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Abstract: This study reported on the design and fabrication of a pseudo-piezoelectric material
(piezoelectret) from cyclic olefin copolymer (COC) based on a micropillar structure. The fabrication
feasibility of such structure was explored and piezoelectret with the good piezoelectric activity
(characterized by quasi-static piezoelectric coefficient d33) was demonstrated. Response surface
method with a central composite design was employed to investigate the effects of the structure
parameter on the piezoelectric coefficient d33. An optimal structure design was obtained and was
validated by experiments. With the optimal design, d33 can reach an exceptional high value of
~9000 pC/N under low pressure. The charging process and the electrical and electromechanical
characteristics were further investigated by experimentation and modeling. We further demonstrated
the scalability of the fabrication process and demonstrated the application of these sensors in position
specific pressure sensing (pressure mapping).

Keywords: COC piezoelectrets; piezoelectric coefficient; response surface method; pressure mapping

1. Introduction

Piezoelectric material can convert mechanical energy to electrical energy. Currently,
the most commonly used piezoelectric material is ceramic based piezoelectric materials.
Porous polymer piezoelectric materials (piezoelectric foams or piezoelectrets) were first
investigated in Finland in 1989 [1]. The piezoelectric properties arise from the macroscopic
dipoles inside the material [2,3]. Compared to traditional piezoelectric material, polymer
piezoelectrets are flexible, non-toxic, lightweight and more affordable. Their piezoelectric
activity was comparable to or better than piezoelectric ceramics. A variety of polymers,
including polypropylene (PP) [4,5], cyclic olefin copolymer (COC) [6,7] and fluorinated
ethylene propylene (FEP) [8,9], were used in the fabrication of piezoelectrets.

Piezoelectricity of the piezoelectrets results from the change of the macro-level dipole
moment induced by the mechanical deformation of the material under stress. To achieve
high performance piezoelectrets, structures with large deformability were highly desired.
Various structures, including lens-shape structure [3], non-overlap structures [6,7] and other
structures [8,9], are successfully fabricated in predominantly two approaches: (i) direct
foaming of polymer by using a gas to expand and generate porosity in the polymer and
(ii) generation of pre-machined cavitation in the structure units followed by assembly/fusion
of the units [10–14]. For the first approach, it is difficult to obtain the well-defined struc-
tures as the direct foaming process possesses stochastic characteristics, which are nearly
impossible to control in the manufacturing process. For the second approach, porosity and
the pore distribution were better controlled; however, the dimension accuracy was still
significantly affected in the bonding area due to the introduction of the high temperature.
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New piezoelectret structures that can realize high piezoelectric activity and their fabrication
approaches are in high demand for the advancement of this type of smart materials.

In this study, a micropillar-based structure was explored for piezoelectret fabrication.
Such an approach potentially addresses the shortcomings of other existing technology
previously discussed. First, the approach allows for the design and fabrication of structures
with well-defined parameters. In addition, the printing process examined in this study
is significantly simpler and involves fewer steps. This not only improves the technology
efficiency but also reduces the processing time and improves structural fidelity, the major
difficulties for the pre-machining/fusion method.

Figure 1 shows the overall design of the current study. The feasibility studies of the
proposed approach were conducted first. Using an initial design, the 3D printing fabrication
process was established and the piezoelectric sensitivity of the fabricated piezoelectret was
demonstrated. A statistical approach of response surface method was used to optimize the
structure parameters for maximum piezoelectric activity. Subsequently, piezoelectrets with
optimized structures were fabricated and their electrical and electromechanical behaviors
were investigated. Finally, this study demonstrated the pressure sensing capabilities of the
prepared piezoelectret.
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Figure 1. Overview of micropillar-based piezoelectret design fabrication and application.

2. Materials and Experimental Details
2.1. Materials and Fabrication Equipment

The base polymer used for the fabrication was a cyclic olefin copolymer (COC). COC
is a copolymer of ethylene and a cyclic comonomer (typically norbornene or tetracyclodo-
decene). COCs demonstrate excellent processability, environmental stability, low dielectric
constant, low dielectric losses and excellent mechanical properties and, particularly, good
thermal stability [15]. Several studies had been conducted regarding the piezoelectric foams
for this type of material [16–19].

The COC film used in this study was grade 6017 TOPAS from Advanced Polymers
(Florence, KY, USA). The COC film was 50.8 µm thick. The epoxy resin for deposition was
SU-8 2002 from Micro Chem Company. A needle was used for depositing epoxy resin
onto the COC film. The deposition system was assembled with a tabletop 3D printer (Zen
Toolworks, ZEN7123D, Concord, CA, USA), a syringe and a pump.

