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Abstract: A kind of ultra-thin transmissive color filter based on a metal-semiconductor-metal (MSM)
structure is proposed. The displayed color can cover the entire visible range and switches after H2

treatment. An indium gallium zinc oxide (IGZO) semiconductor was employed, as the concentration
of charge carriers can be controlled to adjust the refractive index and achieve certain colors. The
color modulation in the designed structure was verified using the rigorous coupled wave analysis
(RCWA) method. The angular independence of the relative transmission could reach up to 60◦, and
polarization-insensitive performance could also be maintained. Numerical results demonstrated
that the thickness of IGZO was the key parameter to concentrate the incident light. The overall
structure is planar and lithography-free and can be produced with simple preparation steps. The
obtained results can also be extended to other similar resonators where a proper cavity allows
dynamical functionality.

Keywords: color filter; indium gallium zinc oxide; lithography-free

1. Introduction

As an important part of optoelectronic devices, color filters are widely used in color
printing [1–3], high-resolution displays [4,5], sustainable color decoration [6,7] and safety
colors [8]. Potential applications have aroused great interest in recent years. It is well-known
that the color characteristics of traditional dye filters and pigment filters are determined by
the inherent absorbance of their constituent materials [9,10]. In this context, the performance
can be easily affected by high-intensity permanent light illumination and various chemical
processes. As a result, the performance can be greatly reduced [11]. Color filters made from
functional nanostructures rely on the interactions between light and the device, with the
advantages of high efficiency, high spatial resolution and good stability [12].

Research on color filters has mainly been concentrated on areas such as surface plasmon
resonance (SPR) [13,14], guided mode resonance (GMR) [15,16] and Mie resonance [17–19].
Transmitted or reflected color filters with dynamic management have been realized by
changing the shape and structural parameters [20,21]. Although these nanostructure-
based filters can achieve high performance, the color usually cannot be switched. The
performance of nanostructures and thin films can be adjusted using the polarization state
of incidence [22–25]. Phase change materials (PCMs) have also been widely used to achieve
color switching. Ge2Sb2Te5 [26] and VO2 [27] are common PCMs, and their permittivity
can be changed by controlling the temperature to produce a phase change. However, this
effect occurs in the near-infrared band and cannot be freely applied to the visible light
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range. Furthermore, WO3 [28] and indium tin oxide (ITO) [29] can also undergo phase
changes with changes in the applied voltage. The refractive index can also be influenced by
the carrier concentration, which is much faster and more efficient [30].

In this paper, a new Fabry–Perot (F-P)-type transmissive color filter is proposed that
can achieve structural colors with high efficiency using IGZO embedded between the
metal Ag mirrors. By changing the thickness of the IGZO, high-purity structural colors
can be obtained, and the carrier concentration can be changed using H2 treatment to
control the refractive index of the IGZO, thereby achieving color switching in the visible
range. The proposed color filter also presents incident angle-insensitive and polarization-
independent performances. There are two advantages of this filter: high purity and faster
switching speed.

2. Model and Methods

IGZO is a semiconductor that is widely used in neuromorphic electronic devices and
flexible displays [31–33]. It has excellent electro-optical properties and many advantages
with great potential for application in photonic devices. The electron density can be
controlled by the H2 plasma treatment process, which generates free electrons as the
injected hydrogen atoms form O-H bonds with the ionized oxygen in IGZO, as follows [34]:

H+ + O2− = OH− + e− (1)

The dielectric constant of IGZO is expressed by the Tauc–Lorentz–Drude model [35,36]:

εIGZO = εTL + εD = ε1 + iε2 (2)

Here, εTL and εD represent the dielectric constants given by the Tauc–Lorentz and
Drude models, respectively, and the Drude term describes the free electron absorption.

