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Abstract: This paper addresses the robust Kalman filtering problem for multisensor time-varying
systems with uncertainties of noise variances. Using the minimax robust estimation principle, based
on the worst-case conservative system with the conservative upper bounds of noise variances, the
robust local time-varying Kalman filters are presented. Further, the batch covariance intersection
(BCI) fusion and a fast sequential covariance intersection (SCI) fusion robust time-varying Kalman
filters are presented. They have the robustness that the actual filtering error variances or their traces
are guaranteed to have a minimal upper bound for all admissible uncertainties of noise variances.
Their robustness is proved based on the proposed Lyapunov equations approach. The concepts
of the robust and actual accuracies are presented, and the robust accuracy relations are proved. It
is also proved that the robust accuracies of the BCI and SCI fusers are higher than that of each
local Kalman filter, the robust accuracy of the BCI fuser is higher than that of the SCI fuser, and the
actual accuracies of each robust Kalman filter are higher than its robust accuracy for all admissible
uncertainties of noise variances. The corresponding steady-state robust local and fused Kalman
filters are also presented for multisensor time-invariant systems, and the convergence in a realization
between the local and fused time-varying and steady-state Kalman filters is proved by the dynamic
error system analysis (DESA) method and dynamic variance error system analysis (DVESA) method.
A simulation example is given to verify the robustness and the correctness of the robust accuracy
relations.

Keywords: multisensor data fusion; sequential covariance intersection fusion; robust Kalman filter;

robust accuracy; uncertain noise variance; convergence

1. Introduction

The multisensor information fusion Kalman filtering has wide applications in many
high-technology fields, such as advanced manufacturing systems, mechanical industrial
robots, unmanned aircraft vehicles, tracking, signal processing, remaining useful life
prediction of rolling element bearings [1-3], improved tracking and docking of industrial
mobile robots [4-7], and so on. Rolling bearings are the key components of rotating
machinery, thus, the prediction of remaining useful life (RUL) is vital in condition-based
maintenance (CBM). Reference 1 proposes a new method for RUL predictions of bearings
based on time-varying Kalman filter, which can automatically match different degradation
stages of bearings and effectively realize the prediction of RUL. Industrial mobile robots are
widely used in advanced manufacturing technology systems; ref. [2] used the unscented
Kalman filter to improved tracking and docking of industrial mobile robots vision-based
kinematics calibration.

The basic assumption for classical Kalman filtering is that the model parameters and
noise variances are exactly known, but in many practical applications, such assumption
doesn’t always hold. In the presence of these uncertainties, the Kalman filters may not be
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robust against uncertainties, or may be divergent [8], or the performance of the filters is
degraded. In order to solve the filtering problems for uncertain systems, in recent years
several results have been derived on the design of various robust Kalman filters. The
so-called robust Kalman filtering problem is to find a Kalman filter whose actual filtering
error variances, or their traces, are guaranteed to have a minimal or less-conservative upper
bound for all admissible uncertainties. There are basically two approaches to solve this
problem for the systems with uncertainties of model parameters: one is the Riccati equation
approach [8-11]; the other is the linear matrix inequality (LMI) approach [8,12,13].

The uncertain systems exist widely in control engineering and signal processing. So
far, these robust Kalman approaches are only suitable to the systems with the uncertainty of
model parameters, while the uncertainties of noise variances are seldom considered. Many
results are limited to design the robust Kalman filters for single sensor systems, while the
multisensor fusion robust Kalman filters are seldom proposed [14-17], and the robustness
analysis problem was not solved.

The multisensor data fusion problem is to find a fused state estimator based on the
local sensor measurement information or the local state estimators such that its accuracy
is higher than that of each local state estimator [18-20]. There exist two kinds of fusion
methods, which are called the centralized and distributed fusion methods depending on
whether raw data are used directly for fusion or not [19]. For the centralized fusion method,
all the measurement data from local sensors are carried to the fusion center which can give
the global optimal fusion estimate, but its disadvantage is to require a large computation
burden. The distributed fusion method can give the globally optimal or suboptimal state
estimation by combing the local state estimators [20-22], whose advantages are that it
can reduce the computation burden and can realize fault detection and isolation more
conveniently. Under the unbiased linear minimum variance rule (ULMYV), there are three
distributed optimal fusion rules weighted by matrices, diagonal matrices, and scalars,
respectively, which were presented in [20,23].

It is well known that to compute the optimal weights requires knowing the cross-
covariance among the local Kalman filtering errors [20-23]; however, in many practical
applications, the variances and cross-covariances of the local filtering errors are unknown or
uncertain, or the computation of the cross-covariances is very complex and difficult [21,24].
In order to overcome the above limitation, the covariance intersection (CI) fusion method
has been presented in [25-29] and has been widely applied in many fields; for example,
the simultaneous localization and mapping (SLAM) [29], remote sensing [30], rocket track-
ing [31], spacecraft estimation [32], vehicle localization [33] and so on. The CI fuser is
obtained by the convex combination of the local estimators, and it has the advantages
that the fused estimation problems can be solved for multisensor systems with unknown
variances and cross-covariances of local filtering errors, and the computation of the cross-
covariances is completely avoided. However, its disadvantage is that the conservative
upper bounds of the unknown local filtering error variances are assumed to be known, i.e.,
the consistent estimation problem of the unknown local filtering error variances was not
solved.

Based on the batch processing method, the batch covariance intersection (BCI) fusion
Kalman filter with exactly known model parameters and noise variances is presented [22];
this needs to solve the high-dimensional nonlinear optimization problem, so that a larger
computation burden and higher complexity are required. In order to reduce the computa-
tion burden and complexity by the sequential procession method, a sequential covariance
intersection (SCI) fusion Kalman filter is presented in [34] for multisensor systems with
noise variances to be known exactly.

