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Abstract: Brushed (B) and Brushless (BL) DC motors constitute the cornerstone of mechatronic
systems regardless their sizes (including miniaturized), in which both position and speed control
tasks require the application of sophisticated algorithms. This manuscript addresses the initial step
using time series analysis to forecast Back EMF values, thereby enabling the elaboration of real-time
adaptive fine-tuning strategies for PID controllers in such a control system design problem. An
Auto-Regressive Moving Average (ARMA) model is developed to estimate the DC motor parameter,
which evolves in time due to the system’s imperfection (i.e., unpredictable duty cycle) and influences
the closed-loop performance. The methodology is executed offline; thus, it highlights the applicability
of collected BDC motor measurements in time series analysis. The proposed method updates the
PID controller gains based on the Simulink ™ controller tuning toolbox. The contribution of this
approach is shown in a comparative study that indicates an opportunity to use time series analysis to
forecast DC motor parameters, to re-tune PID controller gains, and to obtain similar performance
under the same perturbation conditions. The research demonstrates the practical applicability of the
proposed method for fine-tuning/re-tuning controllers in real-time. The results show the inclusion of
the time series analysis to recalculate controller gains as an alternative for adaptive control.

Keywords: adaptive control; Brushed DC motor; Proportional-Integral-Derivative control; time
series; Auto-Regressive Moving Average model

1. Introduction

Direct current (DC) motors have various applications because they are relatively
inexpensive and straightforward to build, especially small versions of them are used in
appliances, toys, automobiles, and so on, thanks to their compact and reduced structure [1].
The use of DC motors has several advantages, such as simplicity of operation (by varying
the input voltage), relatively low cost, and a wide variety of designs that can adapt to
any desired machine design. The presence of parametric uncertainties —variations in
the operating environment, presence of noise, and wear of the plant after prolonged and
continuous periods of use— is a problem that is faced when operating this type of motor.
These parametric uncertainties can end up causing variations in the parameters of the DC
motor (in the constants of the motor model) as well as noise in the input and output signal,
among other effects that are difficult to predict and that cause inaccuracies in the operation
of the control system [2,3]. DC motors work under given specifications depending on the
application they are designed for. In some cases, a DC motor may require its shaft to be
speed-regulated to a fixed value (within a certain tolerance). There are specific applications
for controlling angular speed and positioning of the system as described in [4] that require
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optimal control development to guarantee performance. For this purpose, the DC motor
parameters must be known, i.e., to perform a system identification on the DC motor speed
response, which is derived from the interaction of its constituent parts, on a case-by-case
basis. This system identification consists, in general, of providing an input signal to the
motor and then analyzing the speed response it produces. This reveals the transfer function
that describes the input–output relationship. Thus, the transfer function is the base for
developing a control system for the DC motor, and the system identification is a way to
find a mathematical model for the corresponding dynamic system [5]. DC motors are
suitable for mechatronic systems, including those miniaturized. Thus, the miniature robot
constitutes a research platform for dynamically re-configurable systems. Path planning or
digital image processing algorithms are based on capable data processing. Those tasks are
done through a decentralized micro-controller, a high-performance digital signal processor,
and an optional re-configurable logical unit (Field Programmable Gate Array), among other
characteristics [6].

Modern control and other techniques such as adaptive and artificial intelligence control
for changing gains are currently used as alternatives for adaptation mechanisms to system
changes in time. In [7], machine learning was used to optimize temperature control for laser
instruments. Selecting the attention to specific tasks as an exhibition of cognitive and neural
mechanisms was mentioned in [8] for control purposes as an efficient strategy toward
adaptive control. Bio-inspired algorithms were presented in [2]; all these meta-heuristic
techniques add to continuing with adaptation as a plausible idea for making controllers.
Therefore, the authors of this paper propose the use of time series as a novel methodology
and find the following:

1. Finding angular speed vs. voltage ratio and a method to forecast it.
2. A strategy to re-tune PID gains off-line by changing angular speed vs. voltage ratio.
3. An option so that the controller can adapt its gains based on current parameters.

The findings are achieved by using a time series analysis to build an Auto-regressive
(AR) Integrated (I) Moving Average (MA) model to estimate the changing DC motor
parameter, which diverges from its original value in time. The dynamic of a system will
change from its initial condition. Although adapting gains has proven to be beneficial,
exploring the opportunity to use a novel methodology based on time series would result
in additional benefits beyond re-tuning gains as necessary. Time series analysis includes
understanding DC motor evolution on continuous operation imposed to a particular
disturbance that might follow a regular load pattern.

