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Abstract: This work proposes a design for a direct-reading conductivity sensor with a parallel sym-
metrical four-electrode structure, which integrates a silicon-based platinum thin-film strip electrode
and a serpentine temperature compensation electrode. The optimal structural parameters of the
electrode were determined by finite element simulations performed via COMSOL Multiphysics. Next,
the designed conductivity sensor chip was fabricated using MEMS technology, and subsequently, the
conductivity measurement circuit was designed to test the fabricated sensor’s performance. In labo-
ratory tests, the optimal AC excitation frequency was observed to be 1.067 kHz, while the maximum
measurement range was 0–107.41 mS/cm and the measurement precision in low concentration range
(0–76.422 mS/cm) was ±0.1 mS/cm. Furthermore, the maximum measurement error of the sensor
evaluated using the National Center of Ocean Standards and Metrology was ±0.073 mS/cm. The
designed sensor possesses the characteristics of high accuracy, high range, and miniaturization, and
enables real-time reading of conductivity value and temperature compensation, which is of great
significance for the on-site observation of the physical parameters of marine environment.

Keywords: conductivity sensor; polarization effect; temperature compensation; high accuracy

1. Introduction

The oceans cover about 70.8% of the Earth’s surface, and there are various abundant
resources in the vast ocean field. The measurement of ocean temperature and salinity
is crucial in studying the marine environment. Through these measurements, the ocean
circulation, marine ecological environment, marine biodiversity, and marine energy devel-
opment can be monitored and studied [1,2]. In 1974, the “The Practical Salinity Scale” in
UNESCO defined salinity to be calculated based on seawater’s conductivity, temperature,
and pressure, where pressure has a relatively minor effect on the salinity [3]. Likewise,
measuring salinity by conductivity, temperature, and pressure has many advantages, such
as high accuracy, fast measurement speed, high reliability, and easy on-site measurement [4].
In this regard, there exist a variety of commercial CTD (Conductivity, Temperature, Depth)
sensors used in high-precision marine development, such as the Seabird series, which
occupies a leading position in the global market [5]. However, its large size, high cost, and
energy consumption limit its promotion in the marine ranching and three-dimensional
marine environment monitoring [6–8].

From 2005 to 2007, Broadbent, a scholar at University of South Florida in the United
States, focused on using the liquid crystal polymer (LCP) with low hygroscopicity and
permeability to manufacture a substrate and resistive temperature sensor (RTD) [9]. In that
work, the electroplated nickel-gold-platinum alloy was used as a flat film four-electrode
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conductivity cell to develop a miniaturized CTD system. Relevant experiments con-
cluded that the temperature and conductivity measurement accuracies were ±0.546 ◦C
and ±0.882 mS/cm, respectively. In 2005, S. Bhansali et al. designed a MEMS-based CTD
sensor [10], in which conductivity sensors generally use a parallel-plate capacitor structure,
where most of the electric field is confined between the two parallel plates. However, some
of the electric field is still distributed at the edges of the plates. To prevent the influence of
external electric field on the measurement accuracy, installing guard rings at both ends of a
board or adding electrodes and auxiliary circuits is adopted.

In 2011, X. Huang et al. from University of Southampton, UK, developed a mea-
surement system based on the MEMS process for a seven-electrode conductivity sensor
and a platinum temperature resistance sensor [11]. In that work, a 500 µm thick glass
substrate was coated with 100 nm thick platinum layer serving as electrodes, wires, and
pads. The platinum layer was then covered with a 25 µm epoxy laminate (SY320) insula-
tion. The conductivity and temperature measurement accuracies were up to ±0.03 mS/cm
and ±0.005 ◦C, respectively. Meanwhile, the temperature sensor drifted by 0.1 ◦C while
the conductivity drifted by about 5.003 mS/cm, after five weeks. In 2013, Myounggon
Kim et al. from the School of Mechatronics, Gwangju Institute of Science and Technol-
ogy proposed an integrated microfluidic-based sensor module for real-time monitoring
of reverse osmosis (RO) that measures temperature, conductivity, and salinity. The mi-
crofluidic device was constructed from a thin metal film and a microfluidic channel that
was fabricated using the microelectromechanical system (MEMS) technology [12]. Re-
cently, in 2020, Wu Chaonan et al. of Ningbo University also proposed a conductivity and
temperature sensor fabricated using MEMS technology, where the sensor chip size was
about 12 mm × 12 mm, and 34 chips could be fabricated simultaneously on a 4-inch silicon
substrate [13]. The developed chip has high sensitivity, fast response time, and a good
repeatability of temperature measurement. The experimental results revealed that the
MEMS-based CT sensor has a temperature sensitivity of 0.0619 ◦C/Ω, a cell constant of
2.559 cm−1, and conductivity and temperature measurement accuracies of ±0.08 mS/cm
and ±0.05 ◦C, respectively, providing valuable experimental data for ocean measurements.