In this paper, we will focus on the covariance intersection (CI) fused robust Kalman
filtering for multisensor systems with uncertainties of noise variances. A robust CI
fusion Kalman filtering theory and methodology are presented. Compared with refer-
ences [22,25-29,34], the main contributions are as follows:
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In Sections 2 and 3, a new methodology for designing the robust local and CI fused
Kalman filters is presented for multisensor time-varying systems with uncertain noise
variances, according to the minimax robust estimation rule [35,36]. Its basic principle is
that based on the worst-case conservative system with the conservative upper bound
of noise variances, applying the ULMV optimal estimation rule, the conservative local
and CI fused Kalman filters with unavailable conservative measurements are obtained,
and then replacing the conservative measurements with the actual measurements
yields the robust local and CI fused Kalman filters. The classical optimal Kalman
filtering methodology [22,34] is developed. The disadvantage of the original CI
fusion methodology [25-29] is overcome where the conservative upper bounds of
the local filtering error variances are assumed to be known. Hence the robust local
Kalman filters are presented, which provide the conservative upper bounds of the
local filtering error variances;

In Section 3, the robust time-varying BCI and SCI fused Kalman filters with uncertain
noise variances are presented. The steady-state optimal local, BCI and SCI fused
Kalman filters [22,34] with exactly known noise variances are developed;

In the process of proving Theorems 1 and 3, a Lyapunov equation method for the
robustness analysis is presented by which the robustness of the local and CI fused
Kalman filters is proved. Its basic principle is that the problem of proving the robust-
ness is converted into that of deciding the positive-definiteness of the solution of a
Lyapunov equation;

In Section 4, the concept of robust accuracy with respect to uncertainties of noise
variances is presented, and the robust accuracy relations among the local, BCI and
SCI fused Kalman filters with exactly known noised variances [22,34] are extended.
The concept of robustness with respect to uncertain noise variances is presented, and
the concept of consistency [25,26] is extended;

In Section 5, for the multisensor time-invariant system with uncertain noise variances,
the robust steady-state local, BCI and SCI fusion Kalman filters are also presented
by replacing time-varying gains, variances and cross-covariances with their limits,
respectively;

Using lemma 1-3, in Theorem 7, the convergence in a realization of the local and
fused time-varying and steady-state robust Kalman filters is proved by the dynamic
error system analysis (DESA) method and the dynamic variance error system analysis
(DVESA) method. To the best of our knowledge, it is presented for the first time;

In Section 7, simulation 1 gives the geometric interpretation of the robust accuracy
relations based on the variance ellipses and a Monte Carlo simulation example shows
the correctness of the proposed robust accuracy relations and gives the sensitivity
analysis of the robust SCI fuser.

The remainder of this paper is organized as follows: In Section 2, we derive the local

robust time-varying Kalman filter and prove its robustness. Section 3 gives the BCI and SCI
fusion robust time-varying Kalman filters and the proof of their robustness. The accuracy
analysis of the local and fused Kalman filters is presented in Section 4. Section 5 gives the
robust local and fused steady-state Kalman filters and their convergence. The sensitivity
problem is given in Section 6. Section 7 gives a Monte Carlo simulation example. The

conc

lusions are given in Section 8. The frequently used notations in the paper are shown in

Table 1.

Table 1. The frequently used notations.

Name Summary

t the discrete time

¢(1) the state transition matrix

I(t) the input transition matrix

H;(t) the measurement transition matrix.
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Table 1. Cont.
Name Summary
| Al the norm of matrix A.
k the discrete time
E the mathematical expectation operator
AT transpose of matrix A
Jij the Kronecker ¢ function, d;; = 1,4;; = 0(i # j)
trA the trace of a matrix A
s “steady-state”
“ia.r” the convergence in a realization

2. Local Robust Time-Varying Kalman Filters

Consider the following multisensor uncertain time-varying system with uncertainties
of noise variances
x(t+1) = ¢(t)x(t) + IT'(t)w(t) 1)

yilt) = H(O)x(t) +04(0), i =1, I @

where x(t) € R" is the state, L is the number of sensors, y;(t) € R™ is the measurement of
the ith subsystem, w(t) € R" is the input noise and v;(t) € R™ is the measurement noise
of the ith sensor. ¢(t), I'(t) and H;(t) are known time-varying matrices with appropriate
dimensions.

Assumption 1. w(t) and v;(t) are uncorrelated white noises with zeros mean and unknown
uncertain true variances Q(t) and R;(t), respectively.

5| (s o0 i00)"| =[G & g, oo ®

Assumption 2. Q(t) and R;(t) are known conservative upper bounds of Q(t) and R;(t),
respectively, i.e.,
Q) < Q(1), Ri(t) < Ri(t), Vt,i=1,--- L )

Assumption 3. The initial state x(0) is independent of w(t) and v;(t), and has mean value y and
unknown uncertain true variance P(0|0) which satisfies

P(0]0) < P(0]0) ®)

where P(0|0) is a known conservative upper bound of P(0|0).

Based on the ith sensor, for the worst-case conservative multisensor system (1) and
(2) with the known conservative upper bounds Q(f) and R;(t) of noise variances, the
conservative local optimal time-varying Kalman filters are given by [20]

Li(tt) = i) & (t -1t = 1) + K(H)yi(t), i=1,--- L (6)

¥i(t) = [In — Ki(t) Hi(t)]p(t) 7)

Ki(t) = Pi(t|t = 1) H] ()Q" () 8)

Qei(t) = Hi(t)Pi(t[t — 1) H] (t) + Ry(t) )

Pi(tt—1) =t —D)P(t =1t = 1)pT(t —1) + Tt —1)Q(t — I T(t—1)  (10)
Pi(t|t) = [I, — K;(t) H; (£)] P;(¢|t — 1) (11)

Pij(t[t) = ¥i(t)Py(t — 1|t = )] (t) + [In — Ki(H) Hy (t)]

X T(t=1)Q(t = )T (£ = 1) [L, — Ki() H;(1)] T + Ki(t) Rij())KT (1)

(12)
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Pi(t]t) = B[%(t)F ()], Pyi(tlt) = B[ (D% (¢11)] (13)
%i(t]1) = x(t) = (1] (14)

From (1) and (6), the actual filtering errors are
Xi(t|t) = () x(t =1t = 1) + (I — K () H; (1)) T (Hw(t — 1) = Ki(t)v; (1)~ (15)

From (15), according to Assumptions 1-3, and noting that w(t) and v;(t) are uncorre-
lated with X;(t|t), the actual filtering error variance and cross-covariances are given by the
Lyapunov equations

Pyj(t]t) = ¥i(#)Pyi(t = 1|t = 1)¥ (1) + [Ln — Ki(£)Hy(¢)] 16)
X T(t—1)Q(t — )IT(t—1) [In — K;()Hj(1)] T + Ki()Ry; (/KT ()6

with the initial values P;;(0]0) = P(0]0) and Pj;(t|t) = P;(t|t).