This research work intends to offer an approach to changing DC motor parameters to
update controller gains. It is assumed that the transfer function changes in time, affecting
performance. The use of time series analysis helps predict the value of the angular speed
vs. voltage ratio to figure out and understand the system’s dynamic. The ARIMA model is
used to forecast and these values are used to re-tune the PID controller for comparative
analysis. Load accept and load reject scenarios are used to fulfill the following control
requirements for testing purposes:

• Overshoot shall be less than 10%.
• Settling time less or equal to 0.25 s.
• No error at steady state (0%).

The remainder of this paper is organized as follows: Section 2 describes relevant
foundations and concepts regarding DC motors, nonlinearities, and PID control necessary
for this study. Section 3 details the findings derived from the work carried out, including
simulation and testing. Finally, Section 4 enunciates the discussion and potential coming
work. Section 5 remarks on the conclusions.
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2. Methods

This section describes the foundations of DC motor transfer function development,
identification as a first-order system, a PID controller development, and the analysis of time
series and its application to re-tune PID gains offline as an adaptive control alternative.

2.1. Theoretical Basis

A DC motor uses magnetic flux, and the current is carried through a conductor, which
produces a force on the shaft to generate an angular speed [9]. DC motors can be modeled
through the relationship involving electrical and mechanical interactions to develop an
electro-mechanical model. This model involves the electrical parameters such as voltage,
current, inductance, and resistance, and the mechanical parameters such as friction, torque,
and damping ratio, among other features [10]. The model can deduce how these aspects
have been associated with each other through the torque-current and voltage constant [11].

• The torque is proportional to the current. This relationship relies on the torque
sensitivity constant (Kt).

• The back electromotive force voltage is proportional to the angular velocity. This
proportion depends on the voltage constant (Kb).

DC motors are exposed to variations (parametric uncertainties) that hinder their op-
eration over time. Strategies such as robust control, optimal control, or offline correction
of gains to update controller parameters, among others, are options to meet control re-
quirements. Although these techniques focus on correcting some aspects of the system,
sometimes the variations are not well understood or predictable, thus the problem may
happen again in the short term. There are few studies to understand how those variations
will impact, much less how to anticipate them.

Adaptive and modern control are alternatives for re-tuning the controller gains to
current conditions. Several methods for catching the changes in the system can be ap-
plied, such as specific algorithms for updating controller parameters, the use of Artificial
Intelligence (AI), Fuzzy Logic Controllers (FLC), Neural Networks (NN) for tuning gains,
etc. Not all the methods are suitable for all the applications. It is necessary to consider
resource consumption and pre-work needed, i.e., training of NNs. In addition, another
methodology uses bio-inspired meta-heuristic algorithms that have produced an excellent
cost-benefit ratio in terms of resource use contrasted to controller operation [2]. A pre-
cise DC motor model is needed for analytical control system design and optimization.
Sometimes, reference parameter values of the DC motor detailed in the specification are
inadequate. This is the case for cheaper DC motors with relatively large tolerances in
the electrical and mechanical parameters. Other identification methods are algebraic and
open-loop identification for estimating motor parameters [12], a particular methodology is
the identification of the DC motor as a first-order system.

2.1.1. Transfer Function (TF) for a Direct Current (DC) Motor

Properly controlled DC motors can achieve precise position, good angular speed
regulation, and torque control. Control methods produce the desired response by adjusting
gain values that depend on physical parameters; therefore, precisely identifying these
parameters becomes relevant. Before any motion, the armature resistance Ra, the armature
inductance La, the back-EMF Kb, and the torque ratio Kt are constant, but once a DC motor
is in operation, these values might change due to magnetic effects, among other reasons. In
addition, other parameters such as the moment of inertia J, change due to the addition or
subtractions of mass in the motor shaft [13]. Figure 1 shows a schematic of a DC motor.
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Figure 1. DC motor electro-mechanical schematic; w = ω is the angular speed generated by an input
voltage Va.

The model comprises input voltage Va, motor damping B attached to the mechanical
constituents in the motor, the angular speed ω, and the electrical current i (or Ia) flowing in
the circuit.

The governing equation—based on Kirchhoff’s law—for the electrical part is

Va = Rai + La
di
dt

+ Vb, (1)

while, for the mechanical part, the governing equation is

J
dω

dt
= Tm − Bω. (2)

The torque at shaft Tm is generally defined as a combination of different torques such
as the cogging torque, the kinetic friction, and the viscous friction (also known as viscous
damping force) [12]. It is necessary to express the torque in the shaft as a function of current
and the input voltage as a function of angular speed. This results in the following equations:

Tm = Kti, (3)

Vb = Kbω. (4)

Equations (1)–(4) are rewritten as a single system of equations in the Laplace domain
as follows:

Va(s) = Ra I(s) + LasI(s) + KbW(s), (5)

JsW(s) = Tm(s)− BW(s), (6)

Tm(s) = Kt I(s), (7)

Vb(s) = KbW(s). (8)