2.2. Fabrication of COC Piezoelectret

Piezoelectrets are materials with cavity/voids. Charges of opposite signs may be
deposited on the top and bottom surfaces of the voids to form macro-dipoles, which
results in piezoelectricity, as shown in Figure 2c. In this work, 3D printing was used to
generate the void structures. The 3D printing enables precise control of the dimensions
of the void structure, which offers better control and optimization of the piezoelectric
activity and allows for the fabrication of sensor arrays. Figure 2c shows the basic cell of the
designed structure. Two main design parameters in the fabrication process are the span
between epoxy resin pillar (L) and the pillar height (d). They have convoluted effects on
the piezoelectret’s elastic modulus. The pillar height will affect the charging process, which
will affect the piezoelectret’s performance. In the previous work of fabricating the porous
piezoelectret using foaming process, such parameters were difficult to precisely control.
A custom-built 3D printing machine with xyz stage was used with SU-8 epoxy resin and
COC film. The UV cure epoxy resin can locally bond the COC films, which enables the
piezoelectret with precise dimension without having large deformations compared to the
piezoelectrets fabricated with fusion bonding process.
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Figure 2. Schematic of micropillar based piezoelectret fabrication (a). Deposition of SU-8 epoxy
resin by 3D printing machine in xyz-axis (b). Assembly of the micropillar structure with COC film
by UV-curing the SU-8 epoxy resin (c). The 2D schematic view of the cross section of prepared
piezoelectret with artificial charge voids inside. The micropillar structure were rendered piezoelectric
by charging.

The overall structure consisted of two COC films separated by epoxy pillar material.
The preparation procedures of piezoelectret can be divided into three general steps. First,
micro-pillars were fabricated by SU-8 UV curing epoxy resin with the help of the 3D
printing based deposition system. Second, the SU-8 epoxy resin was cured under UV light
and the polymer film was bonded together. Finally, contact charging was applied to obtain
piezoelectricity for the material. The detailed fabrication process was illustrated in Figure 2.

In the first step, micropillar was deposited onto the four corners of COC film by a
3D printing based deposition system. The deposition system consisted of an xyz-axis 3D
printer controlled by a computer, a syringe pump controlled by syringe infusion pump
(Cole-Parmer dual-syringe infusion pump, EW-74900-10) and a needle 0.3 mm in diameter.
The position of the needle could be precisely controlled at the xyz stages. The flow rate
was controlled using the syringe infusion pump and was kept constant for the different
experiments. The height of the micro-pillar was controlled by differing the deposition
time. Different pillar heights and pillar–pillar distances were chosen to study the material
sensitivity corresponding to different design parameters.

In the second step, the top layer of COC film was bonded with the micro-pillars. The
bottom COC layer was heated to 110 ◦C to slightly soften the SU-8 epoxy resin. Top layer of
COC film was then applied onto the micro-pillars and pressure was applied by a glass plate.
The sample was then put under UV light (Dymax light curing system, Model 5000 Flood)
for 30 s to cure the resin. The use of the resin deposition followed by curing allowed for
more accurate control of the structure dimensions.

In the third step, contact charging was used to charge the structure. The sample
was sputter coated with metal electrodes on both sides of the material. The material then
underwent a contact charging with high voltages using a Heinzinger PNC 1000-6 ump.

2.3. Characterization of COC Piezoelectret
2.3.1. Quasi-Static Piezoelectric Coefficient

Quasi-static piezoelectric coefficient is a common parameter for measuring the perfor-
mance of piezoelectric material, especially piezoelectrets [3], which was determined by:

d33 =
Q
F

=
σ

p
(1)

where d33 is quasi-static piezoelectric coefficient, Q is amount of charge, F is applied force,
σ is charge density, p is applied pressure. A preload of 1.96 kPa was applied to the sample
before quasi-static piezoelectric coefficient measurements to eliminate the air gap effect 4.
Pressures from 0.49 kPa to 4.9 kPa were then applied onto the material to measure the
piezoelectric coefficient. In the experiments, the induced charge was measured by an
electrometer (Keithley 6517A).
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2.3.2. Electric Hysteresis Loop

To investigate the charge build up process in the air gaps of samples with optimized
structures, hysteresis loop measurement were conducted using Precision Premier II (RADIANT)
connected to a high voltage interface. Electrodes were sputter coated over a 10 mm × 10 mm
area. Bipolar charging voltages from 500 V to 8000 V were applied on the sample to measure
the polarization of the sample.

