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Abstract: Due to the massive multipath effects and non-line-of-sight (NLOS) signal receptions, the
accuracy and reliability of GNSS positioning solution can be severely degraded in a highly urbanized
area, which has a negative impact on the performance of GNSS/INS integrated navigation. Therefore,
this paper proposes a multipath/NLOS detection method based on the K-means clustering algorithm
for vehicle GNSS/INS integrated positioning. It comprehensively considers different feature parame-
ters derived from GNSS raw observations, such as the satellite-elevation angle, carrier-to-noise ratio,
pseudorange residual, and pseudorange rate consistency to effectively classify GNSS signals. In view
of the influence of different GNSS signals on positioning results, the K-means clustering algorithm
is exploited to divide the observation data into two main categories: direct signals and indirect
signals (including multipath and NLOS signals). Then, the multipath/NLOS signal is separated from
the observation data. Finally, this paper uses the measured vehicle GNSS/INS observation data,
including offline dataset and online dataset, to verify the accuracy of signal classification based on
double-differenced pseudorange positioning. A series of experiments conducted in typical urban
scenarios demonstrate that the proposed method could ameliorate the positioning accuracy signif-
icantly compared with the conventional GNSS/INS integrated navigation. After excluding GNSS
outliers, the positioning accuracy of the offline dataset is improved by 16% and 85% in the horizontal
and vertical directions, respectively, and the positioning accuracy of the online dataset is improved
by 21% and 41% in the two directions. This method does not rely on external geographic information
data and other sensors, which has better practicability and environmental adaptability.

Keywords: GNSS/INS tightly coupled system; multipath/NLOS detection; K-means clustering
algorithm; urban areas

1. Introduction

Global Navigation Satellite System (GNSS) can provide all-day and all-weather global
Positioning, Navigation, and Timing (PNT) services for global users, and its positioning
errors will not accumulate over time [1,2]. However, satellite signals are frequently blocked
or even lose lock in complex urban scenarios, which cannot guarantee the effectiveness
of positioning [3]. Inertial Navigation System (INS) has the advantages of strong auton-
omy and strong anti-interference and can obtain short-term, high-precision navigation
and positioning results [4]. However, INS errors accumulate over time, and long-term
independent solution can result in reduced accuracy or even divergence [5]. GNSS and
INS possess highly complementary characteristics, which can effectively overcome the
adverse effects of the harsh environment with the two systems integrated [6]. Therefore,
GNSS/INS integrated navigation is widely utilized in naturalistic driving, high-precision
vehicle navigation, Intelligent Transportation system (ITS), and autonomous driving [7–10].
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Based on the integrated method, GNSS/INS integrated navigation can be divided into
loosely coupled, tightly coupled, and deeply coupled. Among them, the GNSS/INS tightly
coupled system can maintain continuous positioning despite the insufficiently visible
satellites and has the advantage of simple integrated structure and easier implementation,
which has been extensively recognized by many scholars [11–13].

In the application of vehicle dynamic positioning, a continuous, reliable, and high-
precision positioning method is urgently required. Balsa-Barreiro (2013) implemented an
innovative methodology based on vehicle speed for the geo-referencing naturalistic driving
method, which can overcome the problems related to the lack of positioning data [14].
However, this method requires extra geographic information. In addition, some scholars
use GNSS and multiple sensors for positioning, which can integrate the advantages of each
sensor, and obtain continuous and reliable positioning information in urban scenes [15–17].
But, the cost of multi-sensor is high, the weight is difficult to determine, and the amount
of calculation is large. Therefore, based on the above discussion, this paper chooses
GNSS/INS tightly coupled system positioning as the method to obtain the vehicle position
in urban scenarios. However, the performance of GNSS/INS tightly coupled positioning is
inevitably plagued by various outliers in the complex urban scenario [18]. For the GNSS
receiver, the multipath effect and NLOS signal are the commonly adverse factors to restrict
the positioning performance of GNSS, which further subsides the GNSS/INS integration
system positioning capability [19,20]. Multipath effect occurs when a signal is received
through multiple paths between the satellite and the receiver antenna. Additionally, mul-
tipath interference can affect the phase detection characteristics of the receiver tracking
loop, resulting in tracking and measurement errors [21]. Multipath includes both direct and
reflected signals, and the reflected signals can be multiple. NLOS signal reception occurs
when the direct path from the satellite to the receiver is blocked and the signal can only
be received through the reflected path [22]. Due to the relatively low cost and the ability
to provide accurate time reference and absolute coordinate information, GNSS solution is
still an important and preferred technical method in the field of high-precision navigation
and location services. Unfortunately, the degradation of GNSS positioning accuracy may
negatively affect the performance of the entire system [23]. We need to mitigate the error of
the standalone GNSS positioning with innovative signal-processing methods to promote
the performance of GNSS/INS integration.