By substituting Tm from Equation (7) into Equation (6) and substituting Vb from
Equation (6) into Equation (5), the system can be expressed as the relationship that exists
between the angular speed (output—ω) and the input voltage Va, that is,

W(s)
Va(s)

=
Ks

La J
RaB + KbKt

s2 +
LaB

RaB + KbKt
s +

Ra J
RaB + KbKt

s + 1
, (9)

where Ks is defined as

Ks =
Kt

RaB + KbKt
. (10)

The system’s time response is composed of the electrical time constant and the me-
chanical time constant (intrinsic to each motor). Assuming the electrical time constant is
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small versus the mechanical time constant, the terms in Equation (9) related to the electrical
time constant can be neglected [14]. Equation (9) can be expressed as

W(s)
Va(s)

=
Ks

τss + 1
, (11)

where τs is defined as

τs =
Ra J

RaB + KbKt
. (12)

The model can be described in the block diagram shown in Figure 2. It is possible to
identify each component (the block diagram does not include nonlinearities). The back-EMF
and the torque constant play a vital role in the motor operation and the control definition.

Figure 2. The DC motor block diagram represents the electrical and mechanical components of the
device. The electrical component is related to the mechanical component through the torque constant
Kt. The angular speed and voltage input are related through the Back EMF constant Kb.

2.1.2. DC Motor Identification

Understanding a system before trading it is essential. A system uses modeling and
identification and is understood after analysis. Those are a conjugate pair of activities
that should be considered in any system. Physical principles in modeling provide a
mathematical description with key parameters in a generic form. The resulting model with
generic parameters represents a class of models from which a particular element is defined
through the identification and estimation of parameters [15].

There are different methods for DC motor model identification:

1. Step and frequency response.
2. State-space-based for modeling/identification.

The challenge in preparing a state-space-oriented control model is that most of the
system identification techniques available are for the input–output model. Experiments are
therefore proposed to estimate the parameters of an n-order state-space system. It is critical
to split the n-order system into n-first order systems as necessary to obtain equivalent
discrete-time models for those first-order systems [16]. A typical transfer function of a
first-order system with a time constant τ and steady-state gain K, assuming no time delay,
is given by:

G(S) =
Y(s)
U(s)

=
K

τs + 1
. (13)

Equation (13) is equivalent to Equation (11); therefore, both are appropriate repre-
sentations of a first-order system model used for DC motor identification. Parameter
identification is used to obtain an accurate model of a real system. A complete model
provides a suitable platform for further developments of the design or control. The online
parameter identification schemes are used to estimate system parameters and monitor
changes in parameters and characteristics of the system for a diagnosis related to various
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technology areas. The identification schemes can be used to update the value of the design
parameters specified by manufacturers [17]. It is important to remember that electrical
dynamics can be neglected because they are faster than the mechanical dynamics in the mo-
tor [18]. Control engineers rely on using the manufacturer parameters from the datasheets
to sketch an initial approach. In this study, the DC motor used is 36JX30K/38ZY63-1230
from Dongyangcorp. This motor integrates a gearbox that adds torque capacity but reduces
speed in a ratio of 50.8 to 1, which is not considered in the modeling. The manufacturer
indicated some parameters that are detailed in Table 1.

Table 1. 36JX30K/38ZY63-1230 DC motor parameter value.

Parameter Value Unit

Armature resistance (Ra) * 20.0 +/− 10% Ω
Armature Inductance (La) * 0.375 +/− 10% H

Electrical Rated current (Ia) 0.65 A
Stall current (Is) 2.4 A

Output power (W) 3.8 W
Rated voltage (Va) 12 V

Torque constant (Kt) ** 42.92 mN m/A
Motor inertia (J) * 0.0003 Kg m2

Viscous Damping (B) * 0.082 mN m s/rad
Mechanical Back EMF (Kb) 0.0382 V/(rad/s)

Rated torque (Tm) 15.0 mN m
Rated speed (ω) 261.8 rad/s
Stall torque (Ts) 90.0 mN m

* Measured or calculated item. ** At rated conditions.

2.1.3. Controller Approach

Most of the commercial controllers available for industrial processes are based on
classic control theories such as Proportional-Integral-Derivative (PID), and they are of
closed architecture [19], as mentioned in [20]. In addition, the authors in [20] explained the
use of Fuzzy Logic (FL) as trying to emulate the imprecise human reasoning of physical
processes into information that is capable of being handled by an embedded system or
computer [21]. Fuzzy Logic has been judged over the years because of its ability to face
complex problems without the need for models. These controllers (FL-based) are more
flexible albeit more complex than PID controllers since they cover a broader range of
operating conditions. They can work with internal and external disturbances of different
natures. The design of Fuzzy Logic controllers is more accessible than developing a
customized model-based controller. In other words, it is possible to modify the structure,
rule base, and display it as a human-performed task for controlling. In addition to the
previously mentioned, the authors in [20] established that PID, state-space controllers,
artificial neural networks, and FL-based controllers are techniques applied to motion
control. The PID controller is defined as follows:

u(t) = kpe(t) + kd
de(t)

dt
+ ki

∫
e(τ)dτ, (14)

where kp is the proportional gain, kd is the derivative gain, and ki is the integral gain.
A significant disadvantage of this algorithm is the computing of the controller gains [21],
as mentioned in [20].