2.4. Pressure Sensing System Fabrication and Development

To demonstrate the scalability of the fabrication process and the device performance,
a 2 × 2 piezoelectric sensor array was fabricated, and their pressure sensing capability
demonstrated. Fabrication of the sensor array fabrication was similar to that of the single
sensor. Epoxy pillars for multiple sensor unit cells were deposited on the COC film, and
then the top and bottom COC films were bonded together when the UV epoxy resin
was cured. Figure 3a shows the prototype system consisting of the sensor array and the
associated electronic circuits (Figure 3b). Sensors were connected to a 4 channel CMOS
operational amplifier to amplify the signal. The output signal of piezoelectric sensor is
a high impedance signal that cannot be directly measured by a multimeter. A charge
amplifier (MOSFET, TLV2774 from Texas Instrument, Dallas, TX, USA) was used to convert
the signal to low impedance signal. The charge amplifier circuit was designed to work
in the voltage mode since this mode can reduce the negative effects of the capacitance on
the measurements of signals of the connection cables in the circuit. The charge signal was
connected to the gate side of the amplifier and the output signal was a voltage signal. A
power supply of 6 V was applied, and bias voltage was set to be 3 V. The output voltage
was read by a multimeter (Fluke 179). The LED lights were used as an indicator for
presence/absence (“on”/“off”) of pressure.
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Figure 3. (a) Photo of a fabricated 2 × 2 micropillar-based COC piezoelectret sensor array with
application for pressure mapping; (b) Piezoelectret pressure sensing circuit.

3. Result and Discussion
3.1. Piezoelectric Activity of COC Piezoelectret: Feasibility

A COC piezoelectret (L = 15 mm, h = 1 mm) was fabricated to test the feasibility of the 3D
printing approach. Figure 4 shows the quasi-static d33 piezoelectric coefficient of piezoelectret.
The d33 can reach approximately 7000 pC/N at an applied pressure of 0.49 kPa, which is an
extremely high value compared to the sensitivity of other materials [7,16–19]. Although the
piezoelectric coefficient decreased with increasing pressure, it remained high in the range of
testing pressure, reaching 3500 pC/N at 4.9 kPa. The results clearly indicate that 3D printing
highly sensitive piezoelectrets with the designed structure is feasible.
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3.2. Statistical Modeling and Experimental Validation of Optimized Structure for Maximized
Piezoelectric Activity

The quasi-static piezoelectric coefficient d33 is largely dictated by two factors [20,21]:
d33 ∝ σ/Y, where d33 is piezoelectric coefficient, σ is charge density inside the porous
structure (artificial void), Y is elastic modulus. For the structures fabricated, both the charge
density and the elastic modulus are influenced in a complicated manner by the two design
parameters: the height of the micro-pillar (d) and the distance between pillars (L), as shown
in Figure 2c. The charging of the piezoelectret is by dielectric barrier discharge for which
the threshold break down voltage follows the Paschen law (Equation (2)) [22], after which
the charge density increases linearly until back charging occurs at excessively high voltage.
To achieve a higher piezoelectric coefficient d33, a lower threshold breakdown voltage is
desired, which would result in higher charge density at the same charging voltage.

Vbd =
apdgas

ln(pdgas) + b
(2)

The breakdown voltage Vbd is a highly nonlinear function of both various materials
related parameters or constants (a, b, P), and the air gap thickness dg, which is closely
related to the pillar height d.

The span between pillars (L) primarily affects the elastic modulus Y and the stability
of the structure. In general, a smaller span would result in a higher elastic modulus and
lower piezoelectric activity. On the other hand, at an exceedingly high L (or L/d), the
structure may collapse because of the insufficient structure rigidity, leading to the loss
the piezoelectric sensitivity. The sinking of the center of the top COC film may also occur
at high L, leading to a reduction in the air gap thickness and affecting charging and the
piezoelectric coefficient of the COC piezoelectrets.

Because of the complicated and convoluted relationship between the piezoelectric
activity and the structure parameters, modeling the structure–property relationship for
optimal piezoelectric performance was challenging. Existing models [20,21,23–25], based
on different geometric structures and simplifications do not suit the structures in this study
and are incapable of accurate predictions for optimized structure design.