Theorem 1. For multisensor uncertain system (1) and (2) with Assumptions 1-3, the actual local
Kalman filters (6) is robust in the sense that for all admissible variances Q(t) and R;(t) satisfying
(4) and P(0]|0) < P(0|0) for arbitrary time t, we have

Pi(t|t) < P(tt),i=1,---,L (17)

and P;(t|t) are the minimal upper bounds of P;(t|t). Hence, they are called the robust local Kalman
filters.

Proof. Defining AP;(t|t) = P;(t|t) — P;(t|t), subtracting (16) from (12) yields the Lyapunov
equations
AP;(t[t) = Fi(D)AP;(t = 1t = 1)¥(£) + Ui(#) (18)

Uj(t) = I — Ky () Hi ()] T (£ = 1) (Q(t = 1) = Q(t = 1)) T (t = 1) [I, — K;(H)H; ()]
+ Ki(#) (Ri(#) = Ri(#)) K] (1)

(19)
Applying (4) yields that U;(t) > 0. From (5), we have AP;(00) = P(0|0) — P(0|0) > 0.
Hence from (18), we have AP;(1|1) > 0. Applying the mathematical induction method
yields AP;(t|t) > 0, for all time ¢, i.e., the inequalities (17) hold. If P/ (t|t) is another upper
bound, then for all admissible Q(t) < Q(t) and R;(t) < R;(t), we have P;(t|t) < Pj(t|t).
Taking Q(f) = Q(t), R;(t) = R;(t), from (12) and (16), we have P;(t|t) = P;(t|t) < P (t|t).
This means that P;(¢|t) is the minimal upper bounds of P;(t|t). The proof is completed. [

Remark 1. The robustness (17) is different from the consistency or non-divergent estimation [23].
The robustness means that the inequality (17) holds for all admissible uncertain Q(t) and R;(t)
satisfying (4), while the consistency means that for a fixed Q(t) and R;(t), the inequality (17) holds.

3. The CI Fusion Robust Time-Varying Kalman Filter
3.1. The BCI Fusion Robust Time-Varying Kalman Filter

For the two-sensor uncertain systems with the Assumptions 1-3, applying the CI fused
algorithm [20-23], the actual CI fusion time-varying Kalman filter with the conservative
upper bounds Q(f) and R;(t) of noise variances is presented as following

fi(tE) = Por(t]6) [w(t) P (HD R (1) + (1— (D) (1D %(H]  (20)

Pcy(t|t) = [w(t)Pl_l(t|t) +(1 fw(t))Pz_l(t|t)rl, w(t) € [0,1] (21)
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where £;(t|t) are the robust local Kalman filters given in Theorem 1. The weight w(t)
minimizes the cost function | as

-1
minf = min trPe(tf) = min trd |w(H)P7HEE) + (1 — w(#)) Py (¢t } 22
1= min kel = min of [0p 6+ 0-0@)r 0]} @

When the number of the sensors is larger than two, i.e., L > 3. The actual batch covari-
ance intersection (BCI) fusion Kalman filter is presented by the convex combination [26,35]
as

L
pcr(tt) = Pper(t|t) Y wi(t) P (HE)%i(t]t) (23)
i=1
Ppcy(tt) = [sz t|t ] ’ Zwl( )=10<w(t) <1 (24)
i=1

where £;(t|t) are the robust local Kalman filters, the weights w;(t) are determined by
minimizing the performance index | = trPpc;(t|t) as

w;(t) w;(t) € [0,1]
wi(t)+---Fwr(t) =1

. -1
min] = mintrPgc;(t|t) = min tr{ [Z wi(t)Pil(t|t)1 } (25)

which can be obtained by “fimincon” function in Matlab. This needs to solve a L-dimensional
nonlinear convex optimization problem, so that the larger computation burden and higher
complexity are required.

Theorem 2. The actual BCI fusion filtering error variance is given by

Ppci(t|t) = Ppci(t]t) [Zzwz “H(tE)P ij (E|£) P (HE)w ()]PBCI(”) (26)

i=1j=1
where Py;(t|t) are computed by (16).

Proof. From (24), we have

L
x(t) = Ppci(t|t) [Z wi(t)Pil(tlf)]X(t) (27)
i=1
Subtracting (27) from (23), we easily obtain the actual BCI fused filtering error
~ L ~
Tpci(t[t) = Pecr(t]t) ) wi(H) P (H1)Xi(t]t) (28)
i=1

which yields the formula (26). The proof is completed. [

Theorem 3. For multisensor uncertain system (1) and (2) with Assumptions 1-3, the actual BCI
fusion time-varying Kalman filter (23)~(25) is robust in the sense that for all admissible uncertainties
of noise variances Q(t) and R;(t) satisfying (4), we have

Ppci(t|t) < Pper(t|t) (29)

and trPgc;(t|t) is the minimal upper bound of trPpcy(t|t). We call (23) as the robust BCI fusion
Kalman filter.
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Proof. In order to prove (29), we only need to prove

Ppcr(t|t) — Ppcr(t]t) > 0 (30)
Pre-multiplying and post-multiplying (30) by chll, respectively, we have
Py (£1£) = Py (1) Prcr () P (H]1) > (31)
Substituting (24) and (26) into (31), we only need to prove
L
Y wi(t)PTH(E]E) — Z sz (B Py ()P (Hw;(H) = 0 (32)
i=1 i=1j=
From (17) for all admissible Q(t) and R;(t) satisfying (4), we have
Pi(t[t) — P;(t|t) = 0 (33)
Pre-multiplying and post-multiplying (33) by Pifl, respectively, we have
H(tE) = P EDP(EE) P (HE) > (34)
From (32) and (34), we only need to prove
L L L
Z;wi(t)l’fl(flf) i(HE) P (H1) z;,;wl L(HOPy(HO)PT (HHw;(H) >0 (35)

L
Applying the constraint }_ w;(t) = 1 yields that
i=1

2% L EHOPi (P (1)) = 22% OB (36)
i=1j=1

Hence, we only need to prove
L L
A=Y Y wiBwi() (P (HOPi(H P (t]t) — P (HOPy (L) P () 20 (37)

i=1j=1
Exchanging the subscript symbol i with j in (37) yields
PO EHOPa(HOP () =0 (38)

L L
A=) ) wi(wi(t) (P (HE Pt P () —

26 = £ X @ity [P U0P0R 010 + B DB (0P o)
=1j
P Py ()P (1) — B (PP (1)

L L (39)
—zzmwmq@ﬂwmn AUDEAGD)

i=1j=1
< (B lnmc) - P mwm@]zo
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which yields A > 0, i.e., (29) holds. Taking the trace operation for (29) yields trPpc(t[t) <
trPpcy(t|t). Applying (25) yields that trPpc;(t|t) is minimal for all admissible Ppcy(t|t)
given in (24). The proof is completed. [

Remark 2. The proof of Theorem 3 is completely different from the proof in reference [20], where the
noise variances are assumed to be exactly known, and the consistency is proved by the mathematical
induction. The proof is also different from that in reference [36], where the consistency of the
BClI fuser was only proved with the assumption that the local estimates are consistent, while the
robustness problem was not proved.

