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Abstract: A graphene-based transmission line with independent amplitude and phase variation
capability is proposed. Variation of graphene’s tunable conductivity by an applied DC bias is exploited
in designing an attenuator and a phase shifter. The attenuator and phase shifter are separated from
each other by an interdigitated capacitor to ensure independent control of each section through an
applied DC bias. The phase shifter is designed by optimizing lengths of a tapered line and an open
stub for a maximum variation of input reactance with a change in graphene resistance. The attenuator
is designed by two pairs of grounded vias connected to the transmission line through graphene.
Variation of graphene resistance controls the signal passing through graphene pads into the ground
causing attenuation. An independent variation of 5 dB of attenuation is measured along with an
independent phase variation of 23 degrees in the frequency range of 4 GHz to 4.5 GHz.
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1. Introduction

Graphene has been one of the most used innovative materials in recent years [1,2].
Graphene possess exciting electrical properties, apart from its marvelous mechanical,
thermal and optical characteristics. Graphene’s high carrier mobility, resulting in high
conductance among other semiconductors, makes it suitable for use in a wide variety of
electrical applications [2]. One of the most interesting properties of graphene is its variable
Fermi energy level with a change in charge density.

This variable Fermi energy level causes a variable conductivity, which is very useful
for tunable electrical devices [2]. Conventionally, PIN diodes are used for tunable mi-
crowave devices, but they possess a number of drawbacks including larger size and lack of
integration. Graphene’s scalable nature, ease of integration, optical transparency, smaller
size, higher carrier mobility and higher mechanical strength are some of its distinguishing
properties. Additionally, graphene´s variable resistance ensures a very fast switching, un-
like MEMS-based switches [3–5]. This makes it a better contender for tunable devices. The
variation of conductivity with charge density is valid from frequencies ranging from DC
up to the millimeter waves, covering the entire microwave frequency range [1].

The synthesis of monolayer graphene requires high technological complexity. There-
fore, for the mass scale production of microwave circuitry it is desirable to use multilayered
graphene since it exhibits similar tunable conductive behavior at microwave frequencies [2].
It is even more desirable to use commercially available graphene nanoplatelets, since they
are very cost-effective and their deployment on circuitry is not technologically demanding.

Several attempts have been made to exploit the variable conductivity for designing tun-
able microwave components. Attenuators, phase shifters and antennas based on graphene
have been proposed in a number of works [6–11]. In all of the cases, either the amplitude or
the phase was varied, exploiting the tunable conductive behavior of graphene. In the final
version of the phase shifter in [11], the number of stubs were increased in order to maximize
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the phase variation in a graphene-loaded microstrip line. However, it has been noted that
the variation of both the amplitude and phase is important to the microwave community
for many applications. In quadrature amplitude modulation schemes, the specific variation
of the amplitude and phase of the signal is required, in order to complete a set of points on
a constellation diagram, each representing a specific amplitude and phase [12,13]. In many
beam-forming networks, a specific amplitude and phase is required to excite the individual
elements of the network [14,15].

In this paper, for the first time, both the amplitude and phase variations have been
introduced on the same transmission line by exploiting graphene’s tunable conductive
behavior, unlike only amplitude [7,9,10] or phase [11] variations in previous works. The
transmission line is composed of a phase shifter side and an attenuator side, separated
from each other by an interdigitated capacitor (IDC). The phase shifter side is composed
of a resonating stub and a tapered line connected to grounded vias through graphene
pads. The variation of the conductivity of graphene by the application of a voltage bias
causes a variation in the phase of the signal on the transmission line. The attenuator side is
composed of two pairs of parallel vias, separated from the transmission line by graphene
pads. The variation of graphene’s conductivity causes the signal on the transmission line
to pass through the graphene into the ground, causing an attenuation. Each side can be
independently controlled by a DC bias voltage, resulting in a variation of the amplitude or
the phase of the transmitted signal.

2. Materials and Methods
2.1. Design of the Amplitude Phase Variation Transmission Line

The amplitude-phase variation transmission line is composed of a phase shifter, an
attenuator and an IDC, as shown in the design of the prototype, shown in Figure 1. A block
diagram of the amplitude-phase variation transmission line is shown in Figure 2. A shift in
the graphene’s resistance, Rg1, by an applied DC voltage on the phase shifter side increases
the reactance introduced in the transmission line. This causes a shift in the phase of the
transmitted signal. The lengths of the tapered line and the stub have been optimized for
a maximum input reactance variation and a minimum input resistance variation with a
change in the graphene’s resistance, Rg1 [10]. On the attenuator side, the transmission line
is connected to grounded vias via the graphene pads of resistance Rg. A reduction in the
value of Rg caused by the application of a voltage bias causes an increase in the attenuation
of the transmitted signal. The two sections of the transmission line are separated by the
help of an IDC. This ensures an independent supply of DC voltage to each section.
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Figure 2. Block diagram of the amplitude-phase variation transmission line with the attenuator
coupled to the phase shifter via the IDC. Using different bias voltages, the characteristics of both
components are controlled.