Accurate multipath/NLOS detection and subsequent processing are the basis for the
signal quality control and positioning strategy optimization of the GNSS/INS integration
Navigation system [24]. With the prosperity of artificial intelligence technology, more and
more scholars began to employ machine learning or deep-learning methods to identify
multipath/NLOS signals. These methods constructed the mapping relationship between
multiple feature parameters and GNSS signal categories to reduce the operating cost of
traditional methods and enhance the availability of the algorithm, which have achieved
outstanding results [25–28]. The above approaches are classifiers based on supervised
learning that need to label the training samples in advance. Meanwhile, the accuracy
of the labeling is directly associated with the performance of the classifiers. In practi-
cal applications, it is challenging and expensive to obtain an accurately labeled dataset
that covers multiple scenarios and represents all state types. In order to refrain from the
limitations of signal classification methods caused by the above problems, scholars have
begun to use unsupervised learning techniques for signal classification research, which can
sufficiently excavate the information of the observation data itself [29–32]. Compared with
the supervised-learning multipath/NLOS signal detection algorithm, the unsupervised
technology has better advantages in availability and environmental applicability. Further-
more, the positioning accuracy after excluding contaminated GNSS satellites is significantly
better than the traditional threshold method and the classic RAIM algorithm.

Given that the multipath/NLOS signal restricts the dynamic positioning accuracy and
reliability of the GNSS/INS integrated system, apart from GNSS alone positioning, multi-
path/NLOS detection and mitigation for GNSS/INS integrated systems were developed in
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past years [33–35]. However, these technologies are dependent on geographic information
data or external sensor equipment, such as 3D building models, cameras, and LiDAR, which
have a certain level of deficiencies in terms of availability, cost, and security. In addition,
the equivalent weight model is employed to construct robust algorithms that can weaken
the influence of the gross error of the observation on the positioning accuracy [36,37]. This
method utilizes the robust factor to adjust the filter gain moment or the observation noise
for GNSS/INS integrated positioning, which plays a role in suppressing multipath and
NLOS errors to a certain extent. However, the robust estimation algorithm has difficulty
handling multiple outliers on the same epoch and relies heavily on the correctness of the
robust model. Therefore, when the original observations are seriously polluted by the
multipath/NLOS signals in harsh environments, the reliability of the algorithm cannot
be guaranteed.

This paper aims to further promote the accuracy of GNSS/INS tightly coupled posi-
tioning results by using unsupervised techniques to detect multipath/NLOS signals. A
clustering algorithm is utilized to label GNSS data in offline system as normal and abnor-
mal observations, the latter mainly caused by multipath/NLOS signals. The clustering
criteria obtained by offline dataset training are applied to detect multipath/NLOS signals
for online data, which can enhance the performance of GNSS/INS real-time positioning.
Additionally, it can provide an innovative perspective for the research on GNSS signal
quality control methods of vehicle positioning systems in highly complex urban areas.

The rest of this paper is organized as follows: In Section 2, the relevant mathematical
methodology is presented for K-means Clustering and GNSS/INS tightly coupled posi-
tioning algorithm. Next, Section 3 implements the data collection and experiment analysis,
which validate the accuracy and reliability improvements of the proposed method. Finally,
the conclusion and outlook will be given in Section 4.

2. Methodology
2.1. Feature Extraction

Reasonable feature value is critical to the capability of machine-learning algorithms,
and this paper refers to the feature parameters of multipath/NLOS signal detection in
supervised learning classifiers. Most of the current machine learning methods for multi-
path/NLOS detection adopt feature values at the observation data level. We only extract
the feature parameters from the RINEX format file output by the GNSS receiver, including
pseudorange, carrier phase, carrier-to-noise ratio (signal strength), and Doppler frequency
shift, etc., which are all closely related to GNSS signal types. However, it is impossible for
any single feature to effectively classify GNSS signals. Hence, a combination of different
features is needed to ameliorate the classification accuracy [22,38–40].

(1) Satellite elevation angle: It is a common method to assign weights to each observa-
tion value based on the satellite elevation angle to reduce the influence of multipath and
NLOS signal reception on the positioning results. Generally speaking, satellite signals from
high elevation angles are less likely to be blocked and reflected by buildings, but this is
not always the case in reality. Due to the height and distribution of buildings in urban
areas, satellite signals at high elevation angles may also be NLOS signals, while signals at
low elevation angles may be direct signals. Nonetheless, satellite elevation angle is still an
important feature indicator to distinguish NLOS signals.

(2) Carrier-to-noise ratio: The GNSS receiver will output the observations of the
tracked satellite signal strength. According to the signal propagation theory, supernumerary
propagation and reflection will increase the path loss of the GNSS signal. As an important
indicator reflecting the signal quality, the C/N0 observation value is also a common
parameter to alleviate the multipath effect. Similar to the elevation angle, the satellite signal
strength or carrier-to-noise ratio also has a certain correspondence with the type of signal.
The signal strength of the satellite received by the survey antenna is usually higher in an
open environment. However, the magnitude of C/N0 does not have a clear correspondence



Micromachines 2022, 13, 1128 4 of 19

with the type of GNSS signal in a multipath environment, because constructive multipath
will increase the received signal, while destructive multipath reduces signal strength.

(3) Pseudorange residual: When there are more observation equations than unknown
parameters and the position estimation is accurate enough, the magnitude of the pseudor-
ange residual can reflect the inconsistency between the pseudorange measurements and
the geometric distance of the satellite.

In addition, multi-constellation GNSS integrated positioning increases the number of
available observation satellites and observation redundancy. Therefore, the pseudorange
residual can be used as an indicator to detect the quality of GNSS signals.