3.2. The SCI Fusion Robust Time-Varying Kalman Filter

In order to reduce the complexity and computational burden, the sequential covariance
intersection (SCI) robust time-varying Kalman fuser is presented based on the L — 1 two-
sensor CI fused robust Kalman filters, and it can be realized by a recursive two-sensor CI
fusers [34]. Its structure is shown in Figure 1, and the comparison of the computational
loads of the BCI filter and the SCI filter are shown in Table 2.

il’R \
. / X Fen
%, 5
5B | —
Xers Fer
\4
L2)’P(1(L2
~ ff}(L—l)’PFI(Lfl)
X, P >
\l/

Xser = ‘)%CI(L—I)’PSCI = Pc/(L-])

Figure 1. The structure of the SCI fusion robust Kalman filter.

Table 2. The comparison of the computational loads.

robust BCI filter Pycr(tt) (N +1)n)?
robust SCI filter Pscr(t|t) n’N

Based on the two-sensor CI fused algorithm, the actual SCI fusion time-varying
Kalman filter with the conservative error variances Q(t) and R;(f) is presented as follows

ten(t1t) = Pen(t1) [wi()) P,y (10 erony (H1E) + (1= () P4 (H) 24 (111)] - (40)

Pes(t]t) = [wi ()P (10 + (1 —awr()BL (0] i=1, -, -1 @)
Rsci(tt) = 1L71)(t|t)/ Pscy(t[t) = Peyr—1)(t[t) (42)

Rcr(0) (HE) = #1(t]t), Pgd;(0]0) = Py 1(0]0) (43)
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where £;(t|t) are the robust local Kalman filters, and the parameters w;(t) is determined by
minimizing the performance index | as

-1
— mi — ; -1 -1 P
J = mintrPe (1) = Wiér)lér[}),l]tr{ [wi(t)pCI(H)(m) +(1- wi(t))Pi+1(t|t)] } i1 L1 (44)
The optimization problem (44) is equivalent to the L — 1 one-dimensional optimization

problems (22).

Remark 3. When the noise variances are exactly known, the optimal steady-state SCI fuser was
presented in [34]. However, for multisensor systems with uncertain noise variances, the local and
SClI fusion robust time-varying Kalman filters were not presented in [34].

Theorem 4. For the multisensor uncertain system (1) and (2) with Assumptions 1-3, the actual
SCI fused filter £5c;(t|t) and its actual error variance Pscy can be rewritten as batch representation

L
fscr(t]e) = Poci(t]6) ) 0/ ()P (1) %i(1]1) (45)

i=1

Loy o] (L)
Psci(tlt) = |30,/ (DR (tl) |, )0, () =1, 6,7 (t) >0 (46)
i=1 i=1
Psci(t[) = Psci(t]t) [Z Y0 (P Py (D P (D0 ()| Psca(tlt)  47)
i=1j=1
where the weighting coefficients 657) () can be computed recursively by

0 (t) = w, 1 (00" (), i=1,-- ,r—1 (48)
0 () =1—w, 1(t), r=2,---,L (49)
02 (t) = wy (1), 082 (t) =1 — wy (¢) (50)

where the coefficients w;(t) are obtained by (44).

Proof. By the mathematical induction (45), (46), (48)—(50) can be proved in [32].
From (46) we have

L
x(t) = Psc(H1) [Ze (L) tt)] (t) (51)
i=1
Subtracting (45) from (51), we get
L
Fscr(t|) = Pscr(t]H) Y 6 ()P ()% ]t) (52)

i=1

Substituting (52) into Pgc;(t|t) = E[Xsci(t|t)XLc;(t]t)] yields the formula (47). The
proof is completed. [

Theorem 5. For multisensor uncertain system (1) and (2) with Assumptions 1-3, the actual SCI
fusion time-varying Kalman filter (40)—(44) is robust in the sense that for all admissible uncertainties
of noise variances Q(t) and R;(t) satisfying (4), we have

Pscr(t|t) < Pscr(t]t) (53)

we call (45) as the robust SCI fusion Kalman filter.
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Proof. Applying Theorem 4, the SCI Kalman filter can be expressed as the equivalent BCI
Kalman filter form. According to Theorem 3, the BCI time-varying fuser is robust, so that
the SCI time-varying fuser is also robust. The proof is completed. O

Remark 4. The proof of Theorem 5 is different from that in [34] by the consistency of the two-sensor
ClI fuser. We can also prove Theorem 5 based on robustness of the two-sensor CI fuser.

4. Accuracy Analysis

From (53), we can see that Psc(t|t) is the upper bound of the unknown actual fused
variances Psc;(t|t) for all possible P;(t[t) and all admissible unknown Pj;(¢|t) satisfying
(16), so that Psc(t|t) can be viewed as the global accuracy of the SCI fuser. From (46), we
see that Psc;(t[t) is independent of actual variances P;(t|t) and cross-covariances Pj;(t|t).
So that the global accuracy of the SCI fuser has the robustness with respect to uncertain
P;(t|t) and Pjj(t|t). From (16), we see that the uncertainties of P;(t[t) and Pj;(t|t) are
yielded by the uncertainties of Q(t) and R;(t) satisfying (4).

Definition 1. The robustness with respect to uncertainties of noise variances of a Kalman filter is
defined as its actual filtering error variances or their traces yielded by all admissible uncertainties of
noise variances, which are guaranteed to have a minimal or less-conservative upper bound and this
upper bound is independent of uncertainties of noise variances. The Kalman filter with robustness is
called to be robust.

Definition 2. The robust accuracy of a robust Kalman filter is defined as the trace of a minimal
or less-conservative upper bound of its actual filtering error variances, while its actual accuracy is
defined as the trace of its actual filtering error variance.