The amplitude-phase variation transmission line was designed on an FR4 dielectric
substrate that has a dielectric constant, εr = 4.38, and a loss tangent, tanδ = 0.02. The
thickness of the dielectric substrate is 1.52 mm. The width of the 50 Ω transmission line
is 2.9 mm. The IDC is designed to block the DC bias voltage supplied to each section,
permitting the RF signal in the frequency band of 3 GHz to 5 GHz.

2.2. Finite Element Modelling

The IDC is composed of seven identical fingers on each side. The width of the fingers
is wd = 0.75 mm and length is Ld = 19 mm. The distance between the fingers is g = 0.25 mm.
On the attenuator side, the length of the transmission line is Lat = 30 mm and the distance
between the graphene pads is Lc = 5 mm. On the phase shifter side, the length of the
transmission line is Lps = 30 mm and the tapered line is Lt = 6 mm. The length of the
stub is Ls = 22.5 mm. The stub is 86 Ω, corresponding to a width of 1 mm. The optimized
values of the lengths of the stub and taper can be found in [8], where a detailed analysis for
maximizing the reactance variation has been performed. In a similar manner, the lengths of
the line sections comprising the attenuator are found in [7].

In order to check the functionality of the IDC and the amplitude-phase variation
transmission line, the simulations were performed with a commercial FEM tool Ansys HFSS.
The simulation results show that the IDC introduces less than 2 dB of the insertion loss in
the system, as shown in Figure 3. This is due to the optimization of the IDC for the least
insertion loss in the operating frequency of the amplitude-phase variation transmission line.

For the simulations involving the graphene, the graphene pads were modelled as
resistive sheets with assigned resistance values in the range of the estimated resistance of
the graphene nanoplatelets. The values of Rg and Rg1 are varied, one at a time, keeping
the other at the maximum in order to evaluate the individual impact of the attenuator and
phase shifter.

The maximum and minimum values of the graphene resistance are expected to be
3000 Ω/� and 800 Ω/� respectively. It can be clearly seen in Figure 4 that, when the
graphene resistance, Rg, pertaining to the attenuator side of the transmission line is varied,
the impact on the amplitude is maximum and that on the phase is negligible. The high
transmission losses are due to the increased number of vias, resulting in total reduced
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graphene resistance since all of the graphene pads are in parallel to each other. The con-
tribution of the IDC to the total transmission is less than 1 dB. Similarly, as reported in
Figure 5, when the graphene resistance, Rg1, pertaining to the phase shifter side of the
transmission line is varied, there is a minimum variation of the amplitude of the signal on
the transmission line and a maximum variation of the phase.
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2.3. Fabrication of the Prototype and Scattering Parameter Measurements

The printed circuit board on which the transmission line is present was fabricated with
the help of a photolithographic process. The pattern of the transmission line structure is
printed with a photoresist on a dual copper-plated dielectric substrate. The unwanted areas
lying outside the structure are etched away by ferrous chloride solution. The graphene
nanoplatelets used in the transmission line were provided by Alfa Aesar GmbH. The
nanoplatelets were characterized by scanning electron microscopy (Tescan Lyra3 FEG)
and atomic force microscopy (JPK nanowizard), to investigate their quality and thickness.
Figure 6 shows the atomic force microscopy characterization of the multilayered graphene.
It can be seen that the flakes in the graphene network are irregularly shaped. In the
measurement of the cross-sectional view of the graphene flake (Figure 6b), it can be seen
that the thickness of the graphene is equivalent to more than two graphene sheets. An SEM
image of the graphene flakes is shown in Figure 7. The measurement was performed with
an acceleration voltage of 5 KV. The sharp edges of the graphene flakes are visible in the
SEM image. It can be further seen that the graphene flakes form a network in the bunch of
the flakes that are to be deposited on the PCB. The graphene nanoplatelets were mixed in
isopropyl alcohol and then drop cast in the designated spots on the transmission line. The
isopropyl alcohol evaporates, leaving behind the graphene nanoplatelets suspended in the
gap, forming a network.
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The measurement setup of the amplitude-phase variation transmission line is shown
in Figure 8. It is composed of a vector network analyzer (Rhode Schwarz ZVA 24) connected
to bias tees and the device under test (DUT). The VNA is calibrated at the ends of the bias
tees, in order to remove any impact of the bias tees on the measurements.
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3. Results

The DUT is placed between the two bias tees. The S-parameters are measured for each
of the DC bias voltage applied through the bias tees on each side of the transmission line.
In this way, the impact of amplitude and phase is individually measured. Table 1 shows the
applied DC voltages, currents drawn and the resistances of the graphene pads. It can be
seen that in both the attenuator and phase shifter, a reduction in the resistance is caused by
an increased supply of a DC voltage. The impact of the variation of the applied DC voltage
on the amplitude of S21 is shown in Figure 9. This value of voltage can be related to the
respective values of current and resistance shown in Table 1. It can be seen that with an
increase in DC voltage, the resistance, Rg, is reduced.