On the other hand, despite lacking physical meaning, statistical models based on
experimental data can provide excellent predictions so long as the new data the predicted
data are in the proximity of existing experimental data [26,27]. Because of the complicated
relationships between pillar–pillar distance, micro-pillar height and piezoelectric coefficient,
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instead of using analytical approach, a statistical approach is better suited to determine the
optimal for such structure parameters. Considering the curvature in the system, a statistical
approach of response surface method (RSM) was used as a regression method to build the
statistical models [28], with the objective to optimize a response (piezoelectric coefficient
d33) that is influenced by several independent variables (d and L). The method estimates the
function between the response and input variable, which is a convex or concave function
for most of the case. Subsequently, a gradient decent algorithm is generally used to find the
possible maximum or minimum value of the function. Design Expert software was used
to produce the response surface. The prediction would then be validated by experiments.
To establish the model, a series sets of inputs and responses from experiments would be
required to generate reliable statistical models and inferences. A central composite factorial
(CCD) design of experiment was utilized to minimize the number of needed experiments.

Figure 5 shows the scaled factors used in the central composite design. For each
set of parameters, three replicates were conducted. In this set of experiments, a fixed
charging voltage of 5 kV was used. Table 1 lists the values of structure design variables in
all experiments. The range of each variable was determined by the preliminary estimates
and calculation results. The pillar–pillar distance was chosen from 11 mm to 19 mm. The
range of pillar height was 0.3~1.8 mm. A total number of 27 experiments were conducted
with each parameter condition replicated 3 times.

Table 1. Parameter setting in central composite design of the optimization.

Experimental Setup Pillar Height,
d (mm)

Pillar Distance,
L (mm)

Pillar Height
(Coded Variables)

Pillar Distance
(Coded Variables)

1 0.3 15 −1.414 0

2 0.5 12 −1 −1

3 0.5 18 1 1

4 1 11 0 −1.414

5 1 15 0 0

6 1 19 0 1.414

7 1.5 12 1 −1

8 1.5 18 1 1

9 1.8 15 1.414 0
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Figure 5. Central composite design to optimize pillar–pillar distance and pillar height for maximized
piezoelectric activity.

Figure 6a shows the response surface of piezoelectric coefficient obtained from the
experiments. Figure 6b is a 2D projection of the response surface. The red symbols showed
the experimental value. In the relationship between piezoelectric coefficient (d33) and
pillar height (d), pillar–pillar distance (L) is generally a convex function. Both pillar height
and pillar–pillar distance were significant (p = 0.0005, 0.0172, respectively) in affecting the
piezoelectric coefficient. The optimal pillar height was 0.33 mm and pillar–pillar distance
was 17.7 mm. The maximum piezoelectric coefficient was predicted to be 9719 pC/N
(95% Confidence, 6084–13,352 pC/N) by the statistical model. The large range may be due
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to the pure statistical nature of the model, which omitted details and complex coupled
electromechanical properties of the materials.
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Figure 6. (a) Response surface of piezoelectric coefficient corresponding to piezoelectrets with
different structure parameters. Red dots in the figure were experimental measurements, and the
green surface was the model predicted response surface. (b) The 2D projection of the response
surface showing the maximized d33 and the associated optimal structure parameters (pillar height
and pillar–pillar distance). This optimum is indicated by the star on the figure.

Following the model prediction, COC piezoelectrets were fabricated using the optimal
structure parameters d = 0.3 mm and L = 18 mm. The measured d33 was ~9000 pC/N.
The comparable value between the model prediction and the experimental measurements
appears to verify the validity of the statistical model.

3.3. Electrical and Piezoelectric Properties of COC Piezoelectrets with the Optimized Structure

We studied the charging behavior of COC piezoelectrets with the optimal design.
Although generally incapable of locating the optimal conditions for maximized piezoelectric
coefficient, physics-based engineering models 22 may be used to calculate the piezoelectric
coefficients with provided structure parameters and facilitate the understanding of the
governing physical phenomena. We thus modelled the piezoelectric d33 of the piezoelectret
of the optimal design using a physics-based approach and compared the model prediction
with that from the statistical model and the experimental value.