The DC motor requires a feedback system to be controlled. When a DC motor includes
a feedback system, it can be considered a servo system. Servo systems can have either the
position, speed, acceleration outputs, or a combination of these [22]. The PID controllers
are programmed based on the original estimation of a TF and cannot be changed during
the operation until a software update is loaded if the system allows it. The authors in [22]
proposed using an open architecture controller using reconfigurable hardware and a Genetic
Algorithm (GA) for an online self-tuning strategy for positioning a linear motion system.
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The PID algorithm was discretized; then, the gains were calculated using Ziegler–Nichols
without needing any model.

In [23], a testing methodology was developed for creating control systems. It helped to
discover and implement a mathematical model, estimate different motor model parameters,
get familiar with the hardware and software to develop the controller, and use the AT-
Mega328 microprocessor Unit (MCU) as the Central Processing Unit (CPU) device capable
of handling the fuzzy logic controller. Using and controlling the motor current besides
the motor speed utilizing an FLC is crucial to reaching a more robust controller. This is
mentioned in [24]. The authors based this on a review of different proposed control systems.
Then, they used FLC with an optimization based on Genetic Algorithms to provide a softer
system that can be interpreted as better protecting motor gear-pair, the mechanics, and
the feed. The fuzzy logic controller achieved the required behavior by meeting the control
requirements. Its robustness was proved by better values from the simulation of the testing
scenarios, i.e., the current behaved more smoothly than the PID controller.

2.2. Modeling and Controlling the DC Motor through Its Transfer Function (TF)

The transfer function of the DC motor is deduced from the model shown in Figure 2.
It is developed considering the manufacturer’s datasheet. Then, the transfer function is
simplified and shown in Figure 3, which determines the angular speed produced by the
voltage input. This is also known as the open-loop transfer function that estimates the
angular speed vs. voltage ratio.

Figure 3. Simplified transfer function in open loop. The Back EMF Kb is disconnected from the loop.

The DC motor response is compared to the proposed model, and the results are shown
in Figure 4. The input voltage is 12 volts at no-load conditions, and the expected angular
speed equals 314.16 rad/s.
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Figure 4. Open-loop system response to a voltage input of 12 volts. The angular speed produced is
proportional to the input voltage and is equal to 314.16 rad/s. The dynamic response of the system
achieves 63% of the reference angular velocity at 0.025 s, the steady state error at 0% is achieved after
0.15 s.

The model representation is close to the actual data but not exact. The difference
might be due to the moment of inertia and viscous friction not matching actual values.
Electrical component values might not be as precise as the real values, and nonlinearities
are not included (although this might influence much more at low voltages), among others.
This testing shows that the simplified transfer function allows an accurate representation
which confirms that neglecting some aspects of the complete version is permitted. Ks
is the inverse of Kb. This is relevant since this definition and considering the DC motor
will change its efficiency in time, then Kb will be estimated in time. Equation (10) can be
rewritten as follows:

Ks =
1

Kb
. (15)

2.2.1. Open-Loop Simulation for Gathering Data

The open-loop model helps to simulate scenarios where the electrical resistance and
inductance values vary in time by as much as 1% and 0.5%, respectively. This resulted in
producing a set of Kb values to build a time series, then using it to forecast Kb for re-tuning
purposes. Simulation is carried out considering a 9 volts step input, seed 0 for electrical
component, and seed 1 for inductance component. Figure 5 shows the schematic, and
Figure 6 shows the resulting data.
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Figure 5. The open-loop simulation produces different Back EMFs considering changes in electrical
resistance and electrical inductance values.

Figure 6. Data collection from simulation for Back EMF. This data collection is presented in time.

Collecting data can be replicated as often as needed, including changing input steps
and percentages of variation and seeds.

2.2.2. PID Controller Design for Closed-Loop Simulation

PID controllers or their combinations are used to control either BDC or BLDC motors.
PI controller controls the angular speed, current, and commutation [25]. PID controller de-
veloped for the closed-loop simulation based on the stability analysis that shows the system
is stable and controllable (the poles are both negative and on the real axis (s1 = −40.0843
and s2 = −205.201). The Routh–Hurwitz matrix confirmed stability (no sign changes in the
first column). PID gains are calculated using the auto-tune function in Simulink™ values
selected to avoid actuator saturation as follows: Kp = 2.0, Kd = 0.0175 and Ki = 65. Those
gains produce an under-damped response, not exceeding 10% of overshoot and they reach
settling time in approximately 0.2 s when a step of 9 volts is used as input. The closed-loop
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block diagram is shown in Figure 7, and its response to 9 volts step input is shown in
Figure 8.