This causes a large portion of the transmission signal to pass through the graphene
into the ground, resulting in attenuation. The maximum variation in |S21| is almost
5 dB, with negligible variation in ∠S21 for the given variation in Rg. Figure 10 shows the
variation of the phase and amplitude of S21 when supplying 0 V to the attenuator side
(Rg = 3100 Ω). In this case, an increase in the DC voltage reduces Rg1, cutting the stub
shorter and reducing the phase of the transmission signal. The total variation in S21 is
almost 23 degrees. The variation in the amplitude in this case is 0.42 dB. This results in
a figure of merit of 54.76 ◦/dB, which is comparable to the current state of the art phase
shifters reported in Table 2 [16]. The frequency bandwidth of the phase shifter presented
here is better than most of the graphene-based phase shifters.

Table 1. Values of the voltage, current and resistance of the attenuator and phase shifter.

Vg (V) Ig (mA) Rg (Ω) Vg1 (V) Ig1 (mA) Rg1 (Ω)

Attenuator

0 - 3100 0 - 3100
10 5 2000 0 - 3100
20 12.5 1600 0 - 3100
25 28 892 0 - 3100

Phase
shifter

0 - 3100 0 - 3100
0 - 3100 10 5 2000
0 - 3100 12.5 8 1562
0 - 3100 15 17 882
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Figure 10. Measurements of the phase shifter mode of the transmission line with Vg = 0 V for all
cases: (a) Amplitude variation; (b) Phase variation.

Table 2. Comparison of the phase shifter performance with state of the art phase shifters.

Technology Frequency (GHz) Phase Shift (◦) ∆IL (dB) FoM (◦/dB) Ref

GFET 3 85 1.3 65.4 [17]
GFET 8 40 - - [18]
GFET 30 75 - - [18]

GaN HEMT 8–16 22.5 2 11.3 [19]
SiGeHBT 5 170 - - [20]

32-nm CMOS 60 175 3.6 48.6 [21]
64-nm CMOS 60 180 3.3 54.54 [22]

130-nm SiGe BiCMOS 60 156 2.2 70.9 [23]
Graphene loaded line 4–4.5 23 0.42 54.7 This work

For practical applications regarding the antennas and quadrature amplitude modula-
tion schemes, the demonstrated amplitude and phase variation still need improvement.
However, this is a proof of concept, and a first step in acquiring a variable amplitude and
phase variation on a single transmission line, exploiting graphene’s tunable resistance. A
further increase in the number of stubs can provide a higher phase variation. In a similar
manner, an increase in the number of vias on the attenuator side can increase the amplitude
variation. The unwanted phase variation (in the attenuator) and amplitude variation (in
the phase shifter) can be reduced by optimizing the various lengths and widths of the
line sections.
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4. Discussion

The benefit of graphene-based amplitude and phase variation is that any number
of points can be generated between the extremes by varying the applied DC voltage
bias. A small increment is sufficient to vary the graphene resistance, thus varying the
amplitude/phase of the signal by a small amount. This could theoretically create infinite
number of points on a constellation diagram. In this case of the preliminary modulator,
there is no phase shift intended when the attenuation is activated, and no attenuation
intended when the phase shifting mode is activated. As shown in Figure 11, moving from
the zero position towards the highest phase shift, there is a negligible variation in the
amplitude of the signal, whereas in the case of the attenuation, the phase shift is negligible.
This shows that the measured data are encouraging but need to be enhanced for increased
phase and amplitude variation.
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Graphene is a scalable material as it retains the same resistance if the aspect ratio is
kept the same with a reduced size. This makes it possible to reduce the power consumption
as the variation of amplitude and phase is, in principle tied to the resistance. The maximum
power requirement of the phase shifter is almost 255 mW and that of the attenuator is
700 mW. This is on the higher side, but if the device is scaled down, this can be reduced
while keeping the aspect ratio and resistance constant. The examples of graphene-based
devices on a small scale are reported in [4,5] where the switching speed and scalability
is also discussed. A detailed analysis of the heat dissipation resulting from the power
consumption will be discussed in a future article.

5. Conclusions

A transmission line based on graphene with the capability of amplitude and phase
variation is proposed. The transmission line consists of an attenuator side and a phase
shifter side, separated through an interdigitated capacitor. This design ensures independent
control of the amplitude and phase. The optimized lengths of lines, stubs and vias in the
different sections of the line cause attenuation and phase shift by varying graphene’s
resistance through an applied DC bias voltage.
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