Theorem 6. For multisensor uncertain system (1) and (2) with Assumptions 1-3, the actual
and robust accuracies of the local, BCI and SCI fused time-varying Kalman filters have the
relations

trP;(t|t) < trPi(t|t), i=1,---,L (54)
trPpcy(t|t) < trPpci(t|t), trPsci(t|t) < trPsci(t|t) (55)
trPgcy(F|t) < tel(tt), i=1,---,L (56)
trPpcy(tt) < trPscp(t|t) (57)

trPocy (H[) < tPi(E[E), i =1,--- L (58)

Proof. Taking the trace operations for (17), (29) and (53) yields (54) and (55). In (25), taking
w;(t) = Tand wj(t) = 0(j # i) yields trPpc(t|t) = trP;(t|t), Hence, minimizing trPpcy(f|t)
with constraints 0 < w;(t) <1, wi(t) + - -+ wr(t) = 1, we have trPgc;(t|t) < trP(t[t),
i=1,---,L,ie. (56) holds. From (45) and (46), the SCI fuser is equivalent to a BCI fuser
with w;(t) = 91-(L) (t), applying (25) yields (57).

The robust accuracy relation (58) can be proved by mathematical induction. Fori = 2,
from (40)—(44) we have

2en(tt) = Peri () [wl(t)pfl(tu);el(ﬂt) +(1- wl(t))pgl(t\t);ez(tu)} (59)
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Pen(t16) = [wr (P (110 + (1= n(0)P ' (110)]  w(t) € 0.1] (60)

where %;(t|t) are the actual local Kalman filters, the weight w minimizes the cost function |
as

-1
inf; = min trPcyi(f|t) = min t HP; () + (1 — wi(t))Py L (H]E 61
miny = min nPen () = min f [or (0P (00 + (- @) 0] | 6

Taking w; (f) = 0, we have J; = trP(t|t), and taking wq () = 1, we have J; = trPy(t|t),
hence for w(t) € [0,1] yields

trPepy (E|t) < twP(tt), i=1,2 (62)
Similarly, for i = 3, from (40)-(44) we have
trPepp(t[t) < trPep (tt), trPep(t|t) < trP3(t|t) (63)
From (62) and (63), one can obtain
trPepp (tHt) < trPi(tt), i =1,2,3 (64)

By the mathematical induction method, assume that for i = L — 2, the following
inequality holds
trPCI(L_z)(t|t) StrPl(t\t), 121, ,L—l (65)

Fori = L — 1, from (44), we have
trPeyr—1)(t|t) < tePr(t]t), trPoppq)(H[t) < trPepp_o)(t[t) (66)
From (65) and (66) yields
trPCI<L_1)(t|t) StrPl(t|t), Z:1, ,L (67)

Noting that Pscy(t[t) = Pcyz—1)(t[t), which yields the inequality (58). The proof is
completed. [

Remark 5. The accuracy relations (54) and (55) mean that for all admissible uncertainties of
variances satisfying (4) and (5), the actual accuracies trPy(t|t), 6 = 1,---,L,BCI, SCI of the
local or fused time-varying Kalman filter are globally controlled by trPy(t|t), therefore the robust
accuracy trPy(t|t) is also called the global accuracy of a robust Kalman filter. The robustness of
the local and fused filters means that the robust accuracy trPy(t|t) is independent of arbitrarily
variances satisfying (4) and (5).

Remark 6. From the definition 2, the smaller trPy (t|t) (or trPq(t|t)) means the higher robust (or
actual) accuracy. From (564)—(58), we conclude that the robust accuracy of the robust SCI fuser is
higher than that of each local robust Kalman filter, and the robust accuracy of the BCI fuser is higher
than that of the SCI fuser. The actual accuracies of a robust Kalman filter are higher than its robust
accuracy for all admissible uncertainties.

Remark 7. Theorem 1 shows that P;(t|t) is the minimal upper bound of P;(t|t) in the matrix
inequality sense. Theorem 3 shows that trPgcy(t|t) is the minimal upper bound of trPpcy(t|t) in the
trace inequality sense. From (55), (57) and (58) yields that trPscy(t|t) < trPsci(t|t) < trPi(t|t),
i=1,--,Lsothat trPscy(t|t) is a less-conservative upper bound of trPscy(t|t).
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5. Robust Local and Fused Steady-State Kalman Filters

Now we investigate the asymptotic properties of the local and fused robust time-
varying Kalman filters, we shall present the corresponding steady-state robust Kalman
filters. We shall also rigorously prove the convergence in a realization between the ro-
bust time-varying and steady-state Kalman filters, by the DESA method and DVESA
method [37,38].

Lemma 1 [39]. Consider the following Lyapunov equation with F being a symmetric matrix
P=YP¥Y'+F (68)

where P,'¥ and F are the n X n matrices, ¥ is a stable matrix (i.e., all its eigenvalues are inside the
unit circle). If F > 0, then P is symmetric and unique, and P > 0.

Lemma 2 [38]. Consider the time-varying Lyapunov equation
P(t) = Fi(t)P(t — R (t) + U(t) (69)

where t > 0, the output P(t) and the input U(t) are the n x n matrices, and the n x n matrices
Fi(t) and Fy(t) are uniformly asymptotically stable, i.e., there exist constants 0 < p; < 1 and
¢j > 0 such that

IEi(t,i)]| < cjpf ', Wt >i>0, j=1,2 (70)

If U(t) is bounded, then P(t) is bounded. If U(t) — 0, then P(t) — 0, as t — oo. Notice
that U (t) is called to be bounded, if ||U(t)|| < c (constant), for arbitrary t > 0.

Lemma 3 [37]. Consider a dynamic error system
S(t) =F()é(t—1) 4+ u(t) (71)

where 5(t) € R", u(t) € R", and F(t) is uniformly asymptotically stable. If u(t) is bounded, then
8(t) is bounded. If u(t) — 0, then 6(t) — 0, as t — oo.

