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Correction: Otic, C.J.C.; Yonemura, S. Effect of Different Surface
Microstructures in the Thermally Induced Self-Propulsion
Phenomenon. Micromachines 2022, 13, 871
Clint John Cortes Otic 1,* and Shigeru Yonemura 2,*

1 Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6 Aramaki Aza Aoba,
Aoba-ku, Sendai 980-8579, Miyagi, Japan

2 Department of Mechanical Engineering, College of Engineering, Chubu University, 1200 Matsumoto-cho,
Kasugai 487-8501, Aichi, Japan

* Correspondence: otic.clint.john.cortes.t1@dc.tohoku.ac.jp (C.J.C.O.); yonemura@isc.chubu.ac.jp (S.Y.)

The authors wish to make the following corrections to the published paper [1].
Figures 3–5, 7 and 11 were published in the incorrect format, in which the results were not
displayed properly. In the corrected version, the authors have modified the figures from
EPS format to high-resolution JPEG format. For consistency, all figures, i.e., Figures 1–12,
have been replaced in high-resolution JPEG format as appears in the succeeding pages.

The authors state that the scientific conclusions are unaffected. This correction was
approved by the Academic Editor. The original publication has also been updated.
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* Correspondence: otic.clint.john.cortes.t1@dc.tohoku.ac.jp (C.J.C.O.); yonemura@isc.chubu.ac.jp (S.Y.) 
 

In the original publication [1], there was a final production mistake in Figures 3–5, 7 
and 11 as published. The figures were published in the incorrect format, in which the re-
sults were not displayed properly. In the corrected version, the authors have modified the 
figures from EPS format to high-resolution JPEG format. For consistency, all figures, i.e., 
Figures 1–12, have been replaced in high-resolution JPEG format as appears in the suc-
ceeding pages. 

The authors apologize for any inconvenience caused and state that the scientific con-
clusions are unaffected. This correction was approved by the Academic Editor. The orig-
inal publication has also been updated. 

 
Figure 1. Schematics of the substrate with different surface microstructures. 
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Figure 1. Schematics of the substrate with different surface microstructures.
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Figure 2. Computational domain used in each microstructure. 
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Figure 3. Flow distributions and temperature distributions for (a) ratchet, (b) modified ratchet, (c) 
oblique plate, and (d) oblique ridge, at Kn =  0.1. 
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Figure 3. Flow distributions and temperature distributions for (a) ratchet, (b) modified ratchet,
(c) oblique plate, and (d) oblique ridge, at Kn = 0.1.
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Figure 4. Flow distributions and temperature distributions for (a) ratchet, (b) modified ratchet, (c) 
oblique plate, and (d) oblique ridge, at Kn =  1. 
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Figure 5. Flow distributions and temperature distributions for (a) ratchet, (b) modified ratchet, (c) 
oblique plate, and (d) oblique ridge, at Kn =  10. 
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(c) oblique plate, and (d) oblique ridge, at Kn = 1.
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Figure 6. Distribution of the local tangential Knudsen stress, i.e., local propulsive force per unit area, 
for each case of the microstructure, at Kn = 1. The silhouette of the ratchet structure is added for 
easy reference. 

 

Figure 7. Net tangential Knudsen stresses, i.e., propulsive forces per unit area, at (a) different tip 
angles 𝛽 for the modified ratchet and (b) different inclination angles 𝛼 for the ratchet, for Kn = 1. 

 
Figure 8. Distributions of the local tangential Knudsen stress due to molecules coming from the 
oblique side of the modified ratchet microstructure for different tip angles 𝛽 at Kn = 1. 

Figure 6. Distribution of the local tangential Knudsen stress, i.e., local propulsive force per unit area,
for each case of the microstructure, at Kn = 1. The silhouette of the ratchet structure is added for
easy reference.
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Figure 7. Net tangential Knudsen stresses, i.e., propulsive forces per unit area, at (a) different tip
angles β for the modified ratchet and (b) different inclination angles α for the ratchet, for Kn = 1.
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Figure 9. Distributions of the local tangential Knudsen stress due to molecules coming from the
modified side of the modified ratchet microstructure, for different tip angles β at Kn = 1.
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Figure 12. Net tangential Knudsen stresses, i.e., propulsive forces per unit area, for different surface 
microstructures at different temperature differences, in the case of Kn = 1  and ሺ𝑇୦ + 𝑇ୡሻ 2⁄ =400 K. 
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