The complex permittivity of the Drude model is expressed as [34,36]:

εD(E) = − AD

E2 + Γ2
D
− (

ADΓD

E3 + Γ2
DE

)i (3)

Here, AD is the amplitude and ΓD is the broadening parameter, respectively expressed as:

AD = ε∞E2
p = ε∞}2ωp

2 (4)

ΓD = }γ, γ =
e

m ∗ µ
(5)

Here, γ represents the angular frequency, µ is the broadening parameter of light
mobility, Ep is the plasma energy, ε∞ is the high-frequency dielectric constant, h̄ is the Planck
constant and e is the electronic charge. ωp is the plasma angular frequency, expressed as:

ωp= (
e2N

m ∗ ε∞ε0
)1/2 (6)

where N is the photocarrier concentration and ε0 is the free space permittivity.
The refractive index of IGZO can be changed through H2 plasma treatment. After

treatment, the refractive index of IGZO decreases by ∼0.4, and the extinction coefficient
also changes. This is due to the change in the electron density in the film. The electron
density of the low-conductivity film is less than 1014 cm−3, while it is 8 × 1019 cm−3

after H2 is introduced, thus becoming a high-conductivity film [37]. Figure 1 shows the
relationship between the dielectric constant and the incident wavelength of IGZO before
and after the introduction of H2. The increase in electron density leads to a decrease in the
dielectric constant.
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Figure 1. The real and imaginary parts of the complex dielectric constant of IGZO vary with wavelength.

The designed color-changing filter which involves inserting IGZO between the two
metal layers, is shown in Figure 2a. Ag was selected as the metal reflector, as it has
high reflectivity in the visible light range. Its refractive index was obtained from the
literature [38]. For the scale parameters, the thickness of the top and bottom Ag was
t = 30 nm, the thickness of the middle IGZO was d and the substrate was SiC. In the absence
of free carriers, the optical properties of SiC are given by the Drude–Lorentz model [39]:

εSiC = ε∞
ω2 −ω2

L + iγω

ω2 −ω2
T + iγω

(7)

Here, ωL and ωT were selected as 972 cm−1 and 796 cm−1, respectively; ε∞ is the
high-frequency dielectric constant, selected as 3.75 cm−1; and γ is defined as the damping
rate caused by vibration anharmonicity, here set to 6.5.

Figure 3 shows the schematic of the multi-layer optical dielectric thin film with uniform
dielectrics in each layer. We consider the reflection and the transmission of a TE-polarized
plane wave (electric field perpendicular to the incident plane) of free space with wavelength
λ0 and incident at angle θ on L uniform layers. The thin film above the high reflective
films lies in the x-z plane. For analysis, the multi-layer dielectric can be divided into L
layers along the z direction. Each layer possesses a refractive index of n1, n2 and nL and a
thickness of d1, d2 and dL. The normalized electric field for the input and output regions
can be written as:

EI,y = exp[−jk0nI(sin θx + cos θz)] + ∑
i

Ri exp[−j(kxx− kI,zz)] (Z < 0)

EI I,y = ∑
i

Ti exp{−j[(kxix− kI I,zi(z− D))]} (Z > D)
(8)

where R and T are the reflected and the transmitted amplitudes of the electric fields and
k0 = 2π/λ0 is the wave-vector magnitude in the air. The wave vectors along the x and z
directions in each divided layer are kxi = k0ni sin θ and kzi = k0ni cos θ, respectively.
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Figure 2. (a) Schematic diagram of the proposed ultra-thin, high-efficiency color-changing filter; (b) 
cross-sectional view of the structure; (c) the calculated transmission spectrum at normal incidence. 
T = 30 nm and d = 170 nm, 90 nm and 125 nm, respectively; (d) the corresponding chromaticity 
diagram of the RGB structural color. 
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Figure 2. (a) Schematic diagram of the proposed ultra-thin, high-efficiency color-changing filter;
(b) cross-sectional view of the structure; (c) the calculated transmission spectrum at normal incidence.
T = 30 nm and d = 170 nm, 90 nm and 125 nm, respectively; (d) the corresponding chromaticity
diagram of the RGB structural color.
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The tangential magnetic and electric fields in the m-th (0 < Z < D) divided layer can be
expressed in the following form:

Em,y = ∑
i

Sm,yi(z) exp(−jkxix)

Hm,x = −j(ε0/µ0)
1/2∑

i
Um,xi(z) exp(−jkxix)

(9)

Here, ε0 and µ0 are the permittivity and permeability of free space and Sm,yi(z) and
Um,xi(z) are the normalized amplitudes of the m-th space-harmonic fields that satisfy
Maxwell’s equation in each divided layer.