3.3.1. Hysteresis Loop

The charge-build up process for the piezoelectrets was characterized by the hysteresis
loop [29–31]. Figure 7a shows the applied voltage on the surface of the sample over time
during the electric hysteresis loop measurements. Bipolar voltages were applied to the
electrodes of the sample at a cycle time of 1 s. Figure 7b shows the hysteresis loops of
the sample. From the hysteresis loop, the quasi-permanent polarization can be extracted,
which is shown in Figure 7c. The dipole inside the air gap started to build up with an
applied voltage of approximately 2500 V. Below this threshold voltage, nearly no charge
accumulated during the charging process. When the applied voltage was higher than
the threshold breakdown voltage, dielectric barrier discharge occurred and the charge
started to build up in the artificial void. In particular, the quasi-permanent charge was
approximately linear proportional to the applied voltage after the applied voltage reached
the threshold breakdown voltage, which indicates that the piezoelectric coefficient can be
further increased by increasing the contact charging voltage.

To understand quantitatively this charging threshold voltage, a simplified model was
derived below based on a previous study [20,21].
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Figure 8 shows the schematics of the fabricated structure consisting of two layers of
the COC polymer and an air gap in between. The electric field was built up during the
contact charging. According to Gauss’ theorem and Kirchhoff’s second law

ε0εpEp = ε0Eg (3)

2dpEp + dgEg = Vtotal (4)

where ε0 is dielectric permittivity of vacuum, εp is relative permittivity of COC, dg and
dp are thickness of air and COC film, respectively; Eg and Ep are electric field strength in
air and COC, respectively; and Vtotal is the applied voltage. The discharge inside the air
gap was dielectric barrier discharge, which follows the Paschen law, for which the critical
breakdown electric field strength is determined by:

Ebd =
ap

ln(pd) + b
(5)

where Ebd is the breakdown electric field strength, a is 4.36 × 107 V/(atm·m), P is pressure
(1 atm in the study), d is the thickness of gas (0.3 mm in this study), b equals to 12.8. From
above, the critical breakdown voltage can be determined by:

Vbd =
ap

ln(pdg) + b
(

2dp

εp
+ dg) (6)

For this study, with an air gap thickness of 0.3 mm, the breakdown voltage was
calculated to be 3190 V. The model prediction from Equation (6) agreed relatively well with
experimental measurement (~2500 V). The higher model predicted threshold breakdown
voltage can be understood by the deflection of the sample structure; therefore, reduction in
the air gap thickness during the bonding process was taken into consideration. According
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to Equation (6), the breakdown threshold voltage would decrease with decreasing air gap
thickness dg.
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Figure 8. Simplified model for calculating breakdown voltage.

3.3.2. Physics Based Model on Piezoelectric Coefficient

Using the experimental measured charge density and previously developed layer
model, we modelled the d33 of the material. When measuring the quasi-static piezoelectric
coefficient, samples were applied with pressure σstress and induced charge was accumulated
on the electrodes. By Gauss theorem and Kirchhoff law:

ε0εpEp = σin (7)

ε0εgEg − ε0εpEp = σ (8)

2dpEp + dgEg = 0 (9)

where ε0 is the dielectric permittivity of vacuum, εp is the relative permittivity of COC, εg is
the relative permittivity of air, σin is induced charge, σ is surface charge density inside the
air gap and Ep and Eg are the electric field strength in COC and air, respectively.

From Equations (7)–(9), the induced charge can be calculated as:

σin = −
ε0εpdgσ

2dpε0εg + dgε0εp
(10)

The quasi-static piezoelectric coefficient can then be expressed as:

d33 = ∆σin
∆σstress

=

∂σin
∂dg

∆σstress
∆dg

=
− ε0ε p2dpε0εgσ

(2dpε0εg+dgε0εp)
2

Yf
2dp+dg

= − εpεg2dp(2dp+dg)

(2dpεg+dgεp)
2 · σ

Y

(11)

Equation (11) yields the quantitative prediction of the piezoelectric coefficient d33 as a
function of the geometric parameters (dg and dp), the dielectric properties (εp and εg), and the
electrical (σ) and mechanical (Y) properties of the piezoelectret. However, to calculate the
piezoelectric coefficient, the values of the surface charge density σ and the elastic modulus
of the piezoelectret are required. The surface charge density σ can be obtained directly from
the hysteresis loop measurement, which was 0.00716 µC/cm2 for this study. Calculating the
elastic modulus of the micropillar-based structure is more complicated. Under compressive
stress, the deformation is not uniform and is position/location dependent. A methodology
is needed to estimate an “apparent strain,” and to establish the stress–strain relationship
from which the “apparent modulus” can be deduced. Herein, we utilized finite element
analysis to achieve this using COMSOL Multiphysics software (Version 5.2a, COMSOL Inc.,
Burlington, MA, USA).