This paper proposes a conductivity sensor that integrates temperature-compensated
electrodes with a parallel four-electrode structure. The optimal parameters of the sensor
structure were determined by finite element simulation, and the design of the sensor pack-
age structure was completed. Simultaneously, the hardware circuit and data acquisition
algorithm were designed. The sensor’s range, precision, accuracy, and consistency were
tested in the laboratory and third-party testing institutions. Furthermore, the sensor can
read the conductivity through the master computer.

2. Working Principle of Sensor

Mainly, there are two types of conductivity sensors for marine environment mon-
itoring applications: electrode conductivity sensors [14–17] and inductive conductivity
sensors [18–20]. The inductive conductivity sensor is electrodeless, and the metal part of
the sensor is not in direct contact with seawater. Moreover, the non-metallic shell is not
easy to corrode, and the influence of the polarization effect is also avoided. Therefore, an
inductive sensor is more suitable for the field measurements with high stability in harsh
environments. However, it is susceptible to the proximity effect, and consequently, the sen-
sor’s electric field is easily disturbed or distorted by the surrounding objects. The inductive
conductivity sensor uses a toroidal transformer, which inherently results in a large size of
the sensor, thereby limiting its integration with other miniaturized MEMS sensors.

Alternatively, electrode conductivity sensors measure the conductivity through a con-
ductivity cell whose parameters are closely related to the position and shape of electrodes.
In addition, the electrodes are divided into excitation electrodes and measurement elec-
trodes. The excitation circuit provides a constant AC signal to the excitation electrodes,
and a stable electric field is generated in the conductivity cell. Here, the measurement
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electrodes detect the potentials in different areas inside the conductivity cell and output
them after the signal processing.

The conductivity σ of seawater is a physical quantity that describes its current trans-
port capability, essentially reflecting the level of electrolyte concentration in seawater.
Conductance G is inversely proportional to resistance R, and is given by the ratio of current
I and voltage V:

G =
1
R

=
I
V

(1)

The formula for calculating conductivity can then be expressed as:

σ = κ · G (2)

where κ is the cell constant, which can be expressed as [13]:

κ =
2

πl
arccosh

d
2a

(3)

Among them, l is the length of electrode, d is the distance between two inner elec-
trodes, and a is the width of voltage electrode. Meanwhile, the four electrodes are axially
symmetrically distributed.

When an electrode conductivity sensor operates in seawater, electrochemical reactions
occur at the contact surface between seawater and metal electrodes, which cause electron
transfer between seawater and electrode. Notably, the polarization effect is defined as
the change in ion concentration around the electrode due to the electric field generated
by electrode. At the junction of electrode and seawater, the molecules and ions partially
dissolved in seawater will be adsorbed on the surface of electrode in the form of chemical
bonds, to form an inner layer. Here, the electric center trajectory of these ions is called
the inner Helmholtz plane (IHP). Furthermore, the cations in seawater are attracted by
the Coulomb force of the anions on electrodes, and the electric center trajectories of these
cations are called the outer Helmholtz plane (OHP). In addition, some ions and molecules
are not adsorbed, and instead, they are distributed in the diffusion layer due to the influence
of electric field force and thermal motion, as demonstrated in Figure 1a.
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Figure 1. (a) A diagram demonstrating the structure of the electrode–electrolyte interface; (b) the
equivalent circuit diagram of a four-electrode conductivity sensor with AC excitation applied to
current electrode and voltage drop measured by voltage electrode.