Theorem 7. For multisensor uncertain time-invariant system (1) and (2) with Assumptions 1-2,
where ¢(t) = ¢, T(t) = I', Hy(t) = H;, Q(t) = QR(t) = R;, Q(t) = Qand Ry(#) = K,
are all the constant matrices. If each subsystem with conservative noise variances Q and R; is
completely observable and completely controllable, then the actual local steady-state Kalman filters
are given as

2(Ht) =¥ (t =1t = 1) + Kyi(t), i=1,---,L (72)
-1

¥ = (I, — K;Hj)¢, K; = S;HT (HiZiHiT + Ri) (73)

P = [l — K;H]]: (74)

where y;(t) are the actual measurements, and the initial value %3 (0|0) can arbitrarily be selected.
Y.; satisfies the steady-state Riccati equations

-1
Li=¢ [Zi —%H] (HiZiHiT + Ri) Hizi:| ¢T+TQr" (75)

and the conservative cross-covariances Py; and the actual cross-covariances Py; satisfy the steady-state
Lyapunov equations

Pyj = ¥iPyj¥ + [I, — KiHi]T QI [I, — K;Hj] Ty KiRiK[6;,i,j=1,---,L  (76)

DPij = ¥iPy¥" + [I, — KiHJT Q" I, — K;Hj] Ty KiRiK}&;5,i,j =1,---,L  (77)
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with the definition P; = P;;, P; = Pj;, and we have

Py(t|t) — P;j, ast — oo, i,j=1,---,L (78)

ﬁg(ﬂi)%ﬁﬁ,ast%oo, i,j=1,---,L (79)

The actual local steady-state Kalman filters (72) are robust in the sense that for all admissible
uncertainties of Q and R; satisfying Q < Q, R; < R;, then

P;<Pp,i=1,--,L (80)
and P; is the minimal upper bound of P;. They are called the robust local steady-state Kalman filters.

Proof. According to the complete observability and complete controllability of each sub-
system, we have [40]

Pi(tjt—1) > %;, ast o0, i=1,--- L (81)
Then from (7), (8) and (11), we have
1f’l(i') — IPZ', Kl'(t> — Kl',Pl'(t|t) — Pi/ ast — OO,i =1,---,L (82)

where ¥; are stable matrices [40], and ¥;(t) are uniformly asymptotically stable [40]. When
t — oo, taking the limit operations for (6)—(11), (12) and (16), we obtain (72)—(77). From
K;(t) — K;, the gains K;(t) are bounded, which yields the boundedness of the input of
the Lyapunov Equation (12). Hence, applying Lemma 2 to (12) yields that P;(t|t) are
bounded. Setting ¥;(t) = ¥; + A¥;(t) with A¥;(t) — 0, and subtracting (76) from (12) with
H;(t) = H;, I'(t) =T, Q(t) = Qand R;(t) = R;, and defining A;;(t) = P;(t|t) — P;;, yields
the Lyapunov equations

Aij(t) = Fidi(t = 1) + Uyi(1) (83)

Ujj(t) = [In — Ki(H)H] I QI'" I, — K]-(t)Hj]T + Ki(H)RiK (1)0;
— [l = KHI'QI'' [I, — K;Hj| — KiRiK}rzSij + WPyt — 1]t — 1)A‘}’]T(t) (84)
+AY(HP;(t -1t = 1)¥, + A‘I’i(t)A‘I’]T(t)

Applying K;(t) — K;, the boundedness of P;(t|t), and AY¥;(t) — 0 yields that
U;i(t) — 0. Applying Lemma 2 to (83) yields A;;(t) — 0, as t — oo, i.e., (78) holds. Simi-
larly, we can prove (79). Taking the limit operation for (17), as t — co, and applying (78)
and (79) yields (80). Taking Q = Q, R; = R;, subtracting (77) from (76), and applying
Lemma 1 yields P; = P, if P’ is arbitrary other upper bound of P; for all admissible Q
and R; satisfying Q < Q, R; < R;, then we have P; = P; < P/, which yields that P; is the
minimal. The proof is completed. []

Theorem 8. For multisensor uncertain time-invariant system (1) and (2) with Assumptions 1-2, if

each subsystem with conservative noise variances Q and R; is completely observable and completely
controllable, then the actual steady-state BCI fusion Kalman filter is given as

L
251 (t) = Pper Y wiP 1 #5(t]t) (85)
=1

1=

-1
L
Ppcr = [Z wiPi-ll (86)
i=1
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where %3 (t|t) are given in Theorem 7, and the optimal weighting coefficients w; are obtained by
minimizing the performance index | = trPpc as
-1
' } (87)

It has the robustness in the sense that for all admissible uncertainties of Q and R; satisfying
Q < Q, Ri < R;, we have

€ [0,1]
wp+- - F+wp =1

L
min] = n}ui_ntrPBCI = min tr{ lz w;iP;~
! wj i=1

Ppcr < Ppeg (88)

where the actual fused steady-state filtering error covariance is given as

Ppcr = Pper ZZWP PI]P 'w; | Ppey (89)
i=1j=1

and trPgcy is the minimal upper bound of trPpcy. It is called the robust steady-state BCI fusion
Kalman filter.

Proof. As t — oo, taking the limit operations for (23)—(26) yields (85)—(87). Taking the limit
operations for (24) and (26) and applying (78) and (79) yields that
Pscy(t|t) — Pscy, Psci(t|t) — Pscy, so that taking the limit operations for (26) and (29)
yields (88) and (89). The proof is completed. O

Theorem 9. For multisensor uncertain time-invariant system (1) and (2) with Assumptions 1-2, if
each subsystem with conservative noise variances Q and R; is completely observable and completely
controllable, the actual steady-state SCI fusion Kalman filter is given as

230, (tt) = PsczZQ £ (t)t) (90)
L] b (L)
Pscr= Y. 0,7P Y , Y 60" =1,0">0 (91)
i=1 i=1
5 = o) p-13. p-1g(L)
Pscr = Pscy ZZ ; Pflpz’ijl@j Pscy (92)
i=1j=1

(r)

where the weighting coefficients 6"’ can be computed recursively by

o) = w100, =1, 1 ©3)
0 =1—w, 1, r=2,-,L (94)
0% = wy, 0 =1—w, (95)

and it is robust in the sense that for all admissible uncertainties Q and R; satisfying Q < Q, R; <
R;, we have B
Pscr < Pscy (96)

1t is called the robust steady-state SCI fusion Kalman filter.