(4) Pseudorange rate consistency: The pseudorange observations originate from the
receiver code tracking loop, and the Doppler shift of the signal is determined by the receiver
frequency tracking loop. Compared with the code tracking loop, the multipath/NLOS
signal has less influence on the frequency tracking loop, so the consistency between the
pseudorange change rate and the Doppler frequency shift can reflect the interference degree
of the reflected signal. Its formula is expressed as:

ζ = |∆ρ− .
ρ·∆ t| (1)

where ∆ρ and ∆t represent the pseudorange variation and time interval between adjacent
epochs, respectively. According to the Doppler effect, the pseudorange rate

.
ρ is calculated

from the Doppler shift.
.
ρ =− λi·fDi (2)

where λi and fDi indicate the wavelength of frequency i and the Doppler shift in
Hz, individually.

Since all of the above single features are uncertain and interdigitated with each other
for NLOS signals, it is impossible for any single feature to effectively classify GNSS signals.
Thus, NLOS signals need to be determined by a combination of different features. In
summary, this paper comprehensively selects the above four parameters to form the feature
vector of cluster analysis. Then the data are standardized to eliminate the influence of
different dimensions on the clustering results, that is, each feature value conforms to the
standard normal distribution after data processing.

2.2. K-Means Clustering Algorithm and Its Evaluation Indicator

It is considered that GNSS signals in complex environments are generally divided
into two main types: direct signals and indirect signals (including multipath and NLOS
signals), and each type of signal has a certain internal relationship with the above four
feature parameters.

In accordance with this characteristic, the K-means algorithm is used for signal cluster-
ing. When the sample is closest to one of the cluster centers, it is classified into this class.

For a given sample set S = {x1, x2, · · · xm}, where xm= {em, CN0m, vm, · · · conm} rep-
resents the standardized feature vector of satellite elevation angle, carrier-to-noise ra-
tio, pseudorange residual, and pseudorange rate consistency. This paper assigns corre-
sponding weights to the feature parameters based on experience [22], which are set as[√

0.2,
√

0.3,
√

0.2,
√

0.3
]
, respectively. The K-means algorithm divides them into k clusters

C = {C1, C2, · · ·Ck} so that the sum of squared Euclidean distances from each data point to
its nearest cluster center is minimized, namely:

argminC

k

∑
i=1

∑
x∈Ci

‖x− µi‖
2 (3)

where µi is the mean vector of the cluster Ci, and can be expressed as:

µi =
1
|Ci| ∑

x∈Ci

x (4)
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The basic process of the K-means algorithm is as follows [41]:
(1) This algorithm randomly selects k samples as the initial cluster center;
(2) For the remaining samples, according to the distance of their cluster centers, they

are classified into the nearest cluster;
(3) For each cluster, the mean of all samples is calculated as the new cluster center;
(4) Repeat steps (2) and (3) until the cluster centers no longer change.
Based on the above calculations, all GNSS signals are classified into different clusters.

The K-means algorithm needs to specify the value of k in advance, which is usually
defaulted to 2 or 3. However, due to the complexity of the scenario and the correlation
between GNSS signals, 2 and 3 are often not the optimal k values. Additionally, the
difference between the clustering results corresponding to different k values is not obvious.
Therefore, this paper chooses the Davies–Bouldin Indicator (DBI) as the internal evaluation
index of the clustering effect [42].

DBI is defined as the average similarity between each cluster Ci, i = 1, 2, · · · , k and its
the most similar one Cj, where the similarity is expressed by the ratio of the intra-cluster
distance to the inter-cluster distance. The minimum value of DBI is 0, and the smaller the
value, the better the clustering effect. The specific calculation formula is:

IDBI =
1
k

k

∑
i=1

max
i 6=j Rij (5)

where k is the number of clusters; Rij denotes similarity that can be constructed by a simple
choice as follows so that it can keep nonnegative and symmetric:

Rij =
d(si)+d(sj)

dij
(6)

where d(s i) and d(sj) mean the average distance between each point of cluster data to the
centroid of that cluster also known as cluster diameter, individually; dij is the distance
between cluster centroids i and j, which represents the dispersion degree of data point for
cluster centroids i and j.

2.3. GNSS/INS Tightly Coupled Positioning Model

GNSS/INS integrated navigation system adopts Extended Kalman Filter (EKF) for
system fusion to realize high-precision navigation and positioning by effectively detecting
and rejecting Multipath/NLOS signals in complex urban areas. In vehicle navigation,
due to the strong reliability and highly real-time performance of the pseudorange/INS
system, this paper employs the integrated positioning solution of GNSS double-differenced
pseudorange (DGNSS) and INS observation.

The system state model depends on the INS error model and the description of the
inertial sensor system error. The INS error equation based on the psi angle is adopted in
this paper [43].

δr˙n= −ωn
en×δrn+δvn (7)

δv˙n= −(2ω n
ie+ωn

en)×δvn−ψn×fn+δgn+Cn
b δfb

ib (8)
.

ψ
n
= −(ωn

ie+ωn
en)×ψn−Cn

b δωb
ib (9)

where δrn, δvn, and δψn indicate position error, velocity error, and attitude angle error,
respectively; Cn

b is the rotation matrix from the body frame (b-frame) to the navigation
frame (n-frame); δfb

ib and δωb
ib are the accelerometer and gyroscope error vector in the

b-frame, separately; In addition, the specific force vector measured by the accelerometer,
the rotation velocity of the earth, and the transfer rate are represented by fn, ωn

ie, and ωn
en,

respectively.
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The accelerometer error and gyroscope error are the main factors affecting the accuracy
of GNSS/INS tightly coupled system, and the bias errors are modeled by a random walk
process. Their specific forms can be expressed as:{ .

ba= wba.
bg = wbg

(10)

where ba is bias of the accelerometer; bg is the bias of the gyroscope; wba and wbg express
the corresponding random white noise.

