass system consisted of a sensitive proof mass with damping
holes, four folded beams (single-or double-stage), and additional parallel plates. The
dimension symbols are shown in Figure 5.
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When the straight beam L6 is much longer than the connecting beams L8 and LX,
ignoring the influence of the connecting beam, the values of stiffness corresponding to the
single-stage ks1 and double-stage folded beams ks2 are

ks1 =
2× E× w3

6 × h
L3

6
(17)
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ks2 =
E× w3

6 × h
L3

6
(18)

According to Equations (17) and (18), ignoring the influence of the connecting beams,
when the length and width of the straight beams are the same, the stiffness of the double-
stage folded beam is half that of the single-stage folded beam. When the length of the single
beam is 445 µm and the width is 4 µm, the stiffness of the single-stage folded beam can
be calculated to be 10.31 N/m, and that of the corresponding double-stage folded beam
is 5.15 N/m, making the modal stiffness of the resonant beam k more than 15 times the
stiffness of the single-stage folded beam ks1 and the stiffness of the double-stage folded
beam ks2. After completing the 3D modeling of the microstructure in CoventorWare
software, the force analysis of the sensing structure was performed to obtain the fold
beam’s simulation stiffness, and the detection end anchor points were fixed, as shown in
Figure 6. Different accelerations in the sensitive direction to simulate the force Fs were
applied, the displacement x in the sensitive direction was measured, and the expression
ks = Fs/x obtained the simulation stiffness of the fold beam ks, When the acceleration is
1 g, the simulation results are shown in Figure 7. The displacement results obtained after
applying different accelerations in the X-axis direction (sensitive direction) are shown in
Tables 1 and 2. According to the simulation results, the stiffness of the folded beam under
the experiment was9.4398 N/m and 5.1127 N/m, respectively. The relative errors from the
theoretical stiffness were 8.44% and 0.71%, respectively.
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Table 1. Static force analysis (single-stage beam).

Acceleration (m/s2) Displacement (um) Stiffness (N/m)

2 0.00773 9.4398
4 0.01546 9.4398
6 0.02319 9.4398
8 0.03092 9.4398

9.8 0.03788 9.4398

Table 2. Static force analysis (double-stage beam).

Acceleration (m/s2) Displacement (um) Stiffness (N/m)

2 0.01427 5.1127
4 0.028544 5.1127
6 0.04282 5.1127
8 0.05709 5.1127

9.8 0.06994 5.1127

The mass of the proof mass ms is calculated as follows:

ms = ρ× As × h (19)

As = 4[L6 ×W6 + L8 ×W8 + (L6 + Lx)×W6] + L7 ×W7 − n× L11 ×W11
+n4 × L9 ×W9 + (n4 − 1)× n5 × L10 ×W10

(20)

To obtain the working mode and modal frequency of the sensing structure, we used the
Coventor Ware software to model the single-stage/double-stage fold beam sensing struc-
ture in 3D first [16], and the corresponding anchor points were kept stationary, and then
modal simulations on the sensing structure were performed, as shown in Figures 8 and 9.
According to the analysis, the operating modal frequency of the single-stage folded beam
detection system was 2532.74 Hz, and the operating modal frequency of the double-stage
folded beam detection system was 1864.01 Hz. The stiffness of the double-stage folded
beam was confirmed to be 0.5416 of the stiffness of the single-stage folded beam. The
modal frequency of the folded beam detection system was much smaller than the modal
frequency of the resonant beam, meaning that the influence of the vibration of the resonant
beam on the distance between the flat capacitor plates at the detection end can be ignored.
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4. Manufacturing and Characterization Testing