As in the uniform, homogenous layer, the reflected and transmitted amplitudes can be
solved by matching the tangential electromagnetic fields at the boundaries between each
divided layer. At the boundary between the input region and the first layer (Z = 0), the
following equation should be satisfied:[

δi0
jn1 cos θδi0

]
+

[
I
−jY1

]
[R] =

[
W1
V1

W1X1
−V1X1

][
c+1
c−1

]
(10)

At the boundary between the m−1 and the m divided layer (Z = Dm):[
Wm−1Xm−1
Vm−1Xm−1

Wm−1
−Vm−1

][
c+m−1
c−m−1

]
=

[
Wm
Vm

WmXm
−VmXm

][
c+m
c−m

]
(11)

At the boundary between the last divided layer and the substrate (Z = DL):[
WLXL
VLXL

WL
−VL

][
c+L
c−L

]
=

[
I

jY2

]
[T] (12)

where W and V are a matrix whose element is determined according to the eigenvector and
eigenvalues derived from Equations (1) and (2); Y1 and Y2 are diagonal matrices, with the
diagonal elements being kI,zi/k0 and kII,zi/k0, respectively, in each divided layer; and cL is
the unknown constant to be determined. Therefore, the relation can be obtained as:[

fL
gL

]
TL =

[
1

γL

exp(−k0γLdL)
−γL exp(−k0γLdL)

]
×

[
aL

bL exp(−k0γLdL)

]
TL

=

[
aL + bL exp(−k0γLdL)

γL[aL − bL exp(−k0γLdL)]

]
TL

(13)

where
[

aL
bL

]
=

[
1

γL

1
−γL

]−1[ fL+1
fL+1

]
, and fL+1 = 1, gL+1 = jkI I,z/k0.

We can easily obtain the relation between reflected and transmitted amplitudes from
Equations (4)–(7) without any numerical instability by using the enhanced transmittance
matrix approach [6], as in the following:[

δi0
jn1 cos θδi0

]
+

[
I
−jY1

]
[R] =

[
f1
g1

]
T1 (14)

Here, f 1 and g1 are the assistant parameters in the enhanced transmittance matrix
approach. From Equations (6) and (7), we can obtain the reflected amplitudes R and
transmittance amplitudes T. Thus, the reflectance and transmittance of the multi-layer can
be solved as follows:

R = RR ∗ Re(kI,z/k0nI cos θ)
T = TT ∗ Re(kI I,z/k0nI cos θ)

(15)

The entire structure is deposited on SiC, and a high-purity structural color can be
obtained by changing the thickness of the IGZO. Figure 2c shows the transmission spectra
corresponding to different IGZO thicknesses. When d = 170 nm, a blue (B) structural color
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appears at the resonance wavelength of 438 nm, and the transmission efficiency is 60.2%.
When the thickness d of IGZO is adjusted to 90 nm and 125 nm, green (G) and red (R)
structural colors with 55.9% and 49.9% transmission efficiencies at 550 nm and 676 nm can
be obtained, respectively. Figure 2d plots the RGB chromaticity coordinates corresponding
to the transmission curves in Figure 2c. The chromaticity coordinates for blue, green and
red colors are (0.177, 0.072), (0.321, 0.502) and (0.450, 0.356), respectively. A wide-color RGB
gamut is produced; thus, a variety of transmission colors can be generated.

3. Results and Discussions

The color filter exhibits the shape of a common F-P resonator, which is determined by
the constructive interference and the destructive interference caused by the specific phase
shift at the metal interface. Figure 4a,b depict the transmission spectra when d changes in
the range of 80–180 nm before and after H2 treatment. The resonance wavelength shifts sig-
nificantly with d. This wavelength is shifted after H2 treatment. The chromaticity diagram
of the corresponding transmission curve is plotted in Figure 4c, and the chromaticity coor-
dinates are shown in black and red, respectively. To visually demonstrate the performance
of the color filter resulting from the change in IGZO electron density, we converted the
transmission spectrum in Figure 4a,b into color, and the result is shown in Figure 4d. When
d = 120 nm, the resonance wavelengths before and after the H2 treatment are 657.7 nm
and 537.3 nm, respectively. The chromaticity coordinates change from (0.493, 0.326) to
(0.284, 0.454), and the transmission color changes from red to green. For other values, the
resonance wavelength will also shift after H2 treatment, and the transmission color will
change. Therefore, by changing the electron density of the IGZO layer, the refractive index
of the film can be changed so as to achieve the transformation of structural color.