The equation of the state of the system is as follows:

.
Xins= F·Xins+G ·W (11)

where F is the state transition matrix; G and W represent the dynamic noise matrix and the
noise vector; Xins is the state parameter, Xins= (δr, δv, δψ, bg, ba)15×1.

Based on the INS error model, G and W are optimized and presented as follows:

F=


Frr Frv 0 0 0
Fvr Fvv fn× 0 Cn

b
Fψr Frψ −

(
ωn

ie+ωn
en
)
× −Cn

b 0
0 0 0 0 0
0 0 0 0 0

, G =


0 0 0 0 0
0 Cn

b 0 0 0
−Cn

b 0 0 0 0
0 0 0 I 0
0 0 0 0 I

 (12)

where I indicates the unit matrix; Frr and Frv represent state coefficients of position; Fvr
and Fvv represent coefficients of velocity; Fψr and Frψ represent coefficients of attitude. The
specific derivation of the above symbols can be found in [33].

The difference between the distance from the satellite to the ground station predicted
by the INS and the GNSS double-differenced pseudorange is solved, which is used as the
EKF measurement to achieve high-precision positioning for GNSS/INS tightly coupled
system. The measurement equation is written in matrix form:

Zk= HkXk +
[
eρ, eins

]T (13)

where Zk represents the measurement vector at time epoch k, Zk = ∆∇ρ∗ − ∆∇ρins, and
∆∇ρins indicates the satellite-to-ground distance predicted by INS; “*” represents different
satellite systems including uses GPS and BDS in this paper; Hk is the measurement model
coefficient matrix; eρ and eins are the pseudorange observation noise and INS observation
noise, respectively.

The final GNSS/INS tightly coupled positioning results can then be solved based on
the following EKF procedures.

Prediction stage:
X̂k/k−1= Φk,k−1X̂k−1 (14)

Pk/k−1= Φk,k−1Pk−1ΦT
k,k−1+Qk−1 (15)

Update stage:

Kk= Pk/k−1HT
k

(
HkPk/k−1HT

k +Rk

)−1
(16)

X̂k = X̂k/k−1+Kk
(
Zk −HkX̂k/k−1

)
(17)

Pk = (I−KkHk)Pk/k−1 (18)

where X̂k, Φk, and Pk express the state vector estimates, the state transition matrix, and
the error covariance matrix at time epoch k, respectively; Qk−1 represents the system noise
covariance matrix at time epoch k−1; Rk indicates the measurement noise covariance matrix
at time epoch k; Hk denotes the measurement matrix at time epoch k; Kk represents the EKF
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gain matrix at time epoch k; In addition, nk,k−1 represents matrix/vector n propagation
from time epoch k−1 to k.

2.4. Overview of the Proposed Method

The flowchart of the proposed method is shown in Figure 1. Firstly, four essential
features are extracted from GNSS raw observation data, namely, satellite elevation angle,
carrier-to-noise ratio, pseudorange residual, and pseudorange rate consistency, which are
comprehensively used to enhance the classification accuracy. Secondly, satellite signals
received by GNSS receivers in complex scenarios are generally divided into two categories:
direct and indirect signals, the latter including multipath and NLOS signals, and each type
of signal has a certain internal relationship with the above four main features. According
to this characteristic, this paper adopts the k-means clustering algorithm to cluster the
signals and selects the DBI as the internal evaluation index of the clustering effect. Finally,
both the raw INS measurements and the GNSS double-differenced pseudorange obser-
vations are tightly integrated with EKF filtering, resulting in reliable and high-precision
positioning results.
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This paper purports that there is no NLOS signal and the multipath is well suppressed, 
which is small relative to the rover and does not affect the subsequent positioning solu-
tion. Therefore, multipath/NLOS signal detection for base station GNSS observations is 
not required. 

Figure 1. Flowchart of the proposed Multipath/NLOS Detection method based on K-means Cluster-
ing for GNSS/INS tightly coupled system.

It should be pointed out that the measured circumstance of the GNSS receiver of the
base station is open and superior with no obstacle occluding all around as shown in Figure 2.
Additionally, the Trimble GNSS-Ti earth-type chock-ring antenna is installed. This paper
purports that there is no NLOS signal and the multipath is well suppressed, which is small
relative to the rover and does not affect the subsequent positioning solution. Therefore,
multipath/NLOS signal detection for base station GNSS observations is not required.
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3. Data Collection and Experiment Analysis
3.1. Data Collection

This paper takes advantage of GPS L1 and BDS B1 frequency observation data, and the
sampling rate is 1 Hz. The reference values of the three-dimensional position, velocity, and
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attitude of the vehicle are acquired through GNSS RTK/INS tightly coupled positioning,
which is used to verify the improvement of positioning accuracy after excluding outliers.
The NovAtel ProPak6 receiver of the rover station and the Trimble receiver of the three
static base stations provide the GNSS carrier phase observations. Moreover, the solution of
the reference value is realized using Inertial Explorer post-processing software developed
by NovAtel Company [44]. The experimental platform is shown in Figure 3, and Table 1 is
the specific technical parameters of the IMU.
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Figure 3. The test platform and equipment of the experimental vehicle: (a) The measurement vehicle;
(b) satellite signal receiving antenna; (c) integrated system sensors.