Figure 7. Block diagram representation for the closed-loop system including the PID controller.

Figure 8. System response to a 9 volts step input in a closed-loop configuration. The system exhibits
an under-damped response achieving 63% of reference angular velocity at 0.025 s. This is consistent
with experimental open-loop data. The steady estate 0% error is achieved at 0.2 s at approximately
240 rad/s.

2.3. The Time Series (TS) Analysis and Stationary Check for the Proposed Model

A time series is a set of observations taken equally in time, and its analysis is con-
cerned with understanding the dependency intrinsic to the data in it. This requires the
development of stochastic and dynamic models. A discrete system is one from which
observations are taken at equally spaced time intervals [26]. The application of time series
and dynamic models is found in areas such as:

• Forecasting a time series’s future values from current and past values.
• The determination of the transfer function of a system is subject to inertia.
• The design of simple control schemes utilizing potential deviations in the system

output is compensated by adjusting the input variables.

The collected data from the simulation can be considered a time series. Verifying the
dataset is essential to determine the model that fits better to forecast Back EMF. Stationary
criteria are critical to selecting a model, depending on the statistically significant lags,
from either the following: Auto-Regressive (AR), Moving Average (MA), including the
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Integrated (I) aspect (lag reduction), Auto-Regressive Moving Range (ARMA) or Auto-
Regressive Integrated Moving Range (ARIMA). Forecasting data is a challenge when it
goes far from the last sample. Going back to the stationary check, the data’s nature can be
determined. The data’s mean (µ) is constant (this can be interpreted as the mean contrasted
to subgroups averages and is not changing drastically). The standard deviation (σ) is also
constant. There is no seasonality (not an evident repetitive pattern in time). The inspection
of input data is shown in Figure 9. The mean equals 0.0386 and local averages are close.
The standard deviation equals 0.00327 with no excessive variabilities in data along the total
sampling. All these are shown in Figure 9.

Figure 9. Mean and Standard deviation chart of simulated Back EMF data. The data is displayed in
10 sets of 7 elements each.

Even though this gives enough evidence of the stationary, there are a couple of
additional forms to check it: (1) the global versus local tests and (2) the Augmented
Dickey–Fuller (ADF) test. Further details are found in [26].

The stationary requirement has been checked for the dataset; therefore, it is used for
extrapolation. The model type can be either the AR or the MA or a combination including
the I (ensuring the mean is equal to 0 as a condition to improve fitting). Regression models
use past values to predict current values; they are assisted using coefficients inferred from
the dataset and the error. The general form has the following equation:

z̃ = φ1 x̃1 + φ2 x̃2 + · · ·+ φp x̃p + a (16)

where φ is the pth degree polynomial, a is the random error term, the x̃ is the independent
variable (past values), and the z̃ is the dependent value.

In the Auto-Regressive (AR) model, the current value is expressed as a finite, linear
aggregate of previous values and a random constant element at when the values of a
process are at an equally spaced time t, t − 1, t − 2, . . . by zt, zt−1, zt−2, . . . In addition, let
z̃t = zt − µ be the series of deviation from µ. It can be defined as follows:

z̃t = φ1z̃1 + φ2z̃2 + · · ·+ φp z̃p + at. (17)
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In the Moving Average (MA) model, the first consideration is the fact that it is finite.
The z̃ is linearly dependent on a finite number of q of previous at’s. θ is the qth degree
polynomial; therefore, the MA model is written as:

z̃t = at − θ1at−1 − θ2at−2 − · · · − θqat−q. (18)

φ and θ are defined as follows:

φ(z) = 1 − φ1z − ... − φpzp (19)

θ(z) = 1 − θ1z − ... − θqzq (20)

So, Equation (17) is known as the AR model of order p and Equation (18) is known as
the MA process of order q [26].

In the AR models, the weights (ψ) are forced to follow an exponential decay form with
φ as the decay rate. Since the weights are only restricted to the condition ∑∞

i=0 ψ
p
i < ∞,

it might not be possible to approximate them by an exponential decay pattern. There is
a need to increase the order of the AR model to approximate any pattern these weights
might exhibit. Adjusting to the exponential decay pattern is sometimes possible by adding
a few terms to have a more economical model. In the case of an AR model, disregarding
the order is not enough in fulfilling this pattern condition. Instead of increasing its order, it
is preferred to add an MA term that will adjust the ψ1 while not affecting the rate of the
exponential decay pattern for the rest of the weights [27].