During the design, the optimal design geometries for the MSM cavity had to be
obtained. To achieve this goal, the transmission spectra for different IGZO thicknesses
before and after H2 treatment at normal incidence were determined. The structures were
excited with a plane wave in the frequency range of interest, which was 400–800 nm.
As shown in Figure 5a,b, the resonant peak was obtained by gradually increasing the
thickness of IGZO under TM polarization in the visible range considered. The shift in the
resonance wavelength before and after H2 treatment showed a tendency to shrink, and the
transmission effect was weakened. High-purity RGB colors were obtained, as shown in
Figure 5a, and the resonance peak could be shifted by adjusting the thickness. Therefore,
the resonance wavelength shifts significantly after H2 treatment. For TE-polarized light, the
same result was obtained under TM polarization, as shown in Figure 5c,d. The polarization
of the implemented filter was independent.

The thickness of the metal layer reflector affects the transmission effect and the color
produced. In the following, we study the effect of the metal layer thickness t on the
transmission spectrum and color-rendering properties. Figure 6a depicts the change in
the transmittance of RGB with the thickness of Ag at normal incidence when the filter
presents the G color. As t increases, the transmission efficiency decreases and the resonance
wavelength is red-shifted. Figure 6b shows the transmission spectrum after H2 treatment;
with the increase in t, the transmission efficiency also decreases, but the spectral response
additionally becomes clearer, resulting in improved color purity. As shown in Figure 6c, this
is the color coordinate described in the CIE 1931 chromaticity diagram. When t = 20 nm,
although the transmission efficiency is very high, it deviates from the original green. The
H2 treatment also has the same result. The variation in the resonance results in a deviation
from the original blue color. Therefore, we must fully consider the influence of the thickness
of the reflector on the color-rendering effect.
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d = 90 nm. (b) The corresponding transmission spectrum after plasma treatment with H2. (c) An
illustration of color coordinates calculated from the transmission spectra studied in (a,b).

In order to study the physical properties of the adjustable structure before and after
H2 treatment, the electric field distribution diagram at the resonance wavelength of 550 nm
(G color) was studied. Figure 7a,b show the electric field changes before and after H2
treatment. It can be seen that the highest electric field intensity in the low-conductivity
film reaches 2.7, which is significantly stronger than that of the high-conductivity film. The
electric field in Figure 7a is mainly concentrated at the junction of the metal cavity and
IGZO and FP resonance occurs, enhancing transmission efficiency, while the light field in
Figure 7b is mainly located in the top Ag cavity, which leads to weakened resonance and a
weakened transmission effect.
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Next, we studied the relationship between the transmission spectra before and after
the H2 treatment and the incident angle. From Figure 8a,c,e, it can be seen that, for low-
conductivity films, within the incident angle range of 0–60◦, the resonance wavelength
remains almost unchanged, and the transmission efficiency does not change much. High-
purity RGB structural colors can be obtained and good resonance characteristics maintained.
When the B color appears, as the incident angle increases, resonance appears at 780–800 nm,
but the color filter effect is not affected. Figure 8b,d,f correspond to the transmission spectra
of IGZO treated with H2 shown in Figure 8a,c,e, respectively. The position of the resonance
peak shows a significant color shift. When the incident angle changes from 0 to 60◦, the
resonant peak position of RGB color is almost unchanged. It is thus proved that the
structure has good incident angle insensitivity.
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4. Conclusions

In summary, numerical research was carried out on ultra-thin and efficient color-
changing filters. The Ag-IGZO-Ag resonator covering the IGZO layer was used to achieve
FP resonance. An adjustable bandwidth in the fixed-resonance wavelength could be
realized, and any color in the visible light band could be obtained. The output color had
the advantages of rich color, wide color gamut, high color saturation and high purity.
Through the H2 treatment, the IGZO could become a high-conductivity film, so that the
color could be switched, the resonance wavelength shifted and a transmission palette
obtained. Moreover, it was determined from the RCWA that, when the incident angle
was changed between 0 and 60◦, the wavelength of the resonant peak remained basically
unchanged; thus, it has good incident angle-insensitive characteristics. The proposed
structure has significant application prospects and great potential for displays, image
sensors and decorations.
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