The structure layer was composed of monocrystalline silicon material doped with
concentrated boron to improve the conductivity of the microstructure [13]. The substrate
was pyrex 7740 glass, and the anode bonded the microstructure and the substrate [7]. For
larger depth and width ratios, three photolithography analyses were conducted with an
inductive coupled plasma (ICP) emission spectrometer) [14]. Under the condition ofthe
etching depth being 40 µm, the metal electrodes were welded after tape-out. The fabricated
single-stage and double-stage folded beam accelerometers are shown in Figures 10 and 11.
The structure was complete and there was no microstructure fracturing orshort-circuiting.
The electrode layer had eight electrodes, as shown in Figure 11, of which the third and
seventh electrodes connected to the tuning fork beam were short-circuited. There weretwo
groups of driving combs on the upper and lower sides; each group of combs had two
electrodes. The second and eighth electrodes were short-circuited and connected with the
driving voltage, the same was true of the fourth and sixth electrodes, and the same was
true of the first and fifth electrodes.
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The estimated quality factor of the microstructure was less than 100 under standard
atmospheric pressure packaging. When the AC and DC voltages were both less than 5 V,
the vibration amplitude was small, the detection capacitance changed slightly, and the
interface circuit was difficult to detect. To reduce the resonance energy consumption, the
core structure was vacuum-encapsulated in a metal tube and shell (20–30 mTorr), and the
packaged accelerometer was as shown in Figure 12.
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In selecting driving and detection voltages, we needed to estimate the value of the
driving and detection capacitances first, before the driving and detection voltages were fi-
nally converted into electrostatic forces through the capacitances. The entire microstructure
was symmetrically divided into two equal parts, the top and bottom. The CoventorWare
software was used to establish the physical simulation model of the detection capacitance
and the driving capacitance. Differing from the previous modal simulation and force analy-
sis, the mesh setting for the microstructure must be performed after the 3D modeling of the
equivalent micromechanical resonant accelerometer was completed. The electrostatic field’s
finite element analysis was selected, the relevant constraints were set on the microstructure,
and the capacitance matrix was finally obtained [17]. The finite element simulation results
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show that the comb capacitance of the left and right parts of the fixed driving comb and the
tuning fork beam was 0.2748 pF; that is, the two driving capacitances were both 0.2748 pF.
The detection capacitance formed by the flat plate on the proof mass and the flat plate on
the tuning fork beam was 0.6488 pF, and the coupling capacitance between the fixed driving
comb and detection plate was 0.002426 pF. The simulation results are shown in Figure 13.
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The probe of the LCR measuring instrument was used to clamp the corresponding
pins after packaging and adjust the measurement excitation frequency. Figure 14 shows
that the driving capacitance values of the single-stage and double-stage folded beam ac-
celerometers were 0.88398 pF and 0.87268 pF, and the corresponding detection capacitances
were 0.38759 pF and 0.39051 pF, respectively, as shown in Figure 15. Considering the fixture
and welding of metal leads and the process manufacturing errors, the test results and
simulations were found to be of the same order of magnitude and basically consistent.
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Figure 15. Interface capacitance test (sensing capacitance).

To obtain the quality factor and resonant frequency, an Agilent 35670A dynamic signal
analyzer was used for the open-loop frequency sweep test. The third and seventh electrodes
were connected to an 866 kHz square wave, and the fourth and sixth electrodes were both
connected to DC and AC drive voltages. The DC-regulated power supply provided the
DC voltage, and the AC voltage was supplied by the output port of the dynamic signal
analyzer. The detection voltage is provided by the manual programmable potentiometer
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divider and was connected to the positive input terminal of the charge amplifier of the
interface circuit. The detection capacitor was output through the charge amplifier, DC
blocking amplifier, high-pass filter, switch demodulation module, and low-pass filter, and
then connected to the input of the dynamic signal analyzer. The circuit schematic is shown
in Figure 16.
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Figure 16. Open-loop test circuit.

Under the condition of the accelerometer being placed flat (the acceleration in the
X-axis and Y-axis directions was 0), the frequency sweep range was 30–40 kHz, the DC
driving voltage was 1 V, and the AC voltage amplitude was 2 V. A resistor was used to
adjust the detection voltage and a general-purpose interface bus (GPIB) cable was used.
The test amplitude–frequency characteristic curve showed that both the single-stage and
double-stage folded beam accelerometers could change the resonant frequency by changing
the detection voltage. However, the adjustment of the double-stage folded beam was more
sensitive. The frequency corresponding to the double-stage folded beam changed greatly
with the same detection voltage, as shown in Figures 17 and 18. At the same time, the
two resonant beams of the same accelerometer were tested, and they showed that the
amplitude–frequency curve was asymmetric concerning the center resonant frequency, and
that the resonant beam had nonlinear characteristics when the electrostatic force was large.
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Figure 18. Amplitude frequency curve (single-stage beam).

The self-made rotary slide and dial could achieve a precise adjustment of 0.5◦, provid-
ing acceleration input from −1 g to 1 g through gravity decomposition. The test instrument
is shown in Figure 19, and the corresponding voltage supply mode remained unchanged.
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Figure 19. Experimental circuit.

The encoder was adjusted to achieve an angle difference of 15◦ of rotation and decom-
pose the acceleration into the corresponding sine components. When the detection voltage
changed to 1 V and the corresponding acceleration rotation angle was from −90◦ to 90◦,
the relationship between acceleration and resonant frequency was as shown in Figure 20,
and the sensitivity was 44.5 Hz/g. When the detection voltage was 3 V, the relationship
between acceleration and resonant frequency was as shown in Figure 21. A large detection
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voltage corresponds to a high sensitivity, but the resonant frequency and acceleration have
a severely nonlinear relationship.
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Figure 21. Output characteristic test (Vs = 3 V).

The amplitude of the AC drive voltage was kept unchanged, and the DC stabilized
power supply was adjusted to change the DC drive voltage. When the DC detection voltage
is 3 V, the amplitude–frequency curve does not jump; when the DC detection voltage is
5 V, there is a jump in the amplitude–frequency curve. See Figure 22 for the curve. The
larger the DC driving voltage was, the more the resonant frequency was inclined toward
the direction of frequency increase. The analysis showed that the microstructure featured a
nonlinear coupling of amplitude and frequency when the driving voltage and detection
voltage were large [15].



Micromachines 2022, 13, 1271 15 of 18

Micromachines 2022, 13, x 15 of 19 
 

 

Figure 20. Output characteristic test (Vs = 1V). 