Table 1. IMU technical data.

Parameters Gyroscope Accelerometer

Bias stability 0.5 deg/h 1250 µg
Scale factor 100 ppm 100 ppm

Random walk 0.3deg/
√

h 100 µg /
√

h

The experiment was carried out in the urban area of Nanjing, where the typical
scenarios included tree shade and urban canyons, etc. Figure 4 shows the vehicle trajectories
corresponding to two different observation periods. The two sets of datasets are marked
as D1 and D2 in the order of time. D1 is an offline dataset, and D2 is an online dataset for
real-time positioning verification. In addition to the occlusion of satellite signals caused by
obstacles such as huge buildings, the strong reflection effect of modern building materials
can also cause serious multipath and NLOS signal reception. Furthermore, the lush tree
canopy on both sides of urban roads can also lead to complex multipath effects.

The specific information of the dataset is displayed in Table 2. The number of valid
epochs refers to the number of epochs for which the position solution is obtained. Owing
to the influence of the observation environment, some epochs do not have GNSS data
output, or the number of observation satellites is too small to conduct the double system
positioning solution. Therefore, these epochs will be considered to be invalid epochs.
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Figure 4. The route map of the actual measurement of the urban complex scenarios: (a) the route
maps of offline dataset D1 for vehicle dynamic testing; (b) the route maps of online dataset D2 for
vehicle dynamic testing; (c) the boulevard; (d) the urban canyon.

Table 2. Valid epoch and sample size of each dataset.

Dataset Start Time (UTC) End Time (UTC) Valid Epoch Sample Size

D 1 2017-04-20 05:12:58 2017-04-20 05:31:43 1052 11,454

D 2 2017-04-20 05:31:44 2017-04-20 05:41:28 531 6011

3.2. Outliers Detection for the Offline Data Based on K-Means

This section will discuss in detail how to use the K-means algorithm to detect GPS/BDS
multipath/NLOS signals on dataset D1, which employs GNSS/INS tightly coupled post-
processing algorithm to verify its effectiveness. This lays the foundation for the subsequent
real-time application for GNSS/INS integrated navigation.

In order to broaden the feature value range of the sample and upgrade the performance
of the machine learning algorithm, the cut-off elevation angle and the signal-to-noise ratio
are not set during the positioning process. The number of epochs that do not satisfy the
chi-square test accounts for about 10% of the valid epochs, indicating that the observation
environment has a certain complexity. The epochs that satisfy the chi-square test still
contain a certain number of satellite observations disturbed by multipath and NLOS
signals. Therefore, identifying them accurately is the key to enhancing the performance of
GNSS positioning and GNSS/INS tightly coupled positioning. Figure 5 illustrates the sky
map of GPS and BDS observed by the receiver during vehicle driving.
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3.2.1. Cluster Analysis

Since only four typical feature parameters are used as the input of the machine learning
model, there is no need to use methods such as Principal Components Analysis (PCA) for
dimension reduction of the sample data. The feature value is normalized by a z-score to
ensure that they are in the same order of magnitude. Here, different weights are assigned
to the four feature parameters elaborated above for clustering calculation. Due to the
possible connectivity and correlation between different GNSS signal types and the potential
non-integrity of feature parameters, we will no longer constrain the value of k to 3 or 2, but
judge according to the actual situation.

Figure 6 demonstrates the corresponding DBI values for different values of k. It can be
revealed that when the value of k is 3, 4, 5, and 7, the DBI value is small with inconspicuous
disparity. Hence, this paper selects the number of clusters from these four groups of values.
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It is worth noting that due to the incompleteness of feature parameters, the complexity
of environmental influences and the fuzzy correlation between signal types, the number
of clusters do not necessarily correspond strictly to the type of signal (three types of
LOS/Multipath/NLOS); that is, 3 is not necessarily the optimal value of k. Here only the
value of DBI is used as a reference for us to determine the value of k. k = 3 is great, but
if the DBI value of k > 3 is also low, we will also consider it. In this case, we can think of
them as clusters with varying degrees of signal interference. Due to the existence of inertial
measurement data in tightly combined positioning, we do not need to care too much about
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the perfect value of k as in GNSS alone positioning for the time being. A slightly larger
division of GNSS signals into multipath /NLOS will not cause the underdetermination of
the tightly combined observation equation.

Figure 7 shows the visualization graphics of the clustering results corresponding to
different k values in the three-dimensional feature space. In general, the larger the value of
k, the smaller the number of observations in the dataset that are not disturbed by multipath
and NLOS signals. For example, when k is 3, we know from observation in Figure 7,
and from experience, that the number of line-of-sight (LOS) observations is 7807, and the
number of samples of the other two clusters is 3646 and 1. When k is 7, the number of LOS
observations is reduced to 6563.
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Since the larger k is, the smaller is the number of LOS observations, if only the LOS
observations are retained during the positioning process, the risk of k = 3 lies in missed
detection, and the false detection rate will increase when k = 7. Considering that there is no
extraordinary explicit boundary between the observation data of different characteristics,
this paper chooses a relatively compromised method that the value of k is set to 5. This
way can alleviate the probability that observations are contaminated by multipath and
NLOS, which are mixed into the LOS clusters during the clustering process; thus, it can
avoid a reduction in the accuracy of GNSS/INS tightly coupled positioning. Furthermore,
based on the existence of INS observation data, positioning results can be output, despite
an insufficient number of LOS satellites. At this time, the number of samples of LOS
observations is 7286.

