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Abstract: Increasing information capacity is significant for high-speed communication systems in
a congested radio frequency sequence. Vortex waves carrying mode orthogonal orbital angular
momentum (OAM) have gained considerable attention in recent years, owing to their multiplexing
quality. In this study, a broadband Pancharatnam–Berry (PB) metasurface element with a simple
structure is proposed, which exhibits an efficient reflection of the co-polarized component and a full
2π phase variation in 10.5–21.5 GHz under circularly polarized wave incidence. By convolution and
addition operations, the elaborate phase distribution is arranged and the corresponding metasurface-
reflecting dual-mode asymmetric dual-OAM waves is constructed. Under continuous control of the
working frequency, the OAM vortex beams with the topological charges 1 and −1 are steered to
scan within the angle range of 11.9◦–24.9◦ and 17.9◦–39.1◦ at ϕ = 315◦ and 135◦ planes, respectively.
The simulation and measurement results verified the feasibility of generating frequency-controlled
asymmetric dual beams and the validity of dual-mode OAM characteristics, both in the near and
far fields. This design approach has considerable potential in OAM wave multiplexing and wireless
communication system transmission.

Keywords: microwave passive metasurface; vortex beam; orbital angular momentum; broadband;
Pancharatnam–Berry phase; frequency scanning; wave manipulation

1. Introduction

Boosting information capacity is important for high-speed and -capacity wireless
communication, especially in the congested radio frequency (RF) sequence. Angular
momentum is one of the natural characteristics of electromagnetic (EM) waves, which
consist of spin angular momentum (SAM) and orbital angular momentum (OAM) [1].
Vortex EM waves carrying OAM have hollow annular intensity profiles and a helical
phase wavefront of exp(ilθ), where l is the topological charge and θ is the azimuthal
angle. Integer l is theoretically infinite, and OAM beams with different modes of l are
mutually orthogonal and independent, which offer additional degrees of freedom for
EM wave spatial multiplexing and for tremendously enriching the dimensions of the
communication system [2,3]. Owing to the properties of superposition and decomposition
from RF to visible [4–8], OAM waves have reaped considerable attention and investigation
in optical modulation [4,5], wireless communication [6], radar imaging [7], and other fields
of research since their discovery in 1992 [9]. In the microwave domain [10–13], antenna
array [11], traveling-wave antennae [12], and spiral phase reflectors [13] have been explored
to generate OAM waves for information multiplexing in the hope of simultaneously
improving spectrum utilization and communication transmission capabilities.

The metasurface resembles a two-dimensional artificial EM structure arranged by
subwavelength elements. With a delicate modulation ability for the amplitude, phase, and
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polarization of EM waves, the metasurface shows great potential in new system communi-
cation [14], EM stealth [15–17], holography [18], and other EM applications [19–26]. It not
only displays the advantages of small weight, a low profile, and easy fabrication, but also
builds the feasibility for the mode multiplexing of OAM beams. Recently, metasurfaces
have been reported to engender microwave vortex beams to reduce the complexity of
the typical method for design and fabrication [27,28]. Through varying the structural
parameters of the elements to manipulate the desired phase of the scattering field, plentiful
OAM beam generators have been proposed under the irradiation of linearly polarized
waves [28–30]. However, this approach makes it difficult to achieve the intended func-
tion within the broadband. This limitation has been overcome by the introduction of the
Pancharatnam–Berry (PB) phase theory, where the local phase response is twice the spatial
rotation angle in the meta-atom plane with a circularly polarized (CP) wave incidence, and
without geometrical size modification. Consequently, many PB metasurfaces have been
configurated to create vortex waves in the microwave domain, and they enjoy wideband
and high-efficiency characteristics [31–33].

In the OAM wave generation studies mentioned above, most beams were aimed
at a normal direction or generated the same wave mode. Because of spatial isolation,
multiple beams could provide multiplexing channels for data transmission. Using cross-
polarized incidence [34], aperture field superposition [35], and a metasurface array [36],
several efforts have been applied to create metasurface-enabled multi-mode multiple OAM
beams. In addition, a convolution operation [37] on coding metasurfaces for scattering field
transform has been recently proposed by Liu, which can deflect the beam to an arbitrary
direction. Combined with Wu’s phase addition theory [38], multifunction beamforming
can be concurrently achieved. Following this route, multibeam multimode OAM wave
generators can be acquired with improved flexibility and reduced design difficulty, further
elevating the OAM space-division multiplexing capability.