A combination of AR(p) with MA(q) is named Auto-Regressive Moving Average
ARMA(p, q) model [26] and it is defined as follows:

z̃t = φ1z̃1 + φ2z̃2 + · · ·+ φp z̃p + at − θ1at−1 − θ2at−2 − · · · − θqat−q (21)

The Auto-Correlation Function (ACF) and the Partial Auto-Correlation Function
(PACF) are used to determine the number of components the model will include, see
Figure 10. The ACF helps more for MA models, while PACF is better for finding the
number of elements for AR models. ACF is a good tool for checking the randomness of
the data; this is appropriately defined as the Box–Jenkins Auto-Regressive formulation. In
MA(q), the ACF helps to determine which lags are statistically significant, then define the
order of the MA model [28]. PACF can be seen as the correlation between two variables
after being adjusted for a common factor affecting them. Considering the formulation
proposed by Yule–Walker, which accounts for the formal definition for PACF, for an AR(p)
process, it is understood that the vector of φ̂kk for any k > p uses the last φkk coefficient,
called the partial Auto-Correlation of the process at lag k, as the cut off after lag p. This
suggests that the PACF can be used in identifying the order of the AR(p) model [27].
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Figure 10. Lag analysis of the time series determines pth and qth elements depending on statistical
significance. The model is AR(1)I(0)MA(1).

Coefficients determined, see R™ script used in Appendix A, are AR(1) = 0.0499 with
a constant = 0.2289 and MA(1) = 0.3940 and a constant = 0.1997 with a non-zero mean. The
fit and wellness of the model are shown in Figures 11 and 12, respectively.

Figure 11. Regressed data displayed with current data to show regression fitting accuracy. Regres-
sion was produced using an ARMA model. The current ARMA Model is not fitting the current
data; there are some causes for this: first, the data mean is not zero, the proposed model is not
adding an integrated (I) part, the time series analysis using Ljung–Box concluded the data values
are independent.
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Figure 12. Analysis of residuals between the current data and regressed data. The residuals do not
show normal distribution, but a relatively high error.

The forecast is shown in Figure 13. All forecast data are detailed in Table 2.

Figure 13. Regression produced with the ARMA model and forecast for the next 3 consecutive values
(blue dots shown with CI).

Item 1 from Table 2 is selected for simulation testing to exercise PID gains re-tuning
off-line. A detailed description is given in Section 2.4.
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Table 2. Forecast dataset that includes an 80% confidence interval (CI) and 95% CI, both Low
and High.

Item Forecast Lo 80 Hi 80 Lo 95 Hi 95

0 0.03708248 0.03315761 0.04100735 0.03107991 0.04308505
1 0.03850688 0.03421273 0.04280103 0.03193954 0.04507421
2 0.03857796 0.03428293 0.04287299 0.03200928 0.04514664

–> Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

2.4. Proposed Testing for Simulation

In this test, 3 out of 15 forecast Back EMF (Kb) values were selected for testing scenarios.
Those are: (1) Kb = 0.0385, (2) Kb = 0.0342, (3) Kb = 0.045. The testing simulation uses Te,
according to Table 3, to add perturbations into the system and verify the PID controller
behavior. Proposed Kb, as predictions, used to re-do the TF and re-tune PID gains from
selected scenarios were also used. The input step is set to 9 volts producing an output
velocity of approximately 247 rad/s.

Table 3. Proposed loads for simulation and testing.

Item Load Units Timing

1 0 mN m 0.5 s
2 0 mN m 0.5 s
3 15.75 mN m 0.5 s
4 22.5 mN m 0.5 s
5 8.75 mN m 0.5 s

Torque values for the perturbation are selected considering the maximum permissible
load before a stall condition occurs from the manufacturer’s datasheet. The results for item
1—samples 1, 2, and 5, are shown in Figure 14, Figure 15 and Figure 16 respectively.

Figure 14. System response to a Back EMF change (Kb = 0.0385)—sample 1. The dynamic response
at initial conditions and load accepts and load rejects reaches 63% of the reference at approximately
0.025 sec, the steady-state error is 0% at the stable point after 0.15 s. In terms of performance, the
proposed gains have room for improvement to reduce overshoot and increase speed response.
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Figure 15. System response to a Back EMF change (Kb = 0.0342)—sample 2. The dynamic response
at initial conditions and load accepts and load rejects reaches 63% of the reference approximately
at 0.025 s, the steady-state error is 0% at the stable point after 0.15 s. In terms of performance, the
proposed gains have room for improvement to reduce overshoot and increase speed response.

Figure 16. System response to a Back EMF change (Kb = 0.045)—sample 5. The dynamic response at
initial conditions and load accepts and load rejects achieves 63% of the reference at approximately
0.025 s, the steady-state error is 0% at the stable point after 0.15 sec. In terms of performance, the
proposed gains have room for improvement to reduce overshoot and increase speed response.