The contact surface between electrode and seawater plays a capacitance role when
there is no charge transfer at the electrode–seawater interface. This capacitance is called
as the double-layer capacitance Cdl, formed by the Helmholtz capacitance CH in series
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with the equivalent capacitance CG of diffusion layer. When a voltage is applied to the
electrodes, charge transfer occurs between the seawater and electrodes, and such form
of charge transfer is similar to a leakage current through a double-layer capacitor, which
can be in fact seen as an impedance in parallel with the double-layer capacitor—the
Faraday impedance [21]. Accordingly, the Faraday impedance can be expressed as a series
connection of charge transfer impedance Rct and Warburg impedance ZW [22], where ZW is
expressed as:

ZW =

√
2AW√

jω
(4)

where j is an imaginary number,ω is the angular frequency of excitation signal, and AW is
the Warburg coefficient [23].

When an AC excitation is applied to the excitation electrode, the contact surface
between electrode and seawater can be represented by the double-layer capacitance Cdl,
charge transfer impedance Rct, and Warburg impedance ZW. Combined with the stray
capacitance CP and seawater equivalent resistance RW, the equivalent circuit of the four-
electrode conductivity sensor can be represented as shown in Figure 1b. When an AC
excitation is applied between the two current electrodes, there will be a voltage drop across
the equivalent resistance RW2 of the solution between the voltage electrodes. This voltage
drop can be measured by a voltage electrode with high input impedance. The current
through the solution can be measured by the current electrode, so that the conductivity of
the solution can be measured.

In addition, as the temperature of solution changes, the mobility of ions in the solution
is also affected, thereby resulting in a temperature-dependent change in the conductivity.
Therefore, to overcome the influence of temperature and make the conductivity of different
solutions comparable at different temperatures, the conductivity should be temperature
compensated. The temperature compensation formula is provided in Equation (5) as:

σ15 =
σt

1 + β(t− 15)
(5)

where σt is the conductivity of solution at temperature t ◦C, σ15 is the conductivity of
solution at 15 ◦C, and β is the temperature coefficient of solution conductivity.

3. Design and Fabrication
3.1. Structure and Package Design

In this work, a 525 µm thick 4-inch P-type <100> silicon wafer with high accuracy,
good consistency, and low cost is used as the substrate. Essentially, electrode design is the
most crucial part in the design of silicon-based thin film conductivity sensor. In designing a
multi-electrode conductivity sensor, each pair of electrodes has strict spacing requirements.
To reduce the parasitic capacitance, positions of current and voltage electrodes should be
strictly symmetrical. As shown in Figure 2, the four-electrode design separates the voltage
electrode from the current electrode, which can further weaken the electrode polarization
phenomenon. The proposed sensor integrates four parallel strip electrodes, serving as
current and voltage electrodes. Furthermore, a temperature electrode with a twisted
alignment is also designed between the two voltage electrodes. In addition, platinum
metal with good chemical stability and corrosion resistance is used as the material for the
electrodes. Its resistance value varies linearly with temperature, and hence, it is used as a
temperature compensating electrode. Moreover, silicon nitride film is used to insulate and
protect the temperature compensating electrode. Silicon nitride film has good mechanical
properties, high dielectric strength, chemical stability, and low film stress. Thus, it can be
an excellent protective and insulating layer for the temperature electrode.
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Figure 2. The figure is a schematic diagram of the chip structure.

The dimensions of the electrodes were determined using COMSOL FEM simulations.
The chip was surrounded by seawater, and Figure 3a shows the potential distribution
of the chip, where a clear potential difference between the two voltage electrodes can
be observed. Notably, when the current density of conductivity sensor is too high, the
electrodes may get damaged. In addition, increasing the electric field strength can improve
the measurement accuracy. Therefore, when designing the electrode, the length of electrode
should be appropriately selected to reduce the current density. While keeping the spacing
and width of all electrodes constant, the effect of electrode length on the current density
and electric field strength is illustrated in Figure 3b. As the electrode length increases, the
current density decreases, while the electric field strength increases. Nevertheless, the
current density should not be too small, otherwise, it will affect the measurement accuracy
in the low range. With these considerations, the electrode length is determined to be 14 mm
for this work. Additionally, for fixed electrode length and electrode spacing, the variation
of current density with the width of current electrode is shown in Figure 3c. It can be seen
from the results that when the current electrode width is 100 µm, the current density is the
smallest, and likewise, the width of the current electrode is designed to be 100 µm. Since no
current flows through the voltage electrodes, they can be as narrow as the manufacturing
process allows. Correspondingly, the width of voltage electrode is set to 10 µm. When the
potential difference between the voltage electrodes of conductivity sensor is higher, the
sensor’s sensitivity will be higher. Evidently, the potential difference between the voltage
electrodes varies with the electrode spacing, while keeping the electrode length and width
unchanged, as elaborated in Figure 3d. Likewise, when the current electrode spacing is
constant, the potential difference increases as the voltage electrode spacing increases. For a
voltage electrode spacing of 4 mm, the potential difference is observed to be the largest,
therefore the selected voltage electrode spacing is 4 mm. On the other hand, for a fixed
voltage electrode spacing, the potential difference increases with the decreasing current
electrode spacing. Accordingly, the current electrode spacing is set to 4.5 mm following the
selection of voltage electrode spacing, while considering the manufacturing capabilities.

