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Abstract: This paper studies modifications made to the Bosanquet equation in order to fit the
experimental observations of the liquid filling process in circular tubes that occurs by capillary force.
It is reported that there is a significant difference between experimental observations and the results
predicted by the Bosanquet equation; hence, it is reasonable to investigate these differences intensively.
Here, we modified the Bosanquet equation such that it could consider more factors that contribute to
the filling process. First, we introduced the air flowing out of the tube as the liquid inflow. Next, we
considered the increase in hydraulic resistance due to the surface roughness of the inner tube. Finally,
we further considered the advancing contact angle, which varies during the filling process. When
these three factors were included, the modified Bosanquet equation was well correlated with the
experimental results, and the R square—which indicates the fitting quality between the simulation
and the experiment—significantly increased to above 0.99.

Keywords: capillarity; filling process; Bosanquet equation; model modifications

1. Introduction

In microfluidics, one of the most interesting phenomena is the capillarity. Due to
the small sizes of components, generally in the sub millimeter or even smaller scale, the
capillarity is very strong and is widely employed in various applications, such as capillary
pumps [1–3] and valves [4–7], gas debubbling [8], and other applications [9]. Differently
to external operations based on instruments, the capillarity is an inherent phenomenon
of liquids and can be employed independently. Moreover, it can cooperate with external
operations to fulfill various tasks if its features are fully utilized. Due to its importance and
contributions, it must be well studied and evaluated in microfluidic flow manipulations,
controls, and chip designs.

One famous capillary phenomenon is the self-filling process of liquids in tubes. If the
tube is vertically positioned, the liquid will climb up through the tube to a certain height [10]
and then stop, and the height can be used to calculate the static contact angle of the liquid.
For a horizontally positioned tube, the liquid will fill continually up to the end of the tube.
Equations have been developed to describe such filling processes. The Lucas–Washburn
equation expresses the filling process without consideration of the liquid density, and it has
the disadvantage that the initial speed of the liquid flow is infinitely large. The Bosanquet
equation includes the liquid density, and its initial speed decreases to a finite value [11],
but it is still restricted in the physical sense that the initial acceleration of the liquid flow is
infinitely large. Moreover, it has been found that there are significant differences between
experimental observations and the Bosanquet equation [11]. Some modifications of the
Boltzmann equation are necessary for better correlations with experimental data.

This paper addresses the modification of the Bosanquet equation so that it can fit
experimental data significantly better. First, the gas in the tube is considered; when the
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liquid is filling the tube, the gas inside is pushed out, which will cause some hydraulic
resistance to the liquid. Next, the surface roughness inside the tube will produce extra
hydraulic resistance [12], which will make the filling speed slower. Finally, since the
advancing contact angle changes during the filling process [13], a variable advancing
contact angle is introduced. Differential equations considering these factors are developed,
and the fourth order of the Runge–Kutta method is employed to solve the equations
numerically. The contributions of the factors in the liquid filling process are discussed in
detail.

2. Materials and Methods

The Bosanquet equation comes from the following differential equation that governs
the liquid filling process in a circular channel by capillary force [11]:

ρ
d(lu)

dt
+ RAl

dl
dt

=
γpcosθ

A
(1)

where ρ, γ, and θ are the liquid density, the surface tension, and the advancing contact angle,
respectively, and p and A are the channel’s cross-sectional perimeter and area, respectively.
The advancing contact angle is used because the liquid is moving, and the advancing
contact angle is usually larger than the static contact angle in the hydrophilic channel, and
l and u are the liquid filling distance and speed, respectively. Here, R is defined as the
normalized hydraulic resistance (R = 128µ/

(
πd4) for a circular tube), and the hydraulic

resistance of the channel is Rl. Table 1 lists the terms and definitions for convenience. By
solving the differential equation with the boundary conditions:

lim
t→0

l = lim
t→0

lu = 0 (2)

Table 1. Terms and definitions.