With the change of the Kb, the efficiency has changed, and the resulting angular
velocity is different; the current controller is based on regulating voltage for controlling
action but not observing any reference angular velocity as a setting. However, comparing
the performance back-to-back of the current controller gains is desired, including the
change in Back EMF versus the re-tuned (proposed) gains using the auto-tune Simulink
™ function to the new Kb.

Re-tuned gains improved the damping. The system response is over-damped at a
higher level than the original controller at the beginning. However, the load acceptance and
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load rejection testing scenarios demand more from the system. The gain changes produced
a smoother response than that of the original.

3. Findings

Highlights of the results are shown below.

3.1. In Terms of Control Performance

In this paper, the authors described the development of a PID controller using the
classical methodology of inferring the TF by dividing the DC motor components into
electrical, mechanical, torque constant, Back EMF constant, and perturbation load, and
determining a simplified TF neglecting some aspects of the model. The motor constant was
inversely proportional to the Back EMF Kb constant (which resulted in the simulation of
the time series used in the proposed adaptive strategy). The values for the model were
taken from the manufacturer’s datasheet. With these in mind, an open-loop stimulus is
executed into the physical system to know the DC motor response to an input of 12 volts
that produced an angular velocity of 314.16 rad/s. This response was compared with the
proposed system simulation and it matched with minor differences associated with the
moment of inertia and friction not precisely modeled.

The model, in general terms, is considered suitable to create a closed-loop system,
including a PID controller in which the gains were auto-tuned using the Simulink ™ func-
tion to get a performance of an under-damped system not exceeding 10% of overshoot
and settling time less than 0.2 s. In case of not meeting any control requirements, the gains
would be updated to get the desired results while ensuring the actuator is not overloaded.
Two nonlinearities are included in the closed-loop model: saturation and dead zone. It is
believed that hysteresis can be analyzed after reviewing the DC motor behavior functioning
for a period. It was then measured to see if changes occurred. (This paper is focusing on
simulation for now. Therefore, this was not accounted for in the model.) The friction is
similar to hysteresis because it is also needed to carry out experiments with no load and
loads to determine the friction in static and dynamic conditions. Both will be included
later to increase the modeling robustness. The proposed system is considered suitable
for simulation.

3.2. In Terms of Time Series, Assuming a Shortened Time Scenario to Collect Data

The first aspect to consider is that the time series is simulated by creating a random
environment and producing changes in the inductive and resistive components of the DC
motor. The randomization consisted of using a mean equal to 1 for both cases and 0.5% up
and down and 1% up and down variations with seeds 1 and 0, respectively. This simulation
was carried out in an open loop, and a new set of Kb was built along 15 s of simulation
continuously produced every 0.001 sec. However, the data gathered were processed to
get samples every 0.15 s, with a total of 70 items and used to build the time series. The
analysis determined the time series as stationary and was then checked using ADF. ACF
and PACF plots were used to find lags, resulting in lag 1 for both the Auto-Regressive (AR)
and Moving Average (MA). The forecast is built considering the previous iteration and no
more. The regression part of the model showed some degree of error while attempting
to estimate data. The residual analysis pointed to the lack of exactness in the proposed
ARMA model, but also a factor was that the resulting model did not account for 0 mean
nor included the model’s integrated (I) aspect. Room for improvement, which is being
reviewed for improving fitting.

The model was suitable for forecasting at least three rounds of successive future values.
The second was selected, including the error band, which made the forecasting much more
interesting because this provides power in terms of adaptation. The confidence interval
(CI) values are included to expand the scenario for re-tuning the gains. The CI is set to 20%
and 5%, respectively. This can be adjusted as needed.
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3.3. In Terms of an Auto-Regressive Moving Average Model

In terms of the ARMA model, it is worth mentioning that the Integrated (I) part is not
considered. This does remove lag one from the sample, then centers the data to a 0 mean, a
necessary condition for using the I component when a time series is not stationary. This
component was tested, and the regression behaved similarly to ARMA. More investigation
on this is foreseen.

For the adaptive strategy, an increasing time series accuracy is essential for better
regression. In this case, real data exploration is advised to improve this technique.

3.4. In Terms of Comparing Performance between the Controllers

The controller performance for selected scenarios is compared back-to-back. The
change in Kb produced a difference in the output angular velocity. The gains were re-tuned
using a toolbox included in Simulink ™ offline; therefore, in that regard, the criteria used
were to over-damp the system and produce a smoother response, increasing settling time
at no cost. However, the difference was insignificant because the response was fast enough
for all cases. The proposed gains were less tolerant to load accept and load reject testing
scenarios. In this matter, it is necessary to work on finding a different methodology to
improve this condition. For the initial state, the re-tuned controllers were behaving better.