In this paper, we present a single-layer wideband PB metasurface. Under CP plane-
wave incidence, its co-polarized reflection coefficient exceeded 0.95, and a 0–2π continuous
phase change was obtained in 10.5–21.5 GHz (68.8%). Further, 32 × 32 meta-atoms were
arranged according to the tailored phase distribution to generate OAM waves with topolog-
ical charges of 1 and −1, where the two asymmetric vortex beams were steered to ϕ = 315◦

and 135◦ planes, and were scanned at the angle ranges of 11.9◦–24.9◦ and 17.9◦–39.1◦ ma-
nipulated by frequencies, respectively. The schematic diagram of the proposed frequency-
scanning metasurface is shown in Figure 1. The simulations and experiments revealed that
the frequency-controlled dual-mode dual-OAM beams had good performance at both near
and far fields. This proposed design has great potential to enhance the capability of OAM
wave multiplexing and wireless communication system transmission.
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Figure 1. Schematic diagram of the proposed frequency scanning dual-mode asymmetric dual-OAM-
wave metasurface.
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2. Design and Method
2.1. Design of the Broadband PB Meta-Atom

Figure 2a,b display the schematic and front view of the suggested PB metasurface
unit cell, which includes a dielectric substrate in the middle, metallic resonator printed
on the top, and reflective ground backed by the bottom. The dielectric substrate was F4B
(εr = 2.2 and tanδ = 0.0009), the thickness of which was h = 3.4 mm. The meta-atom had
a period of p = 8 mm, and the other optimized structural sizes are listed as l1 = 6.3 mm,
l2 = 3.8 mm, l3 = 1.5 mm, w = 0.3 mm, and β = 60◦. With the metallic patch rotating angle
of αr, the entire 2π geometric phase regulation was performed with high efficiency under
the illumination of CP plane waves.
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It was practical to utilize the reflected Jones matrix to evaluate the incident and
scattered fields for a rotated anisotropic meta-atom. For the CP wave illumination, the
reflection coefficients can be explicated as [32,39]

RCP =

[
r−− r−+
r+− r++

]
=

1
2

[
(rxx − ryy)e−j2α + j(rxy + ryx)e−j2α (rxx + ryy) + j(rxy − ryx)
(rxx + ryy)− j(rxy − ryx) (rxx − ryy)ej2α − j(rxy + ryx)ej2α

]
(1)

where rxx, ryy, r−−, and r++ represent the co-polarized reflection coefficients of EM prop-
agation under x-polarized, y-polarized, left-hand circularly polarized (LHCP, −), and
right-hand circularly polarized (RHCP, +) normal incidences, respectively, while ryx, rxy,
r+−, and r−+ are the interrelated cross-polarized reflection coefficients. r−− and r++ hold
the Pancharatnam–Berry (PB) phase, which is numerically twice the spin angle. An abrupt
phase variation of e−j2α (ej2α) from the main diagonal elements was introduced by rotating
the meta-atom with an angle of αr.

The numerical simulation of the presented meta-atom was implemented with CST
Microwave Studio with unit cell boundary conditions. Figure 3a shows that the amplitudes
of co-polarized reflection coefficients r++ remained greater than 0.95 across the broad fre-
quency band of 7.5–21.5 GHz, whereas the cross-polarized ones were restrained. However,
for RHCP incidence, the polarization conversion rate (PCR) of the co-polarization reflection
revealed polarization conversion efficiency, and it can be written as PCR = r++

2/(r++
2 +

r−+
2). As shown in Figure 3a, the magnitude of the PCR in the wide band was always

higher than 0.9, indicating that the unit cell had a high-efficiency conversion ability. In the
shaded area of Figure 3b, for various rotation angles, the phase responses kept parallel, as
expected, and the co-polarized reflection amplitudes all exceeded 0.95, where the relative
phase change was precisely twice the rotating degree. Therefore, the range of 10.5–21.5 GHz
(68.8%) was determined to be the effective operating band, which makes the meta-atom
an outstanding candidate for the assembled metasurface with high-performance phase
modulation features.
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Figure 3. Simulation results of the proposed PB meta-atom. (a) Reflection coefficient and PCR of r++.
(b) The magnitude and phase of r++ at different rotating angles.