A Cross-sectional area of channel (m2)

Ca Capillary number µu/γ (no unit)

d Diameter of circular channel (m)

l Liquid filling distance (m)

L Channel length (m)

p Cross-sectional perimeter of channel (m)

R Normalized hydraulic resistance of liquid (Pa.s/m4)

Rg Normalized hydraulic resistance of gas (Pa.s/m4)

t Filling time (s)

u Filling velocity (m/s)

α Surface roughness contribution α ≥ 1 (no unit)

ρ Liquid density (kg/m3)

ρg Gas density (kg/m3)

θ Advancing contact angle (rad)

θ0 Static contact angle (rad)

µ Viscosity coefficient of liquid (Pa.s)

µg Viscosity coefficient of gas (Pa.s)

γ Surface tension of liquid (N/m)
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The Bosanquet equation is obtained as:

l =
1
2

√
dσcosθ

µ

√
t− ρd2

32µ

(
1− e

− 32µ

ρd2 t
)

(3)

It was interesting to find that the initial speed lim
t→0

u =
√

pγcosθ/(Aρ). This meant

that the liquid’s acceleration was infinitely large at t = 0, which conflicted with the common-
sense principles of physics. To solve this singularity problem, we introduced the gas flow in
the tube. As the liquid fills the tube, the gas inside the tube will flow out, and we suppose
that the speed of the liquid filling is the same as the gas flowing out, as illustrated in
Figure 1. Moreover, the surface roughness of the inner tube is expected to generate a larger
pressure drop than the case of a smooth tube [12]; hence, the surface roughness effect was
considered here. Furthermore, the advancing contact angle varies with the filling speed,
and this variation should be considered. As a result, Equation (1) could be modified as:

ρ
d(lu)

dt
+ ρg

d((L− l)u)
dt

+ αRAl
dl
dt

+ Rg A(L− l)
dl
dt

=
γpcosθ

A
(4)
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Figure 1. Liquid filling process in a circular channel. When a liquid enters the channel, the gas inside
is pushed out.

Here, the parameter α is related to the surface roughness without units, and α ≥ 1.
When α = 1, this means that the surface roughness is not considered. The subscript g
refers to the gas. The term Rg A(L− l)dl/dt is for the hydraulic resistance of gas, and the
term ρgd((L− l)u)/dt considers the gas density effect in the gas flow. At first, we took the
advancing contact angle as a fixed value. By integrating Equation (4), we obtained:

(
ρ− ρg

)
lu +

αR− Rg

2
Al2 + ρgLu + Rg ALl =

γpcosθ

A
t (5)

Determining the limit by Equation (5):

lim
t→0

[(
ρ− ρg

)
lu +

αR− Rg

2
Al2 + ρgLu + Rg ALl

]
= lim

t→0

γpcosθ

A
t = 0 (6)

We know that liml
t→0

= 0 and ρgL > 0; so, limu
t→0

= 0. Therefore, the singularity problem

is solved by the introduction of gas flowing out of the tube.
Since there is no analytical solution of Equation (5) in which u = dl/dt, a numerical

method based on the fourth order of the Runge–Kutta method was used. We also employed
the same dynamic contact angle values used in [11], which were fixed at 85◦ for the case of
a 0.5 mm diameter and 83◦ for the case of a 1.15 mm diameter in that paper. The simulation
results and their comparisons with the experimental results are presented in the next
section.
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Next, we considered the variation in the advancing contact angle and solved Equa-
tion (4) directly. It is reported that the advancing contact angle can be expressed as [13]:

cosθ = cosθ0 − 2(1 + cosθ0)
√

Ca (7)

where θ0 is the static contact angle and Ca = µu/γ is the capillary number. The static contact
angle can be obtained by measuring the height rise in the vertical tube,
θ0 = cos−1(dhρg/(4γ)). The height rises were 9.3 mm and 4.9 mm in the tubes with
0.5 and 1.15 mm diameters, respectively; hence, their related static contact angles were
approximately 81◦ and 79◦, respectively, using the parameters in Table 2—which were ob-
tained from websites using the experimental temperature of 23 ◦C. Submitting Equation (7)
into Equation (4), it gave:

(
ρ− ρg

)d(lu)
dt

+
(
αR− Rg

)
Al

dl
dt

+ ρgL
du
dt

+ Rg AL
dl
dt

=
γp
A

(
cosθ0 − 2(1 + cosθ0)

√
µ

γ

√
u
)

(8)

Table 2. Water and air properties at a lab temperature of 23 ◦C.