Figure 8 further expresses the distribution pattern of the clustering results under
four different feature parameters when k = 5. The diagonal represents the probability
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distribution of the sample points of different clusters on the variable. Additionally, the off
diagonal represents the horizontal distribution of the sample points on the corresponding
two-dimensional feature.
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Figure 8. Four feature value distribution pattern diagrams when the k value is 5.

It is worth noting that here for better visualization, the probability-density curves
of each cluster are independently normalized so that their respective acreage under each
curve is 1. According to the probability distribution, it can be inferred that cluster 1 in
Figure 8 is the LOS observation sample. It can be seen that its main distribution area is
concentrated in the space with the maximum satellite elevation angle and carrier-to-noise
ratio, the smallest pseudorange residual, and the consistency of the pseudorange rate, in
which the elevation angle of the satellites is basically above 25◦. This is highly similar to
the nature of LOS observations in urban environments. The remaining four clusters can be
considered to be different distribution patterns of the sample set composed of observations
contaminated by multipath or NLOS signals.

3.2.2. Analysis of Positioning Results

In order to validate the correctness of the clustering results, we execute the DGNSS/INS
tightly coupled positioning algorithm to conduct comparative experiments. Figure 9 demon-
strates the comparison of the 3D position of the vehicle obtained by different positioning
methods, where the red solid line is the ground reference value of the vehicle on the ground.
This paper takes the starting point of the vehicle as the origin of the site-centric coordinate
system. From Figure 9, we can recognize that the tightly coupled positioning result without
multipath/NLOS observation processing deviates more from the reference coordinate
value. Furthermore, the result without the height cut-off elevation angle has the most
serious position deviation. The deviation in the starting position from the reference value
causes an adverse influence on the positioning accuracy.
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Since the multipath/NLOS observations are not eliminated in complex urban scenar-
ios, it makes the tightly coupled observation equation unreliable. It can also be concluded
that installing the satellite cut-off elevation angle can suppress the influence of multi-
path/NLOS observations to a certain extent. However, the overall positioning performance
of the GNSS/INS tightly coupled system is still unsatisfactory, especially in the vertical
direction. However, after using the K-means clustering algorithm to identify and exclude
multipath/NLOS observations, the positioning results are significantly ameliorated, and
the deviation level from the true value becomes small.

Moreover, even if the satellite cut-off elevation angle is set to 0◦, the position solution
of this method hardly changes. This phenomenon indicates that the cut-off elevation angle
of most LOS observations in the scenario identified by the clustering algorithm are above
15◦. However, it does not mean that all satellite observations above 15◦ come from LOS
signal reception.

The above experiments also reveal that simply relying on setting the cut-off elevation
angle cannot improve the positioning accuracy of GNSS/INS tightly coupled system, and
even destroy its satellite geometry, which is proved and expounded in detail by Xia et al.
(2020). The LOS signal identification method proposed in this paper sufficiently considers
the influence of the four feature parameters on the properties of GNSS signals with higher
reliability.

Furthermore, this paper calculates the RMS of the position error for the above posi-
tioning method, as shown in Table 3. The experimental results show that the positioning
accuracy is 0.63 m in the horizontal direction and as high as 6.50 m in the vertical direction
without multipath/NLOS observation processing (the cut-off elevation angle is set to 15◦).

Table 3. Accuracy comparison of positioning results for different tightly coupled schemes.

Positioning Scheme
RMS/m

E N U 2D

INS/DGNSS (ele ≥ 15◦) 0.33 0.53 6.50 0.63
INS/DGNSS (ele ≥ 0◦) 0.32 2.75 11.57 2.76

INS/DGNSS + K-means (ele ≥ 15◦) 0.37 0.38 0.98 0.53
INS/DGNSS + K-means (ele ≥ 0◦) 0.38 0.38 0.98 0.53

After excluding the multipath/NLOS observations, the GNSS/INS tightly coupled
positioning accuracy is improved by 16% and 85% in the horizontal and vertical directions,
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respectively. The horizontal accuracy reaches 0.53 m, and the vertical accuracy is specially
promoted to within 1 m. It is particularly acknowledged that if using the K-means algorithm
to eliminate multipath and NLOS observations, we do not need to set the cut-off elevation
angle, because the algorithm has taken into account the factor that the low elevation angle is
susceptible to multipath/NLOS signal interference. Additionally, compared to the accuracy
of the positioning result in the horizontal direction, the accuracy in the vertical direction
tends to be substantially promoted as the multipath/NLOS signals are eliminated. This
is because in the harsh urban scenarios, the positioning results in the vertical direction
are more severely affected by multipath/NLOS signals than the positioning results in the
horizontal direction, which is elaborated upon by Sun et al. (2022).