2.2. Design of Frequency Scanning Dual-Mode OAM Vortex Beams

Based on the suggested PB meta-atom, the deflected dual-mode OAM vortex beams
were visualized in a wide frequency band via an elaborately designed phase distribution.

First, the vortex beam function was generated by establishing a spiral phase profile, and
the desired phase shift of each element position (x, y) needed to satisfy the relationship as

Φl(x, y) = l · arctan
( y

x

)
(2)

where l is the topological charge. As Figure 4a,e show, the phase profiles of l = 1 and −1
had opposite clock directions.

Second, following the generalized Snell’s law, the reflected deviation angle θ from the
+z-axis for the EM wave normal incident was [40]

θ = arcsin
(

λ

Γ

)
= arcsin

(
2πc
f · Γ

)
(3)

where f is the frequency of the EM wave and λ is the corresponding wavelength in free
space. Γ denotes the period of a constant phase gradient sequence. Once the period length
was fixed, the deflection angle was interpreted as being related to the operating frequency.
This is the key to the beam deviation with frequency in this study.

In addition, the electric field distribution of the sequence pattern on the phase modu-
lation metasurface and the scattering mode in the far field were Fourier transform pairs;
therefore, the scattering mode displacement principle can be described with the following
convolution operation found in [37,41]:

F(xλ) · ejxλ sin θ0 FFT⇔ F(sin θ) ∗ δ(sin θ − sin θ0) = F(sin θ − sin θ0) (4)

where F(xλ) is an arbitrary sequence pattern, ejxλsinθ0 describes a periodic discontinuous
phase gradient along a certain direction, and F(sinθ − sinθ0) can be explained as the
original scattering pattern of F(sinθ) deviating to sinθ0. When two orthogonal periodic
phase gradient sequences were subjected to the operating mechanism, the elevation angle
θr and azimuth angle ϕr were calculated as

θr = arcsin
(√

sin2 θ1 ± sin2 θ2

)
(5)

ϕr = arctan(sin θ2/ sin θ1) (6)
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in which θ1 and θ2 are the deviation angles along the x- and y-axes, respectively. In
Figure 4b,c, constant phase gradient sequences orient to +x- and -y-directions, the period
Γ1 of which were both determined to be 96 mm. After the convolution operation of the
three phase profiles in the first row of Figure 4, the OAM vortex wave with the topological
charge l = 1 was deflected to azimuth ϕr1 = 315◦. The beam scanned within the elevation
angle θr1 range of 11.9◦–24.9◦, controlled by the working frequencies (10.5–21.5 GHz) as
Equations (2), (3), (5) and (6) calculated. Similarly, in the second row, after the phase profile
of the topological charge l = −1 was mixed with the phase sequences with a period of
Γ2 = 64 mm along the −x and +y axes, the vortex beam skewed to azimuth ϕr2 = 135◦, and
the frequency-controlled scanning elevation θr2 range was 17.9◦–39.1◦.
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Figure 4. Phase distribution and rotating angles. (a) Phase profile Φl = 1 of OAM vortex generation
with topological charge l = 1. Phase gradient sequences (b) Φ +x and (c) Φ −y orientating to +x- and
−y-directions with period Γ = 96 mm. (c) Phase profile Φ1 by the convolution operation. (d) Phase
profile Φ1 by the convolution operation. (e) Phase profile Φl = −1 of OAM vortex generation with
topological charge l = −1. Phase gradient sequences (f) Φ −x and (g) Φ +y orientating to −x and +y
directions with period Γ = 64 mm. (h) Phase profile Φ2 by the convolution operation. (i) Φ1. (j) Φ2.
(k) Phase profile Φ0 by complex addition of Φ1 and Φ2. (l) Rotating angles αr of the metallic patch.

Furthermore, the addition theorem in complex form combines two different phase
profiles of ejΦ with different functions, and the added pattern directly motivates the two
functions simultaneously without any perturbations [38]:

ejΦ1(x,y) · ejΦ2(x,y) = ejΦ0(x,y) (7)

where ejΦ0(x,y) is the phase distribution on the multifunction metasurface after a complex
addition operation. According to the superposed phase pattern in Figure 4k, the metallic
patch rotating angles αr were thereupon calculated, as shown in Figure 4l, and a 32 × 32
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metasurface was constructed by the wideband PB meta-atom. Under the irradiation of the
CP plane wave, it concurrently steered two asymmetric OAM vortex beams to separate
directions with different modes, which continuously scanned in different angles following
the frequency variation.