Figure 9a shows the geometry for the simulation. The piezoelectret was represented
by two layers of solid polymer and an air gap separated by the micropillars with a height
of d and span of L. In the simulation, a small force of 0.1 N (to ensure linear elasticity) was
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applied uniformly on the electrode indicated by the center area in Figure 9a,b. The apparent
strain was determined by averaging the deflection over the electrode area. The apparent
modulus was determined from the stress and apparent strain. Simulations suggest that the
apparent elastic modulus was 0.63 kPa for the piezoelectret with L = 18 mm.
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Figure 9. (a) Unit structure and boundary conditions for the finite element analysis (FEA) on the
micropillar-based structure; (b) A typical FEA results from stress distribution for the calculation of
apparent elastic modulus of the micropillar-based structure, L = 18 mm.

With the surface charge density and elastic modulus values, the piezoelectric coefficient
was calculated using Equation (11) to be 15,476 pC/N. A piezoelectret with the same
pillar distance and height was fabricated and the piezoelectric coefficient measured. The
model-predicted value was about 70% higher than the experimentally measured value
of 9000 pC/N. Such a difference may result from the simplifications assumed in the
establishment of the model, as well as in the calculation of the apparent elastic modulus.
Nevertheless, qualitatively the model is in agreement with the experiment. The physical-
based model indeed provided the insights that the main origin of the high piezoelectric
activity is from the low elastic modulus of the structure.

3.4. Pressure Sensing Application of the Prepared Material

We demonstrated the piezoelectret’s potential pressure sensing capability with a
pressure sensing prototype. The system consisted of a sensor array of four sensors in
2 × 2 configuration and the associated electronic circuits. Each of the four LED lights
was connected to one sensor output, and the battery power supply. The sensing circuit
was designed such that the voltage output in regard to the input charge amount followed
Equation (12).

Vo = − q
c f

+
Vcc

2
(12)

where Vo is total output voltage supplied to the LED light, q is the input charge induced
from pressure applied to the piezoelectrets, Cf is feedback capacitance, Vcc is power supply
voltage. When no pressure was applied on the sensor, the output voltage would be half of
the power supply voltage, sufficient to power on the LED light. When pressure is applied,
the output voltage will decrease and turn off the LED light at certain pressure.

Figure 10a shows the sensing results without applying pressure—all four LED lights
were powered on. When pressure was applied to each of the four piezoelectret sensors, the
corresponding LED light was turned off (Figure 10b–e), demonstrating successful pressure
sensing. Sensors remained functional when repeatedly hard pressed more than 100 cycles
during which the top and bottom COC films were in direct contact. This indicates that
the charge was deeply trapped inside the polymer, which cannot be neutralized by simple
contact of the top and bottom surface of polymer film. This ensures long term stability of
the sensor performance. Figure 10f shows the results of the pressure–voltage relationship
of the sensor. A linear relationship existed when the applied pressure was less than 3 kPa.
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The coefficient was calculated to be −0.384 V/kPa. The rate of voltage reduction decreased
upon further increasing pressure, and, eventually, the voltage reached a stable value. This
is because at such pressure and large deformation, the top surface was in direct contact with
the bottom surface, preventing any further deflection and charge induction. Nevertheless,
the results show that the COC piezoelectric sensor was capable of position specific pressure
sensing or pressure mapping.
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As primitive as the prototype system is, the 3D printed piezoelectrets have great
potential. They require very low power and energy consumption and are suitable for both
high rate and low rate force sensing. Moreover, the 3D printing technology presented herein
is scalable, and the piezoelectric activity and sensor performance can be easily tailored by
the structure parameters. All these factors make them an attractive candidate for a large
area-distributed sensing network.

4. Conclusions

COC piezoelectrets were fabricated using a 3D printing approach. The approach
should provide well controlled structures for tailored electromechanical properties. Using a
response surface method, the structure was optimized, and the d33 of the piezoelectrets with
optimal geometry reached ~9000 pC/N, an exceptionally high activity. The charge built up
process was further investigated by hysteresis loop, which found that charging followed
Paschen breakdown and the critical breakdown voltage can be adequately predicted using
a layer model. Furthermore, a physics-based model for d33 was developed by combining
analytical and finite element analysis, and the model prediction agreed reasonably well with
experimental measurements. The 3D printing method presented may be a viable scalable
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approach to fabricate large area, high-performance pressure sensor arrays with designed
sensitivity for pressure mapping, which was demonstrated using a 2 × 2 sensor array.
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