Liquid (Water) Gas (Air)

Density (kg/m3) 997.1 1.192

Viscosity (Pa.s) 0.9096 × 10−3 1.835 × 10−5

Surface tension (N/m) 0.0723 NA

Static contact angle (◦)
81 (Figures 2a, 4a and 5a)

NA
79 (Figures 2b, 4b and 5b)

From Equation (7), it can be observed that the advancing contact angle is proportional
to the liquid flowing speed. At the beginning stage of filling, the liquid speed is higher;
hence, the advancing contact angle is larger. As time goes on, the filling speed will be
slower and slower, which indicates that the advancing contact angle will reduce accordingly.
By solving Equation (8) directly using the fourth order of the Runge–Kutta method, the
filling characteristics can be obtained and are presented in the next section.

3. Experiment and Simulation Comparisons

It has been reported that there are significant differences between experimental data
and the Bosanquet equation [11]—as illustrated in Figure 2, which also includes the latest
simulation results. In the figure, Figure 2a is for a tube 0.5 mm in diameter and 90 mm
in length, while Figure 2b is for a tube 1.15 mm in diameter and 75 mm in length. The
tubes were made of glass, and they were marked at fixed intervals of 5 mm. When the
dyed water passed through each mark, the time was recorded by a handphone video. The
time interval between two continual pictures was 1/30 s. From the pictures, the times
taken to reach all the marks were obtained accordingly. As the shot rate was not high,
experimental data uncertainties existed—especially for the tube 1.15 mm in diameter, in
which the filling speed was significantly faster. Model 1 represents the case in which only
the gas in tube was considered; Model 2 indicates the case in which both the gas in the tube
and the surface roughness of the inner tube were considered, while Model 3 considered
all the gas in the tube, the surface roughness of the inner tube, and the variable advancing
contact angle. The R square, which indicates the curve fitting performance, was also given.
Since the experiment was conducted at a lab temperature of 23 ◦C with water, the property
parameters of water and air at this temperature are listed in Table 2.
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Figure 2. Experiment and simulation comparisons. The data from the experiment and the Bosanquet
equation are from [11] directly; Model 1 considers gas in the tube only, Model 2 considers both the
gas in the tube and the inner tube surface roughness, and Model 3 considers all the gas in the tube,
the inner tube surface roughness, and the variable advancing contact angle. Here, (a) and (b) indicate
tubes 0.5 and 1.15 mm in diameter, respectively.

In Figure 2a, it can be observed that the Bosanquet equation was significantly higher
than the experimental data, and that the R square was only 0.8889. By introducing the gas
in the tube, the differences were smaller, and the R square increased to 0.9316. When the sur-
face roughness of the tube was considered, the differences were significantly reduced, with
the R square increasing up to 0.9882. Here, the value of α was determined by maximizing
the R square. Figure 3 illustrates the relationship between the R square and α for Model 2.
When α equaled 1.25, the R square obtained its maximum value of 0.9882; this means that
if the hydraulic resistance increases by 25% due to the surface roughness of the inner tube,
Model 2 can fit the experimental data best. Similarly, for the inclusion of the variable of the
advancing contact angle, as illustrated by Model 3, the maximum R square was obtained at
0.9929. It is shown that by modification of the Bosanquet equation, the differences between
the experimental data and the simulation could be significantly reduced. Figure 2b shows
the results from a tube with a larger diameter and shorter length. It can be observed that
the filling speed was much faster than that in Figure 2a, and this was taken account as the
reduction in hydraulic resistance—which is inversely proportional to the fourth order of
the tube diameter—was more significant than the reduction in the capillary pressure, which
was inversely proportional to the tube diameter only. It was found that all the models in
Figure 2b, including the Bosanquet equation, fit the experimental data better than those
in Figure 2a. One explanation is that when the tube size increases, the contribution of the
surface roughness is less [12]; hence, the results are closer to the experimental data. When
α is 1.12, Model 2 will get its maximum R square, which is significantly less than the 1.25
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shown in Figure 3 for Model 2 in Figure 2a. It is interesting to note that the R square in
Model 2 was even larger than that in Model 3. Since the experimental data were obtained
from the handheld cellular phone video (30 shots per second)—and due to the filling speed
in Figure 2b being significantly faster than that in Figure 2a—the experimental data may
not be accurate enough, and it may not be possible to determine which model—Model 2 or
3—is more suitable for Figure 2b. Generally, both Models 2 and 3 had high R squares and
fit the experimental data quite well.