As shown in Figure 4b, epoxy resin is used here to encapsulate the chip adhered to the
PCB, which can effectively prevent the exposed pads on the chip from corroding. Further-
more, the size of acquisition circuit board is designed to be 57.5 mm × 18 mm × 1.5 mm,
as shown in Figure 4a. The protective cover made of acrylic material can prevent the
probe from crashing, and the segmented package design allows a quick replacement of
the probe. Moreover, the acquisition circuit board is installed inside the tube shell, and the
assembled conductivity sensor is shown in Figure 4c. This package design can transmit
data in real-time through cables or realize self-capacitive data storage through TF cards.
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3.2. Structure and Package Design

A single chip integrates four parallel electrodes and a serpentine-shaped platinum thin-
film resistor with a size of 17 mm × 7.5 mm × 0.5 mm, as shown in Figure 5b, and 61 such
chips can be simultaneously fabricated on a 4-inch silicon wafer substrate. The fabrication
process of the silicon-based thin-film platinum conductivity sensor chip is explained in
Figure 5a. Initially, a 4-inch P-type <100> single-side polished silicon wafer with a 1-micron
silicon dioxide film deposited on the surface was cleaned, and a low-stress silicon nitride
film was grown on it by chemical vapor deposition (PECVD). Next, the photoresist was spin-
coated, and the conductivity electrodes and temperature compensation electrode patterns
were photo-etched on the photoresist by ultraviolet lithography (UVL). Then, conductivity
electrodes and temperature compensation electrodes with a thickness of 300 nm were
fabricated by electron beam evaporation (EBE) followed by the lift-off process. To reduce
the influence of temperature compensation electrode on the measurement of seawater
conductivity and prevent the temperature compensation electrode from deforming with
the temperature changes, a silicon nitride film was deposited again on the temperature
compensation electrode for protection and insulation. Since chemical vapor deposition
deposits the silicon nitride over the whole surface, it is also necessary to use UVL and
reactive ion etching (RIE) to pattern the silicon nitride protective layer.
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3.3. Measurement Hardware and Algorithm

The design scheme for the processing circuit of conductivity sensor is shown in
Figure 6. According to the measurement principle of four-electrode conductivity sensor, the
master control chip generates and supplies a triangular wave AC signal to current electrode
of the conductivity sensor. Meanwhile, a differential operational amplifier measures the
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voltage difference between the voltage electrodes with high input impedance. Next, the
differential amplified output voltage is input to the master control chip for the integral
operation through ADC collection. In addition, the current flowing through the other
current electrode is input to the operational amplifier after being collected by the ADC, and
also input to the master control chip for integral operation. In the master chip, the ratio of
current and voltage obtained from the integration process is output through the serial port,
and the output value is the original signal of the conductivity sensor.
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4. Experimental Method
4.1. Conductivity Sensor Calibration