3. Results and Discussion
3.1. Simulation Results

From the frequency range of 10.5 to 21.5 GHz, the full-wave simulations were carried
out by CST Studio Suite to detect the generation of frequency-controlled dual-mode vortex
waves. Figure 5 shows the far- and near-field simulated results at 11, 13, 15, 17, 19, and
21 GHz under RHCP plane wave incidence.
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Figure 5. Simulated results at different frequencies. The far-field normalized 3D scattering pattern
and corresponding phase in (a) upper half space, (b) fourth quadrant space, and (c) second quadrant
space of the metasurface. The near-field amplitude of vortex wave with OAM mode (d) l = 1 in fourth
quadrant space and (e) l = −1 in second quadrant space. The near-field phase of vortex wave with
OAM mode (f) l = 1 in fourth quadrant space and (g) l = −1 in second quadrant space.
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Figure 5a shows the normalized 3D far-field scattering pattern of the co-polarization
component. As the frequency increased, the asymmetric vortex dual beams were steered
to different directions and gradually approached the normal in the ϕ = 315◦ (135◦) plane,
while the divergence angle of the beams decreased, which is exactly the result predicted by
phase calculation. In addition, as shown in Figure 5b,c, the hollow amplitude and ringed
intensity distribution were aimed at their respective directions at different frequency points.
The 2π phase profiles with opposite helixes were obtained from the two beams, revealing
that the OAM waves had topological charges of l = 1 and −1 in the fourth and second
quadrant spaces, respectively.

Meanwhile, twelve 300 × 300 mm2 near-field observation planes were 500 mm away
from the metasurface center and perpendicular to the beam directions at six frequency
points. The sampled electric field component showed a donut-like amplitude at the central
area across the wideband in Figure 5d,e. Clear spiral phase distributions with OAM orders
of 1 and −1 at all frequencies can be observed in Figure 5f,g. At high frequencies, the
incomplete ring intensity was due to the small beam deviation causing the reflected cross-
polarization component in the normal to affect the OAM wave of the RHCP. Consequently,
the gradually variational intensity null and phase singularity kept in line with the far-
field pattern at different frequencies, which showed the generation of the asymmetric
OAM-carrying vortex EM waves.

3.2. Experiment Results

To verify the intended performance of the metasurface, a prototype was fabricated
using printed circuit board (PCB) technology, which is displayed in Figure 6a. The mea-
surement was carried out in a microwave anechoic chamber, while the prototype and a
circularly polarized horn antenna (HD-80180, 8–18 GHz) were fixed on a foam turntable
with a distance of 1500 mm. Due to the bandwidth limitation of the transmitting antenna,
the vector network analyzer (Anritsu MS4644A) recorded the far-field scattering pattern
from 10.5–18 GHz. For the near-field test, the sample was rotated so that the RF coaxial
cables could scan a plane perpendicular to the beams. The far- and near-field testing
environments are shown in Figure 6b,c.

As can be seen from the 1D pattern of ϕ = 315◦ in Figure 7a, the features of the beam
hollow outline in the experimental results were in agreement with the simulation. At each
frequency point, the two beams pointed exactly at the precalculated angle, with acceptable
side lobes. Moreover, after the decomposition of the electric field, the near-field amplitude
and phase characteristics of the extracted RHCP displayed in Figure 7b,c matched the
former. The distinct energy fall and phase profile, winding by ±2π in the central zone of
the electric fields, appeared as expected in the operating band, verifying the generation of
vortex waves carrying OAM modes of l = 1 and −1. The non-uniform color lump of the
near-field result was related to the difference in the sampling distance. In this test, errors
may have been caused by the mounting alignment, manufacturing process, and nonideal
excitation source.