1 0.5 0 0.5 1
3.36

3.38

3.4

3.42

3.44

3.46

3.48

3.5

3.52
x 10

4

a( 9.8m/s
2
 )

f(
 H

z
 )

 

 

Vs = 3 V

 

Figure 21. Output characteristic test (Vs = 3V). 

The amplitude of the AC drive voltage was kept unchanged, and the DC stabilized 

power supply was adjusted to change the DC drive voltage. When the DC detection volt-

age is 3V, the amplitude–frequency curve does not jump; when the DC detection voltage 

is 5V, there is a jump in the amplitude–frequency curve. See Figure 22 for the curve. The 

larger the DC driving voltage was, the more the resonant frequency was inclined toward 

the direction of frequency increase. The analysis showed that the microstructure featured 

a nonlinear coupling of amplitude and frequency when the driving voltage and detection 

voltage were large[15]. 

 

Figure 22. Nonlinear characteristics of the accelerometer. 

The microstructure was observed with a microscope. Compared with the situation 

shown in Figure 11, the double-stage folded beam was irreversibly deformed, as shown 

in Figure 23;this is partially enlarged in Figure 24. Obviously, if the detection and driving 

voltages are increased, the double-stage folded beam will be prone to failure, which affects 

its performance. This aspect should be considered when designing the structure layout of 

an accelerometer. 

Figure 22. Nonlinear characteristics of the accelerometer.

The microstructure was observed with a microscope. Compared with the situation
shown in Figure 11, the double-stage folded beam was irreversibly deformed, as shown in
Figure 23; this is partially enlarged in Figure 24. Obviously, if the detection and driving
voltages are increased, the double-stage folded beam will be prone to failure, which affects
its performance. This aspect should be considered when designing the structure layout of
an accelerometer.
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Figure 24. Deformation of double-stage folded beam (zoomed in).

Before microstructure encapsulation, the computer vision method was used to di-
rectly mark the length and width dimensions, as shown in Figure 25. Table 3 shows the
structural parameters designed and measured. Combined with the quality factor of the
experimental test, the numerical model of the accelerometer (including the interface charge
amplifier) was obtained, and the numerical model was established under Matlab/Simulink.
The external inputs were acceleration, detection voltage, DC driving voltage, AC driving
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voltage, and white noise, and the output terminal was the charge amplifier, as shown in
Figure 26. The linear analysis tool was used to analyze the amplitude–frequency character-
istic curves under different detection voltages, as shown in Figure 27. At 30–40 kHz, the
resonant frequency was decreased by changing the detection voltage from 1 V to 4 V. The
amplitude–frequency curve was asymmetrical, but the simulated vibration amplitude was
slightly smaller than that of the experiment, and the detection voltage corresponding to
the frequency reduction was inconsistent. The simulation error was related to the circuit
parameters of the interface. As the interface circuit focuses on the frequency measure-
ment [18–20], the effect of the error under small amplitude on the frequency measurement
can be ignored.
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Figure 25. Computer vision measurement of the microstructure size.

Table 3. Structure parameters of the accelerometer.

Parameters Units Design Measurement

Length of fold beam µm 500 479
Width of fold beam µm 8 7.01

Spacing of fold beam µm 14 16.1
Length of connecting beam µm 160 149.2
Width of connecting beam µm 9 7.6

Spacing of connecting beam µm 4 4.93
Length of drive comb µm 40 38.5
Width of drive comb µm 5 4.78

Spacing of drive comb µm 2 2.5
Pairs of drive comb pair 19 19

Length of DETF µm 700 662.4
Width of DETF µm 8 7.4

Length of detect plate capacitor µm 50 45.3
Width of detect plate capacitor µm 6 4.88
Spacing of detect capacitor 1 µm 2 2.46
Spacing of detect capacitor 2 µm 10 10.56
Total pairs of detect capacitor 40 40

Length of proof mass µm 620 609
Width of proof mass µm 700 684

Length of damping hole µm 10 12.38
Width of damping hole µm 10 12.85

Number of damping hole 110 110
Structure layer thickness µm 40 40.3
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5. Conclusions

The present work concerns the operating principles and a thorough experimental
characterization of a new polysilicon resonant micro accelerometer based on electrostatic
stiffness. The relationship between the stiffness of the folded beam and the stiffness
of the resonant beam has to be constrained in order to better realize the controllable
design of the sensitivity. When the stiffness of the folded beam is much lower than
that of the resonant beam, the influence of the displacement of the resonant beam on
the sensitivity can be ignored. The open-loop test was used to validate the relationship
between the resonant frequency and the detection voltage, which verified the positive
effect of the frequency adjustment of the electrostatic negative stiffness. At the same time,
the amplitude–frequency curve was not point-symmetric about the resonant frequency,
and a large driving voltage caused a nonlinear coupling of the amplitude and frequency.
The large detection voltage also caused the failure of the double-stage folded beam, and
the subsequent measurement and control circuit needed to maintain the small-amplitude
resonance of the MEMS resonant sensor.
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