A triangular wave is used as an excitation to overcome the influence of double-
layer capacitance and polarization effect. As shown in Figure 1b, when the excitation
frequency is low, the impedance of CP is big, and most of the current goes through RW.
However, because of the voltage drop across the double-layer capacitances (Cdl), the
measured impedance magnitude will be higher than Rw. This effect diminishes at increasing
frequencies. However, at higher frequencies, the impedance of CP will decrease, so that
a part of the injected current will go through CP. Therefore, the impedance magnitude
will be lower than Rw because of stray capacitance. Therefore, selection of an appropriate
excitation frequency is critical in improving the measurement accuracy. To determine the
proper excitation frequency, potassium chloride solutions of 0.35 mol/L, 0.40 mol/L, and
0.6 mol/L were prepared, and these three solutions were placed in a constant temperature
bath with a temperature fluctuation of ±0.005 ◦C. Next, conductivity tests were conducted
on the three solutions, and the changes in the circuit output with the concentration under
different excitation frequencies are shown in Figure 7. It can be seen from the test results
that when the excitation frequency is higher than 1500 Hz or lower than 937 Hz, the output
of the circuit does not change significantly with the concentration. When the frequency is
1067 Hz, the output of the circuit is the largest, and the change with the concentration is the
most obvious. Therefore, 1067 Hz is selected as the excitation frequency.

4.1.1. The Laboratory Calibration

The output of conductivity sensor is the ratio of current and voltage after the integral
and mean value processing, thus the conductivity sensor needs to be calibrated. During the
laboratory tests, the sensor was preliminarily calibrated to take into account the influence of
experimental environment. Different standard conductivity solutions were prepared with
dried potassium chloride and deionized water, and the sensor’s output in these solutions
was tested at 25 ◦C. As shown in Figure 8, from 0 to 77.08 ms/cm, the output of conductivity
sensor changes linearly with the standard conductivity, and R2 = 0.99968. According to
the fitting curve, the relationship between the output XO of conductivity sensor and the
standard conductivity σ is:

σ = 8.184 · XO − 0.265 (6)
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4.1.2. Third Party Mechanism Calibration

To overcome the impact of experimental environment, a calibration at a third-party
organization was carried out, at the National Center of Ocean Standards and Metrology in
China. Considering the temperature-dependent characteristics of conductivity of standard
seawater, the conductivity sensor was placed in a pool of standard seawater, and data are
collected at 5 ◦C intervals between 0 and 35 ◦C. The corresponding relationship between
the output of the conductivity sensor circuit and the temperature is shown in Figure 9a.
According to the calibration protocol, the conductivity of air is considered to be 0 mS/cm.
Therefore, the fitted curve between the output of the circuit and the standard conductivity
is shown in Figure 9b. The fitted relationship between the conductivity y and the output x
of circuit is described in Equation (7).

y = a0 + a1 · x + a2 · x2 + a3 · x3 + a4 · x4 + a5 · x5 (7)

a0 = −0.02189, a1 = 3.23449, a2 = 5.94996, a3 = −2.03875, a4 = 0.29531, a5 = −0.01522
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4.2. Temperature Calibration

Fundamentally, the resistance of thin-film platinum resistors designed with serpentine
structure can reach up to 13 kΩ. Moreover, the resistance of thin-film platinum resis-
tors changes linearly with temperature. According to the eight-point calibration method,
the sensor was placed in a constant temperature bath with a temperature fluctuation of
±0.005 ◦C. Next, eight temperature points were set between 5–45 ◦C, YOWEXA’s YET-710
temperature sensor was used as the standard instrument, and the relationship between
the resistance of thin-film platinum and the actual temperature was measured, as shown
in Figure 10. The linear fitting relationship between the resistance of thin-film platinum
resistance and the actual temperature is given as:

T = 0.02548 · X− 309.0508 (8)
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The R2 of the fitted curve is 0.99999, demonstrating that the indication value of thin-
film platinum resistance possesses an excellent linear relationship with the temperature.

5. Results and Discussion
5.1. Range and Precision of Sensor

The conductivity of potassium chloride solution with different concentrations was tested
using the developed silicon-based thin film conductivity sensor. As evident from Figure 11a,
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the sensor has a maximum range of 107.41 mS/cm. Each concentration of KCl solution was
tested 60 times, and the corresponding standard deviation of the measured conductivity value
is shown in Figure 11b. The measurement precision between 0 and 76.422 mS/cm ranges
from ±0.005 mS/cm at 5.939 mS/cm to ±0.165 mS/cm at 76.422 mS/cm. Furthermore, the
measurement precision between 81.879 mS/cm~107.41 mS/cm ranges from ±0.229 mS/cm
to ±0.401 mS/cm.
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5.2. Performance Consistency