To more clearly show the contribution of K-means clustering to the positioning results,
we implemented GNSS pseudorange double-differenced positioning for the experiments.
Figure 10 shows the comparison of positioning trajectories in several typical real urban
scenarios (skyscrapers and trees), which demonstrates that the results of GNSS/INS tightly
coupled position are significantly better than GNSS. Further, the accuracy of GNSS pseu-
dorange differential positioning has been greatly promoted based on K-means to exclude
multipath/NLOS observations. With the addition of INS observation data, not only the
accuracy of the positioning consequence is further improved, but also possesses better
continuity and availability.
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Figure 10. Comparison of positioning results in typical occlusion environments.

Figures 11 and 12 show the comparison of the number of satellites participating in the
position calculation and the PDOP value before and after excluding the multipath/NLOS
observations, respectively. By comparison, it is known that after excluding satellites,
the number of effective satellites is expected to decrease significantly, which causes the
geometric distribution of satellites to be more deteriorated. This phenomenon indicates that
the experimental environment is relatively harsh, and multipath/NLOS satellites account
for a considerable proportion; yet, despite this, the positioning accuracy has been greatly
ameliorated, which shows that the multipath/NLOS signal detection algorithm in this
paper is effective.
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Figure 12. Comparison of PDOP values before and after excluding multipath/NLOS signals.

3.3. Outliers Detection for Real-Time Positioning

We use offline data for unsupervised learning and training to obtain the signal type
identification rule. This rule is finally used for real-time GNSS observation classification and
position calculation, and we call the real-time observed data—online data. Due to the good
scalability of the K-means algorithm, there is no need for re-supervised learning on offline
data (the labels have been obtained through the above process), but the clustering rules
obtained by training are directly used for real-time detection of signals. Therefore, the above
model is then employed to identify the observation outliers containing multipath/NLOS
signal on the online observation dataset D2 for GNSS/INS real-time positioning. Feeding
new GNSS/INS observations into the classifier, outliers can be obtained in real time. Similar
to the offline system, the accuracy and availability of INS/DGNSS double-differenced
pseudorange positioning results are used to evaluate the performance of anomaly detection
algorithms after excluding multipath/NLOS signals.

Figure 13 indicates the comparison of the number of satellites participating in the
position calculation before and after excluding the multipath/NLOS observations.
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Figure 13. Comparison of the number of satellites for D2 before and after excluding multipath/NLOS
signals.

Figure 14 exhibits the comparison of the 3D position of the vehicle obtained by different
positioning methods, where the red solid line is the ground truth value of the vehicle. From
Figures 4b, 13 and 14, we can see that the observation conditions of the first part of the
epoch of the data set D2 are poor. Multipath/NLOS signals seriously affect the positioning
accuracy, which causes the position result to deviate from the reference value to a large
extent. Without detecting and eliminating multipath/NLOS on the observational data, the
trajectory diagram of the vehicle’s 3D position can even produce spurs. The observation
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circumstance of the subsequent epochs is gradually expanded, and the results obtained
by the two algorithms are close to the reference value. This demonstrates that in urban
complex scenarios, detecting and eliminating multipath/NLOS signals plays an important
role in improving the performance of GNSS/INS integrated real-time positioning.
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Further, this paper calculates the RMS value of the position error of the real-time
positioning of the online dataset, as shown in Table 4. It can be seen that in the urban harsh
scenarios, the K-means clustering algorithm has a better effect on the improvement of the
positioning results. The positioning accuracy of the D2 online dataset is improved by 21%
and 41% in the horizontal and vertical directions, respectively.

Table 4. Accuracy comparison of positioning results for different tightly coupled schemes.

Positioning Scheme
RMS/m

E N U 2D

INS/DGNSS (ele ≥ 15◦) 0.53 0.54 2.79 0.75
INS/DGNSS + K-means (ele ≥ 15◦) 0.53 0.25 1.66 0.59

4. Discussion

Multipath effects and NLOS signals are the main factors restricting the accuracy
and reliability of GNSS/INS positioning, especially in challenging environments such as
urban canyons, shaded trees, etc. Therefore, given the interference of multipath/NLOS
signals, this paper proposes an outliers detection method composed of an offline learning
system and an online learning system for GNSS/INS tightly coupled positioning in urban
areas. We believe that GNSS signals in complex environments are generally divided into
three categories: LOS, multipath, and NLOS signals. Each type of signal has a certain
internal relationship with the four feature parameters of satellite elevation angle, carrier-
to-noise ratio, pseudorange residual, and pseudorange rate consistency. According to
this characteristic, K-means algorithm is used for signal clustering. When the sample is
closest to one of the cluster centers, it is classified into this class. In an offline system, the
K-means clustering algorithm is employed to detect observation outliers and construct
an offline training set with labels, without resorting to 3D building model and external
sensor. On this basis, due to the good scalability of the K-means clustering algorithm, the
above-mentioned model is then utilized to identify multipath/NLOS signals on the online
observation dataset for real-time positioning.
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As can be seen from Figures 11 and 12, after excluding GNSS observation outliers,
the number of satellites participating in the position calculation decreases, and the GDOP
value has generally increased. Yet, despite this, the positioning accuracy has been im-
proved. However, while ensuring the positioning accuracy, the continuity of the dynamic
positioning results is also crucial. Although correct outlier detection and exclusion can
effectively improve the performance of positioning results, it must be admitted that directly
removing abnormal observations will reduce the number of available GNSS satellites and
weaken the satellite geometric distribution. This will reduce the positioning performance
to a certain extent, especially when the number of available satellites is small. Therefore, it
is not advisable to blindly pursue positioning accuracy and lose a large number of original
valid epochs, but there will certainly be more space for optimizing signal selection when
the available GNSS constellations are enough.