Micromachines 2022, 13, x FOR PEER REVIEW 6 of 10 
 

 

Model 3 surpassed the curve of Model 2 in terms of the filling distance, as illustrated in 
both Figure 2a,b. 

 
Figure 3. R square versus α for Model 2 in Figure 2a. When α = 1, there is no surface roughness 
considered, and it is equivalent to Model 1. When α = 1.25, R square gets its maximum value of 
0.9882. 

From the Bosanquet equation, the initial filling speed of a circular tube is 2 𝛾𝑐𝑜𝑠𝜃 /(𝑑𝜌). By submitting the parameters in Table 2 into the equation, we obtained 
initial filling speeds of 225 and 175 mm/s for tubes of 0.5 and 1.15 mm in diameter, re-
spectively. The initial speeds were also the maximum speeds in the filling processes. 
Here, we are more interested in the speeds of the three simulation models, and Figure 4 
illustrates their results. It is observed that their initial speeds—both in Figure 4a,b—were 
0, which is reasonable from the viewpoint of physics. 

 

Figure 3. R square versus α for Model 2 in Figure 2a. When α = 1, there is no surface roughness
considered, and it is equivalent to Model 1. When α = 1.25, R square gets its maximum value of
0.9882.

At the rear region of the tube in Figure 2, where the filling process ends, it can be
noticed that the filling speed in Model 3 was faster than that in Model 2. As the filling
speed was significantly reduced in the rear region, and the advancing contact angle was
reduced accordingly—as shown by Equation (7)—this made the driving pressure increase,
and hence the reduction in the filling speed was less. As a result, the curve of Model 3
surpassed the curve of Model 2 in terms of the filling distance, as illustrated in both
Figure 2a,b.

From the Bosanquet equation, the initial filling speed of a circular tube is 2
√

γcosθ0/(dρ).
By submitting the parameters in Table 2 into the equation, we obtained initial filling speeds of
225 and 175 mm/s for tubes of 0.5 and 1.15 mm in diameter, respectively. The initial speeds
were also the maximum speeds in the filling processes. Here, we are more interested in the
speeds of the three simulation models, and Figure 4 illustrates their results. It is observed that
their initial speeds—both in Figure 4a,b—were 0, which is reasonable from the viewpoint of
physics.
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In the beginning stage of Figure 4a, the filling speeds of all the models increased very
rapidly. There was little difference between Models 1 and 2, because at the beginning stage
the filling distance was very small; thus, the contribution of the hydraulic resistance was
small too, and the roughness effect on the hydraulic resistance was even smaller. Model 1
obtained its maximum speed of 136.9 mm/s at 1.55 ms, while for Model 2, it was 136 mm/s
at 1.45 ms. The small difference was caused by the hydraulic resistance. For Model 3,
the maximum speed was 114.5 mm/s at 1.05 ms. Since the speed was very high at the
beginning stage, the advancing contact angle was also large, which made the driving
pressure small, and hence the maximum speed was lower and arrived earlier. When the
maximum speeds of the three models are compared with the initial speed of the Bosanquet
equation, they are significantly smaller. At the rear stage, the speed of Model 1 was the
largest, followed by that of Models 3 and 2. Model 1 was the fastest because it did not
have roughness-caused hydraulic resistance. Due to the reduction in speed, the advancing
contact angle also decreased, which made the capillary pressure increase, and thus caused
the speed of Model 3 to be larger than that of Model 2.