In addition, for the quantitative analysis of OAM waves, with the phase singularity of
the vortex beam as the center of the circle, its mode decomposition was implemented with
the Fourier transform as follows [42]:

Al =
1

2π

∫ 2π

0
ψ(ϕ)e−jlϕdϕ (8)

ψ(ϕ) = ∑
l

Alejlϕ (9)

in which Ψ(ϕ) is the RHCP component electric field on the circumference with the beam
direction as the axis, and Al denotes the spectrum weight corresponding to each topological
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charge. Here, the OAM modes from l = −3 to 3 are advised, and the mode purity of the
OAM mode l is interpreted as

Purity =
A2

l
3
∑

l′=−3
A2

l′

(10)

As depicted in Figure 7d, the experimentally measured mode purity of l = 1 and −1
at different frequencies in the second and fourth quadrant spaces were both around 80%,
which demonstrated the effectiveness of the dual-mode OAM beams. The mode purity
value for OAM mode l = 1 was less than that for mode l = −1, which was due to the
energy of the RHCP vortex wave near the normal direction being dispersed by the reflected
cross-polarization wave.
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Figure 6. Photograph and testing environment. (a) The photograph of the manufactured metasurface.
(b) Far-field testing environment. (c) Near-field testing environment.



Micromachines 2022, 13, 1117 9 of 11

Micromachines 2022, 13, x FOR PEER REVIEW 8 of 11 
 

 

  

(b) (c) 

Figure 6. Photograph and testing environment. (a) The photograph of the manufactured metasur-

face. (b) Far-field testing environment. (c) Near-field testing environment. 

As can be seen from the 1D pattern of φ = 315° in Figure 7a, the features of the beam 

hollow outline in the experimental results were in agreement with the simulation. At each 

frequency point, the two beams pointed exactly at the precalculated angle, with acceptable 

side lobes. Moreover, after the decomposition of the electric field, the near-field amplitude 

and phase characteristics of the extracted RHCP displayed in Figure 7b,c matched the for-

mer. The distinct energy fall and phase profile, winding by ±2π in the central zone of the 

electric fields, appeared as expected in the operating band, verifying the generation of 

vortex waves carrying OAM modes of l = 1 and −1. The non-uniform color lump of the 

near-field result was related to the difference in the sampling distance. In this test, errors 

may have been caused by the mounting alignment, manufacturing process, and nonideal 

excitation source. 

 

Figure 7. Experimental results at different frequencies. (a) Far-field normalized 1D scattering pat-

tern at a φ = 315° plane. Near-field amplitude and phase of vortex wave with OAM mode (b) l = 1 

Received antenna

Metasurface

max

min

π

-π

l= 1

l=-1

@11GHz @13GHz @17GHz@15GHz

0
dB

-10

-20

-30

-4090

60

0

-90

-60

Theta(degree)

-37.1
23.7

90

60

0

-90

-60

Theta(degree)

-30.1
19.9

90

60

30
0

-90

-60

Theta(degree)

-26.2
17.1

90

60

30
0

-90

-60

Theta(degree)

-23.0 15.1Sim.

Mea.

(a)

(b)

(d)

(c)

Figure 7. Experimental results at different frequencies. (a) Far-field normalized 1D scattering pattern
at a ϕ = 315◦ plane. Near-field amplitude and phase of vortex wave with OAM mode (b) l = 1 in
fourth quadrant space and (c) l = −1 in second quadrant space. (d) The purity of the OAM mode
with different topological charges.

4. Conclusions

An efficient broadband PB metasurface element is proposed, which can achieve a
high co-polarized reflection amplitude and a continuous phase gradient of 0–2π under the
illumination of CP plane waves. According to the phase design, metasurface-reflecting
dual-mode asymmetric dual-OAM waves were aligned. Under the continuous modulation
of frequency (10.5–21.5 GHz), the OAM waves with the mode of 1 and−1 were motivated in
ϕ = 315◦ and 135◦ planes, scanning at the angles of 11.9◦–24.9◦ and 17.9◦–39.1◦, respectively.
The feasibility of generating frequency-controlled asymmetric dual beams and the validity
of dual-mode OAM characteristics were confirmed by simulated and experimental results
of the near and far fields. This is likely the first proposed design strategy using a passive
metasurface to generate a frequency scanning dual-mode dual-OAM wave. On the one
hand, associated with the leaky wave metasurface, it can vary the period length to improve
the frequency scanning efficiency and facilitate information transmission. On the other
hand, the addition operation of complex phases has great potential for expanding passive
metasurface functionality and boosting channel multiplexing capabilities.
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