Finally, it is worth mentioning that using the ARMA model to re-tune PID gains is suit-
able for developing robust, more tolerant, and intelligent control. In addition, forecasting
DC motor parameters can be beneficial in predicting other operational risks.

4. Discussion

After reviewing the results, the following outcomes are presented.

4.1. Conceptual Analysis

During this experiment, it was found that time series can be used to produce Auto-
Regressive Moving Average models to assist in re-tuning gains of existing PID controllers
using tools for that purpose off-line. The classical methodology for building a PID controller
is exposed here among the use of time series analysis to develop an ARMA model to forecast
Kb values in a fast-degrading scenario for a DC motor operation considering up and down
conditions. Accurate data would be better to understand DC motor conditioning after its
operation; however, the idea expressed here is related to DC motor changing in time for
an extended period. The sampling was shortened to manage raw data but was helpful in
this development. The scenarios simulated were good for building the time series, and a
strategy to adapt PID gains offline is presented. This has room for improvement, and some
ideas can be explored soon in this area.

4.2. Using Physical Means for Testing and Developing Real Time Series

Testing with a real device is better since it adds uncertainty. For years, adapting any
controller to the changes the system might experience has been a topic of study, ending
up in building exceptional controllers that use computational resources but are hard to
implement in industrial processes. Exploring a simple method for creating an adaption
strategy in a PID controller might be attractive if it does not consume a lot of resources
while embedded.

4.3. Opportunities for Coming Phases

The next step is to implement these methods online in a real system as embedded
software. It is necessary to work separately in implementing the time series algorithms
in the micro-controller and do all the calculations for creating the model, either AR or
MA or a combination, including the I portion if needed, then think about the online
strategy for processing the auto-tune code and technology for a successful implementation.
It is recommended to test additional scenarios, besides the step input, such as ramp
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and sinusoidal inputs, and to include load accepts and load rejects on such inputs for
effectiveness review of the proposed algorithm.

5. Conclusions

The authors of this paper believe that the proposed technique adds to adaptive control
methodologies in the sense of including time series analysis to forecast DC motor parame-
ters and then improve the controller performance in the context of its continuous operation,
thinking about the likely changes it will experience due to duty cycle. This is undoubtedly
unpredictable; therefore, ARIMA models can aid in understanding these possible system
changes. For now, the potential to expand this to other disciplines, such as predictive and
intelligent control, can help re-tune gains much more if this is implemented online. For
now, the offline experimentation provides an insight into the value of continuing this path.
The initial conclusion is that although there is room for improvement, the use of the model
seems promising.
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Abbreviations
The following abbreviations are used in this manuscript:

ACF Auto-Correlation Function
ADF Augmented Dickey–Fuller’s
AI Artificial Intelligence
AR Auto-Regressive
ARIMA Auto-Regressive Integrated Moving Range
ARMA Auto-Regressive Moving Range
BDC Brushed Direct Current
BLDC Brushless Direct Current
CPU Central Processing Unit
DC Direct Current
FL Fuzzy Logic
FLC Fuzzy Logic Controllers
I Integrated
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MA Moving Average
MCU Microprocessor Unit
NN Neural Networks
PACF Partial Auto-Correlation Function
PI Proportional-Integral
PID Proportional-Integral-Derivative
TF Transfer Function
TS Time Series

Appendix A. Code in R™ for Analyzing the Time Series Data

# Libraries needed for processing data
library(tseries)
library(forecast)
# Reading csv data and fitting it into a time series in R
ar.ts <- read.csv("emf_data.csv", header = TRUE, sep = ",")
AR.ts <- ts(ar.ts, start = c(0,01), frequency = 1)
# Time series plot to show data for analysis.
# Check for mean, stddev and seasonality.
plot(AR.ts)
# Dickey-Fuller test
adf.test(AR.ts)
# Auto-correlation function and Partial Auto-correlation function plots
acf(AR.ts)
pacf(AR.ts)
# Analyzing data from Back EMF sample data set
# This function gives a complete insight of the data set as time series.
forecast::tsdisplay(AR.ts)
# Creating either AR and/or (I)MA or combination
AR1I0MA1 = forecast::Arima(AR.ts, c(1, 0, 1))
summary(AR1I0MA1)
# Plotting original data contrasted to models developed
plot(AR.ts)
lines(fitted(AR1I0MA1), col = ’red’)
# Checking wellness of models created
forecast::checkresiduals(AR1I0MA1)
# Predicting values for Back EMF in the next 3 cycles
PR_mdl_AR1I0MA1 = forecast::forecast(AR1I0MA1, h = 3)
plot(PR_mdl_AR1I0MA1, col = ’red’) # Plotting the forecast
PR_mdl_AR1I0MA1 # Displaying the 3 forecast values
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