Unfortunately, although this paper has made some meaningful explorations in multi-
path/NLOS detection and elimination, the above research work still needs to be further
improved because of the complexity of multipath/NLOS signals, for example, using more
GNSS/INS observation data to establish offline label datasets, so that the training set covers
more scenarios and satellite constellations, and improves the generalization ability of the
classification model. In addition, based on different anomaly distribution assumptions, a
more suitable detection method for observation outliers is pursued under the condition of
ensuring positioning accuracy. We have also made preparations for this and will further
study it in the future.

5. Conclusions

GNSS/INS integrated navigation possesses excellent characteristics so that it plays
a significant role in vehicle positioning requirements. However, the performance of
GNSS/INS integration suffers from excessive unexpected GNSS outliers such as mul-
tipath/NLOS signal in dense urban areas.

This paper put forward an urban vehicle GNSS multipath/NLOS observation detec-
tion algorithm based on K-means clustering, which can effectively promote the accuracy of
GNSS/INS tightly coupled positioning results. The method is essentially an offline learn-
ing system that can be used for post-processing solution of GNSS/INS observation data.
Simultaneously, we employ K-means to detect observation outliers and obtain LOS/NLOS
classification rules, which can be further broadened to GNSS/INS integrated navigation ve-
hicle position in real-time. The proposed method obtains the signal type label by sufficiently
excavating the information of the GNSS observation data itself, without the assistance of
external software and hardware. Based on the good scalability of the K-means clustering
algorithm, the above model is used to identify the multipath/NLOS of online observation
data for real-time positioning. As a result, it can effectively enhance the performance of
GNSS/INS tightly coupled system with higher availability and environmental adaptability.

In future work, we will continue to research the influence of the GNSS signal dis-
tribution pattern in different scenarios and test data on the positioning performance of
GNSS/INS tightly coupled system, and study a more robust outlier boundary determina-
tion rule. Additionally, when the number of visible satellites is relatively small, simply
excluding the multipath/NLOS signal will deteriorate the satellite geometric distribution,
which reduces the positioning accuracy or even fails to execute the positioning solution.
Therefore, in future research, we will further consider reasonable multipath/NLOS pro-
cessing strategies, such as optimizing the stochastic model of the observation equation [45].

Author Contributions: H.W. conceived the idea and designed the experiments with S.P. and W.G.,
H.W. and S.P. wrote the main manuscript. Y.X. reviewed the paper. C.M. collected GNSS/INS dynamic
observation by vehicle. All components of this research were carried out under the supervision of
H.W. All authors have read and agreed to the published version of the manuscript.



Micromachines 2022, 13, 1128 18 of 19

Funding: This work is partially supported by the National Key Research and Development Program
of China (Grant No. 2021YFB3900804) and the Research Fund of Ministry of Education of China and
China Mobile (Grant No. MCM20200J01).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We would like to thank everyone who contributed to this research, including
data collection, manuscript review and project support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. BJanis, J.P.; Jones, M.R.; Quackenbush, N.F. Benefits of operating multiple atomic frequency standards for GNSS satellites. GPS

Solut. 2021, 25, 141.
2. Wang, Z.; Xia, Y.; Li, J.; Wu, Q. A new method of integer parameter estimation in linear models with applications to GNSS high

precision positioning. IEEE Trans. Signal Process. 2021, 69, 4567–4579. [CrossRef]
3. Chen, Q.; Zhang, Q.; Niu, X. Estimate the pitch and heading mounting angles of the IMU for land vehicular GNSS/INS in-tegrated

system. IEEE Trans. Intell. Transp. Syst. 2020, 22, 6503–6515. [CrossRef]
4. Kim, L.; Lee, Y.; Lee, H.K. Kalman–Hatch dual-filter integrating global navigation satellite system/inertial navigation sys-tem/on-

board diagnostics/altimeter for precise positioning in urban canyons. IET Radar Sonar Navig. 2022, 16, 379–397. [CrossRef]
5. Li, Z.; Liu, Z.; Zhao, L. Improved robust Kalman filter for state model errors in GNSS-PPP/MEMS-IMU double state inte-grated

navigation. Adv. Space Res. 2021, 67, 3156–3168. [CrossRef]
6. Shen, C.; Zhang, Y.; Tang, J.; Cao, H.; Liu, J. Dual-optimization for a MEMS-INS/GPS system during GPS outages based on the

cubature Kalman filter and neural networks. Mech. Syst. Signal Process. 2019, 133, 106222. [CrossRef]
7. Balsa-Barreiro, J.; Valero-Mora, P.M.; Pareja-Montoro, I.; Sánchez-García, M. Proposal of geographic information systems

methodology for quality control procedures of data obtained in naturalistic driving studies. IET Intell. Transp. Syst. 2015, 9,
673–682. [CrossRef]

8. Chen, K.; Chang, G.; Chen, C. GINav: A MATLAB-based software for the data processing and analysis of a GNSS/INS inte-grated
navigation system. GPS Solut. 2021, 25, 108. [CrossRef]

9. Liao, J.; Li, X.; Wang, X.; Li, S.; Wang, H. Enhancing navigation performance through visual-inertial odometry in GNSS-degraded
environment. GPS Solut. 2021, 25, 50. [CrossRef]
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