Proof. As t — oo, taking the limit operations for (45)—(47), and (53) yields (90)—(92), and
(96). From (48)—(50), we have (93)—(95). The proof is completed. [
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Theorem 10. Under the conditions of Theorem 7, if the measurement data of y;(t) are bounded,
then the robust local time-varying and steady-state Kalman filters £,(t|t) and £;(t|t) given by (6)
and (72) have each other the convergence in a realization, such that

[%i(t[t) — %5 (t|t)] — O, as, ia.r (97)

Proof. Setting ¥;(t) = ¥; + AYi(t), Ki(t) = K; + AK;(t) in (6), applying (82) yields
AY;(t) — 0, AK;(t) — 0, as t — co. Subtracting (72) from (6), and defining J;(t) =
®i(t|t) — %7 (t|t), we have

Gi(t) = ¥idi(t — 1) + u(t) (98)
with u;(t) = A¥;()%;(t — 1|t — 1) + AK;(t)y;(t). Noting that '¥;(t) is uniformly asymptoti-
cally stable, and AK;(t)y;(t) is bounded, applying Lemma 3 to (6) yields the boundedness
of %,(|t). Hence, we have u;(t) — 0. Applying Lemma 3 to (98), noting that ¥; is a stable
matrix, so it is also uniformly asymptotically stable, hence J;(t) — 0, i.e., the convergence
(97) holds. The proof is completed. [

Theorem 11. Under the conditions of Theorem 10, the robust time-varying and steady-state SCI
fusers £g;(t|t) and £5-(t|t) have each other the convergence in a realization, such that

[®scr(tt) — £5c; ()] = 0, ast — oo, ia.r (99)

Proof. From (87), the minimal value point (wy,- -+ ,wr) € RE of ] = trPgc; is obtained by
solving nonlinear equations

. O

S =050 =0 (100)

According to the existence theorem [36] of implicit function, in a sufficiently small
neighborhood of the point (Pl.ks,i =1---,L,s=1,---,n) € R with the definition
P, = (Pl.ks), k,s=1,---,n, w; can be represented by a Ln?-dimension continuous function
of all elements of P;(i =1,--- ,L) as

w1:fi(P1,"',PL),izl,"‘,L (101)

Applying (78) with i = j yields P;(t|t) — P;, as t — oo. Hence for sulfficiently larger ¢,
we have

where w;(t) are defined in (25). According to the continuity of f;, if follows
wi(t) > w;,ast—o0,i=1,---,L (103)
and applying (48)-(50) and (93)—(95) yields
01 (1) = 0F, ast — 00, i=1,---,L (104)
Defining
Q; = Psci6"' P, Qi(t) = Psci(H)01 ) (NP1 (t1) = Qi+ AQi(H)  (105)
Applying (78) with i = j, (46), (91) and (104) yields ;(f) — Q;, as t — co, which

yields AQ;(t) — 0.
Subtracting (85) from (45) and applying (105) yields

L
scr(t|t) — Rcp(tE) = ZO i(HE) = 25 (E|1) + Y AQ;(1)%;(Ht) (106)
i=1
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Applying (82) yields the boundedness of K;(t), and applying the boundedness of y;(t)
yields that K;(t)y;(t) is bounded. Noting that ¥;(t) is uniformly asymptotically stable [40].
Applying Lemma 3 to (6) yields that £;(¢|t) is bounded. Hence applying (97), (106) and
AQ;(t) — 0 yields (99). The proof is completed. OJ

Theorem 12. Under the conditions of Theorem 10, the robust accuracy comparison of the local and
the fused robust steady-state Kalman filters is given by

trP; <trP;, i=1,---,L, trPpc; < trPpey, trPscr < trPscg (107)
tI‘PBC[ < tI‘Pl', i= 1,---,L (108)

trPpcy < trPscy (109)

trPsc; < trP;, i=1,---,L (110)

Proof. Applying (78), (79), (103) and (104) yields that P;(t|t) — P;, Ppci(t|t) — Psci,
Pscr(t|t) — Pscr. As t — oo, taking the limit operations for (54)—(58) yields Theorem 12.
The proof is completed. []

6. Sensitivity Problem

For the SCI fusion robust Kalman filter, the fused schemes are different with respect to
different orders of sensors. For example, in the case where there are three fused structures
as shown in Figure 2, the problem is that whether the SCI fused robust accuracy is sensitive
with respect to the fused orders of sensors. The following two sensor simulation examples
will show that the robust accuracy of the SCI fuser is not very sensitive with respect to the
orders of the sensors.

" )
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x(“IIDI(“II

X, P,

- D - D
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(a)

5. B \
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Figure 2. Cont.
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Figure 2. The fused orders of the SCI fusers in the L = 3 case. (a) The order 1: SCI123; (b) The order
2: SCI132; (c) The order 3: SCI231.

7. Simulation Examples

Example 1. Consider a 3-sensor tracking system with uncertain noise variances

x(t+1) = ¢px(t) + Tw(t) (111)
yi(t) = Hix(t) + v;(t), i = 1,2,3 (112)
2
$= [(1) Tlo] = P;OTO]' Hy=[1 0], H=1, Hy=[1 0] (113)

where Ty = 0.25 is the sampled period, x(t) = [xl(t),xz(t)]T is the state, x1(t) and x,(t) are
the position and wvelocity of target at time tTy. y;(t) is the measurement, w(t) and v;(t) are
independent Gaussion white noises with zero mean and unknown variances Q and R;, respectively,
Q and R; are conservative upper bounds of Q and R; satisfying Q < Q, R; < R;. In the
simulation, we take Q = 1, Ry = 0.8, Ry = diag(8,0.36), R3 = 0.5,Q = 0.8, R; = 0.65,
R, = diag(6,0.25),R3 = 0.45.

The traces of the conservative and actual local robust filtering error variances are
compared in Figure 3. For Figure 3, we see that the traces of the local and fused robust
time-varying Kalman filters quickly converge to these of the corresponding steady-state
Kalman filters, which verify the robust accuracy relations (54)—(58), and their steady-state
robust and actual accuracy relations (107)-(110).

The robust and actual accuracy comparisons are shown in Tables 3 and 4. From
Tables 3 and 4, we see that the SCI fused robust accuracy trPscrq23, trPscrisp and trPscrang
are close or equal to the BCI fused robust accuracy trPpc;, and the accuracy of the SCI
fuser is not very sensitive with respect to the orders of sensor. We also see that the actual
accuracy of the SCI fuser, and trPscy123, trPscyis and trPscysp are close to or equal to the
actual accuracy of the BCI fuser trPpc;; they are all higher than the robust accuracy of each
local filter, which verify the accuracy relations (54)—(58) and their steady-state robust and
actual accuracy relations (107)-(110).