For the tube 1.15 mm in diameter, the filling speed is illustrated in Figure 4b. At the
beginning stage, the maximum speeds of Models 1, 2, and 3 were 155.3 mm/s at 3.13 ms,
155 mm/s at 3.12 ms, and 134 mm/s at 2.33 ms, respectively. These values are larger
than those shown in Figure 4a, but the times are delayed. This was mainly caused by
the tube diameter, which made a very large contribution to the hydraulic resistance. For
the Bosanquet equation, the smaller the diameter, the larger the initial speed—which is
opposite to the present simulation results. At the rear stage, it is interesting to find that
the speed of Model 3 was even faster than that of Model 1, which is different from the
results shown in Figure 4a. This can be explained as the surface roughness contribution
on hydraulic resistance being lower due to a larger tube diameter [12]; thus, the increase
in capillary pressure due to the speed reduction could lead to an increase in hydraulic
resistance caused by surface roughness. The contribution of the surface roughness to the
hydraulic resistance can be evaluated by the difference between Model 1 and Model 2, in
which the speed was decreased by approximately 1 mm/s at the rear stage.

Figure 5 illustrates the relationship between the advancing contact angle and time,
which is obtained directly from Equation (7). Due to the rapid increase in the filling speed
at the beginning stage, as illustrated in Figure 4, the advancing contact angle also increased
rapidly. The maximum angles for Figure 5a,b were 86.06◦ at 1.05 ms and 84.66◦ at 2.33 ms,
respectively. Thereafter, the angles decreased quickly and then slowly reduced—just like
the filling speeds in Figure 4. It can be noticed that in Figures 2a and 4a, the advancing
contact angle used in Models 1 and 2 was fixed as 85◦, but for Model 3, the advancing
contact angle is as illustrated by Figure 5a. Since at the rear stage the angle used in Model 3
was smaller than that used in Model 2, it is reasonable that the speed in Model 3 was
faster than that in Model 2 at the rear stage—as illustrated by Figure 4a. For the cases of
Figures 2b and 4b, the advancing contact angle was fixed as 83◦ for Models 1 and 2, while
Model 3 employed the angle shown in Figure 5b, in which at the rear stage the angle was
also smaller than 83◦. This can be used to explain the speed of Model 3 being faster than
that of Model 2 at the rear stage, as illustrated in Figure 4b.
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4. Conclusions

The capillary filling process of liquids was investigated in detail in the present paper.
A previous publication [11] showed that the filling distance predicted by the Bosanquet
equation is significantly larger than that in experimental observations. By modification of
the Bosanquet equation, including considerations of the gas flowing in the tube, hydraulic
resistance increases due to the surface roughness of the inner tube, and the variable advanc-
ing contact angle, the simulation and the experiment were well correlated, with a R square
above 0.99.

The Bosanquet equation has a non-zero initial speed, which is in conflict with common-
sense physics principles, since the initial acceleration of a liquid cannot be infinitely large.
By introducing the concept of the gas flowing inside the tube, such a singularity was
removed, the initial speed became zero, and the filling distance was slightly reduced.
With the inclusion of the surface roughness, the hydraulic resistance increased and the
filling distance was significantly reduced. When the variable advancing contact angle was
considered, the filling speed at the rear stage was larger, due to the advancing contact angle
being less; hence, the capillary pressure as well as the filling speed was larger at that stage.
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Compared with the Bosanquet equation, the modified model is more consistent with
the actual situation of the filling process. Therefore, it is reasonable that the simulation
results are closer to the experimental data.
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