Conductivity tests were carried out on potassium chloride solutions with different
concentrations using three distinct silicon-based thin-film conductivity sensors. As shown
in Figure 12, when the concentration is 0.1 mol/L, the error in the test results of three
sensors is ±0.086 mS/cm. When the concentration is 0.3 mol/L, the error between Sensor 1
and Sensor 2 is ±0.012 mS/cm, while the measurement error of Sensor 3 is ±1.697 mS/cm.
The measurement error is because the temperature of thermostatic bath had not stabilized
before the test was started. Therefore, it can be safely stated that the output of silicon-based
thin-film conductivity sensor is consistent within the effective range.

5.3. Performance of Temperature Compensation and Salinity Testing

To reduce the effect of temperature on the conductivity test, the conductivity must be
temperature compensated. The conductivity of standard seawater was tested from 0 ◦C to
40 ◦C. The conductivity values obtained at different temperatures were all converted to
conductivity at 15 ◦C according to Equation (5). Figure 13 shows the actual conductivity of
seawater at different temperatures and the conductivity after temperature compensation,
with a maximum error of 0.1917 mS/cm after the compensation. Conductivity and temper-
ature can be measured simultaneously by the sensor and displayed directly on the master
computer. The temperature, conductivity, and salinity indications can be read out in real
time through the master computer, and the sampling time and sampling frequency can
also be set through the master computer. When the test was performed in the laboratory,
the sensor was fixed about 10 cm below the water surface. Here, the pressure depends
on the depth, hence the salinity of the solution, can be calculated directly in the master
computer. The developed sensor essentially enables the integrated testing of conductivity,
temperature, and salinity.
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5.4. Sensor Accuracy Test and Performance Comparison

The accuracy of conductivity sensor was tested at the National Center of Ocean
Standards and Metrology. In the experiment, the conductivity of air and the conductivity
of standard seawater at 0 ◦C, 5 ◦C, 10 ◦C, 15 ◦C, 20 ◦C, 25 ◦C, 30 ◦C, 35 ◦C, and 40 ◦C were
tested. In comparison with the standard conductivity, the maximum measurement error of
our sensor was ±0.073 mS/cm at 57.6772 mS/cm, as illustrated in Figure 14.

The performance comparison of the proposed sensor and other conductivity sensors
using MEMS technology for marine measurement is presented in Table 1. It can be seen
that the accuracy of our sensor is better than that of Hyldgrad multi-sensor system and
Chaonan Wu’s CT sensor. The measurement range of the proposed conductivity sensor is
larger than the other sensors. The chip size is also smaller than Broadbent’s PCB MEMS
CTD size.
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Table 1. Comparison of our conductivity sensor and other sensors.

Sensor Accuracy Range Chip size

Hyldgrad multi-sensor system [23] ±0.6 mS/cm - 4 mm × 4 mm

Broadbent PCB MEMS CTD [24] - 2–70 mS/cm 18 mm × 28 mm

Huangxi CT sensor [11] ±0.03 mS/cm 25–55 mS/cm 10 mm × 20 mm

Chaonan Wu CT sensor [13] ±0.08 mS/cm 0–101 mS/cm 12 mm × 12 mm

Our conductivity sensor ±0.073 mS/cm
(0–70 mS/cm) 0–107.41 mS/cm 17 mm × 7.5 mm

6. Conclusions

This paper proposes a direct-reading MEMS conductivity sensor with four parallel
electrodes, integrating temperature-compensated electrodes for real-time temperature com-
pensation. The sensor can directly read out the measured conductivity, temperature, and
salinity through the master computer. The developed sensor exhibited good consistency
with 61 chips successfully fabricated on a 4-inch silicon wafer. Furthermore, the measure-
ment circuit and algorithm of conductivity sensor were also developed, and an integrated
package of sensor probe and circuit was realized. The maximum measurement range of the
sensor in the laboratory was 107.41 mS/cm. Most importantly, a third-party standardized
calibration was also carried out, and the accuracy of the conductivity sensor was better than
±0.073 mS/cm over the range of 0–70 mS/cm. Future research will focus on improving the
measurement accuracy at a high range and the long-term stability of the sensor.
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