Table 3. The accuracy comparison of local and fused robust time-varying Kalman filters at t = 10.

trPy trP; trPs trPpcy trPscri23 trPscriz2 trPscs1
0.6289 0.6972 0.4784 0.3839 0.4318 0.3888 0.3888
trPq trPy trP3 trPpc; trPscrins trPscriz trPscios

0.5147 0.5719 0.4132 0.1813 0.1818 0.1905 0.1905
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Figure 3. The robust accuracy relations of the local and fused robust Kalman filters.
Table 4. The robust accuracy comparison of local and fused steady-state Kalman filters.
trPy trD, trP; trPpcy trPscr123 trPscri32 trPscra31
0.5538 0.5245 0.4390 0.3602 0.3971 0.3648 0.3648
trP; trP, trP; trPpcy trPscrins trPscrs trPscios1
0.4465 0.3815 0.3723 0.1717 0.1759 0.1795 0.1795

In order to give a geometric interpretation of the accuracy relations, The covariance
ellipses of the robust time-varying Kalman filters at time ¢ = 10 and robust steady-state
Kalman filters are shown in Figures 4-9.

From Figures 4-9, we see that the ellipses of the actual variances P;(i = 1,2, 3) are all
enclosed in that of the conservative variances P;, respectively, which verify the robustness
(17). The ellipses of actual BCI and SCI fused variances Pgcy and Pgc Lijk (ijk = 123,132,231)
are respectively enclosed in those of Pgc; and Pscyijr, which verifies the robustness (29)
and (53). Moreover, we see that the ellipse of Ppc| is close to or equal to that of Psc Lijk, the
ellipse of Ppcy is close to or equal to that of Pscjjjx, which means that the robust accuracies
of the SCI fusers with different orders of sensors are close to those of the BCI fusers, and the
robust and actual accuracies of the SCI fusers are not very sensitive to the orders of sensors.

In order to verify the above theoretical accuracy relations, taking N = 200 runs, the
mean square error (MSE) value at time ¢ of the local and fused robust Kalman filters are
shown in Figure 10. From Figure 10, we see that when ¢ is sufficiently large, we have the
accuracy relations

MSE,(t) < trPy, 6 =1,2,3,BCI, SCI (114)

and the curves of MSE,(t) are close to the straight lines corresponding to trPy, which verify
the robust accuracy relations (107) and the robust accuracy relations in Table 3.
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Figure 4. The ellipses of the actual and conservative time-varying filtering error variances of the
order SCI123 at t = 10.
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Figure 5. The ellipses of the actual and conservative steady-state filtering error variances of the order
SCI123.
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Figure 6. The ellipses of the actual and conservative time-varying filtering error variances of the
order SCI132 at t = 10.
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Figure 7. The ellipses of the actual and conservative steady-state filtering error variances of the order
SCI132.
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Figure 8. The ellipses of the actual and conservative time-varying filtering error variances of the
order SCI231 at t = 10.

0.8

0.6

0.4

0.2

5C1231

5C1231

-0.8
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 9. The ellipses of the actual and conservative steady-state filtering error variances of the order

SCI231.
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Figure 10. The comparison of MSE;(t) and trP;, i = 1,2,3,5CI123,5CI132,SCI231, BCI.

Example 2. In order to show the sensitivity of the actual and robust accuracies for the SCI fuser
with respect to the orders of sensors, consider a 4-sensor tracking system with uncertainties of noise

variances
x(t+1) = ¢px(t) + Tw(t) (115)

yi(t) = Hix(t) +vi(t), i=1,2,3,4 (116)

1 T 0.5T2
¢:|:O 10:|,F:|: T00:|,H1:[1 0], Hz:IZ,H?):[] O], Hi=1D (117)

In the simulation,

To =025 Q =1, Ry = 0.8, R, = diag(8,0.36), R3 = 0.5, R, = diag(0.25,10), Q = 0.8,
Ry = 0.65, R, = diag(6,0.25), Rz = 0.45, Ry = diag(0.2,9). '

Similar to Figure 3, for the sensor number L = 4, there are 12 fused orders as follows:

SCI1234, SCI1243, SCI1324, SCI1342, SCI1423, SCI1432,
S5CI2314, SCI2341, SCI2413, SCI2431, SCI3412, SCI3421

Table 5 shows the sensitivity of the actual and robust accuracies for the SCI fuser with
respect to the orders of sensors



Micromachines 2022, 13, 1216 23 of 25

Table 5. The sensitivity of the actual and robust accuracies for the SCI fuser with respect to the orders

of sensors.
trP; trPy trP, trP, trPs trPs trPy trPy trPpcy trPpcr
0.5538 0.4465 0.5245 0.3815 0.4390 0.3723 0.4786 0.4026 0.3312 0.1231

trPscriosa trPscriosa trPscrizas trPscrinas trPscrizaa trPscpisps trPscrisar trPscpisar trPscniaos trPscrisns
0.3622 0.1207 0.3675 0.1407 0.3547 0.1325 0.3312 0.1611 0.3639 0.1482

trPscriazy trPscrasa tPscrosia trPscppsia trPscpssr trPsciosar trPscioas trPscpais trPscpasi trPscpoas
0.3639 0.1482 0.3547 0.1395 0.3547 0.1325 0.3639 0.1482 0.3312 0.1611

trPscraaz trPscras2 tPscrzam trPscizan
0.3312 0.1611 0.3312 0.1611

From Table 5, we see that all values of trPscj;jx, or trPgc Lijkr are close to these of trPpc

or trPpcj, respectively. This means that the robust or actual accuracies of the SCI fusers are
not very sensitive to the orders of sensors.

8. Conclusions

Sequential covariance intersection fusion robust time-varying Kalman filters are pre-
sented for the multi-sensor systems with uncertainties of noise variances, the main contri-
butions of this paper are as follows:

A minimax robust estimation approach of designing the robust local, BCI and SCI
fused Kalman filters has been presented for the multisensor system with uncertain noise
variances. For the multisensor time-invariant systems with uncertain noise variances,
the convergence problem of the robust local and fused time-varying Kalman filters has
been solved. The robust local, BCI and SCI fused steady-state Kalman filters have been
presented by replacing the time-varying gains, variances and cross-covariances with their
limits, respectively. The convergence in a realization of the local and fused time-varying
and steady-state Kalman filters was proved by the dynamic error system analysis (DESA)
method [39] and the dynamic variance error system analysis (DVESA) method [40].

The proposed results can be applied to some simulation application research, includ-
ing target tracking systems, uninterruptible power supply systems, mass spring random
vibration systems, and so on. The proposed results are limited to multisensor systems
with uncertainties of noise variances. The extensions of the proposed results to multisen-
sor systems with uncertainties of both model parameters and noise variances are under
investigation.
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